x

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1"

Transcripción

1 5.1.3 Multiplicación de números enteros. El algoritmo de la multiplicación tal y como se realizaría manualmente con operandos positivos de cuatro bits es el siguiente: x Al realizar la multiplicación se ve claro que si inicialmente tenemos dos números de n bits se obtiene un número de 2*n bits como máximo. Además dado el multiplicando realizar la operación por un bit del multiplicador es fácil. Si el bit multiplicador es uno, el multiplicando se introduce en su posición, desplazado adecuadamente para realizar la suma. Si el bit multiplicador es 0, entonces se introducen ceros en la suma, también desplazados adecuadamente, aunque realmente en este caso se puede elegir realizar la suma con operando cero o directamente no realizarla y pasar al siguiente operando. En una primera realización podemos realizar la multiplicación binaria de operandos positivos en un array lógico puramente combinacional. Sean M y m los números a multiplicar, cada bit del producto parcial Pij=mi*Mj se genera en una puerta AND. La generación de los n productos parciales y su suma se realiza en una red de n*(n-1) sumadores. Tal como muestra la figura: M3 M2 M1 M0 m3 m2 m1 m0 P03 P02 P01 P00 + P13 P12 P11 P10 P23 P22 P21 P20 P33 P32 P31 P30 P7 P6 P5 P4 P3 P2 P1 P0 (Ver dibujo en página siguiente).

2 Podemos apreciar el retardo existente en este circuito, donde los acarreos de los sumadores son propagados a través de todos ellos.

3 La realización de los SCA en este ejemplo puede presentar varias realizaciones. En la figura anterior vemos una forma de organizar los sumadores completos de los CSA para conseguir que el sumador con acarreo anticipado del final tenga el menor número de bits a sumar, y por tanto finalice lo antes posible. En la figura siguiente se muestra otra estructura muy similar de utilización de los CSA.

4 Problema: Realizar la multiplicación de dos números de 8 bits. Seguir el esquema visto en el ejemplo anterior. Decir cuantos niveles de puertas lógicas posee el circuito.

5 Algoritmo de Booth Hay algoritmos más directos para la obtención de multiplicaciones con números negativos, uno de estos es el algoritmo de Booth. El cual genera multiplicaciones de 2n bits y trata por igual tanto números positivos como negativos. Este algoritmo se basa en el hecho de que cuando tenemos un multiplicando el cual tiene una serie de unos en su representación, este valor se puede descomponer en la resta de otros dos números con una cantidad de unos menor, por ejemplo: = Así la multiplicación se puede descomponer en una operación de adición para el primer número y de una resta para el segundo: M * ( ) = M * ( ) M * ( ) El nuevo multiplicador lo podemos representar por: m = Pero este método se puede generalizar para cualquier cadena de bits en el multiplicando. Para ello realizamos un algoritmo de forma que cuando realicemos la multiplicación, nos fijaremos en el multiplicador viendo los bits de dos en dos: m i y m i-1, de forma que cuando tengamos estas cuatro posibles secuencias, determinarán el valor de m i, y realizaremos las acciones indicadas: 00 ó 11 : m i = 0 : Solo desplazaremos el multiplicador --> poner ceros. 01 : m i = 1 : Realizaremos el producto por 1 y desplazado. 10 : m i = -1 : Realizaremos el complemento a dos del multiplicador con extensión de signo y desplazado. Pero surge el problema del primer bit, para lo cual introducimos un bit previo a m 0, el m -1. En la página siguiente se muestra el algoritmo. Para entender por que se realiza esta asignación, hay que fijarse que todo número binario puede ser expresado como resta de dos números y una forma de obtenerlos es aplicar la anterior codificación. Ejemplo: m = (0) = m pos - m neg m = m pos m neg = (unos en los 1 s de m ) = (unos en los -1 s de m ) Para realizar la multiplicación podemos utilizar dos métodos, codificar el el multiplicador como hemos visto antes (con signos negativos en los unos) o no codificarlo asi y tener en cuenta la secuencia de bits de dos en dos como hemos visto. Para comprenderlo mejor veremos el mismo ejemplo de las dos formas.

6 Ejemplo: de multiplicación con el algoritmo de Booth: A= B= º) Codificamos B como ya se ha indicado: B = Luego realizamos la operación de sumas parciales como en el caso del multiplicador por sumas parciales haciendo el complemento a dos de los multiplicandos que sean necesarios restar (complemento a dos) º) Utilizar el segundo método basado en el algorimo vista en la hoja anterior. Ambos métodos son equivalentes e iguales en su realizacición, veamoslo: A= B= (0) (complemento a dos)

7 Ejemplo: Vamos algunas equivalencias para calcular la forma del multiplicador. Sea B=53 y A=21, calculamos la exprersión de B y luego realizamos la multiplicación de ambas formas. B = ==> B = (0) B = O también: B = ==> B = ( )-( ) (A=21) (-A= ) *

8 Hasta ahora hemos visto el caso de operandos positivos, veamos el caso de multiplicador negativo y como se obtiene el valor correcto. Para multiplicadores positivos existe por lo menos un cero en la última posición (bit de signo) que hace que la secuencia de unos tenga un final. Para el caso de multiplicadores negativos no existe este último cero y por lo tanto el multiplicando para su codificación puede presentar un número distinto de sumas y restas. Pero si aplicamos el segundo método este problema no se plantea, lo que sucede es que simplemente la última secuecnia de dos cifras será 10 o 11, con lo cual realizaremos o bien el C2 o sumaremos todo 0. Ejemplo: A= B= º) Con este método codificamos B: B = (0) B = (A=13) (-A=10011) Que es el resultado esperado. La transformación del multiplicador del algoritmo de Booth recibe el nombre de técnica de saltar unos, y es así porque para las series de unos que presenta el multiplicador sólo se necesita considerar el primero y el último. Sin embargo hay casos en los que esta técnica aumenta el número de unos con lo cual no se gana en velocidad a la hora de calcular el resultado, por ejemplo: B= B=

9 Versión combinacional del algoritmo de Booth.

10 Ejemplo 1: Utilizamos sumadores completos de 3 o 2 entradas. M3 M2 M1 M0 m3 m2 m1 m0 P03 P03 P03 P03 P02 P01 P00 C0 + P13 P13 P13 P12 P11 P10 C1 P23 P23 P22 P21 P20 C2 P33 P32 P31 P30 C3 P6 P5 P4 P3 P2 P1 P0 P03 P03 P03 P03 P02 P01 P00 + P13 P13 P13 P12 P11 P10 C0 P23 P23 P22 P21 P20 C1 P33 P32 P31 P30 C2 C3 P03 P33 P03 P31 P12 P02 S S S S S Acc Acc Acc Acc Acc Acc S S P03 S S S S Acc Acc Acc Acc Acc S S S S S S S Acc Acc Acc Acc S S S P6 P5 P4 P3 P2 P1 P0 AA-4bits

11 Ejemplo 2: Utilizamos sumadores completos siempre con 3 entradas. M3 M2 M1 M0 m3 m2 m1 m0 P03 P03 P03 P03 P02 P01 P00 C0 + P13 P13 P13 P12 P11 P10 C1 P23 P23 P22 P21 P20 C2 P33 P32 P31 P30 C3 P6 P5 P4 P3 P2 P1 P0 P03 P03 P03 P03 P02 P01 P00 + P13 P13 P13 P12 P11 P10 C0 P23 P23 P22 P21 P20 C1 P33 P32 P31 P30 C2 C3 P03 P33 P03 P31 P12 P02 S S S S S P00 Acc Acc Acc Acc Acc S C0 P03 S S S S P00 Acc Acc Acc Acc S S C0 S S S S P00 Acc Acc Acc Acc S S C0 P6 P5 P4 P3 P2 P1 P0 AA-7bits

12 PROBLEMA 1: Realizar el producto de (6)*(-5) usando representaciones de 4 bits en C-2 y una realización combinacional basada en el algoritmo de Booth (-6) C1 = 1001 * * C 0 = C 1 = 0 PRODUCTOS C 2 = 0 PARCIALES C 3 = CSA CSA CSA AA-4bits (-30) PROBLEMA 2: Realizar el producto de (10)*(-7) usando representaciones de 6 bits en C-2 y una realización combinacional basada en el algoritmo de Booth. PROBLEMA 3: Realizar el producto de (-20)*(+6) usando representaciones de 6 bits en C-2 y una realización combinacional basada en el algoritmo de Booth.

13 PROBLEMA 2: Producto de (10) * (-7) con 6 bits y C-2. SOLUCIÓN: (10) = (10) C1 = (10) C2 = ( 7) = (-7) C1 = (-7) C2 = M = m = * * C 0 = C 1 = C 2 = C 3 = 1 GPP = C 4 = C 5 = CSA = CSA = CSA = CSA = AA-12bits = (-70) C2

14 PROBLEMA 3: Producto de (-20) * ( 6) con 6 bits y C-2. SOLUCIÓN: (20) = (20) C1 = (20) C2 = ( 6) = M = m = * * C 0 = C 1 = C 2 = 0 PP = 2τ C 3 = C 4 = C 5 = CSA = 2 τ CSA = 2 τ CSA = 2 τ CSA = 2 τ Σ-AA-12bits = 8 τ (120) C2

15 Algoritmo de Booth modificado. Para acelerar el proceso de la multiplicación vamos a describir una nueva técnica que garantiza que un multiplicador de n bits necesitará como máximo n/2 sumandos, ya que permite reducir a la mitad el número de productos parciales, duplicando así la velociadad del multiplicador. Además este nuevo método maneja operandos con signo. La forma de acelerar el algoritmo es mediante la suma en un sólo paso de varias sumas parciales. El algotimo de Booth modificado divide el multiplicador en cadenas de 3 bits. Para ello se seleccionan los n/2 sumandos por parejas de bits de la siguiente forma: (x 1,x 0 ), (x 2,x 3 ), (x 4,x 5 ), etc, es por esto por lo que se le llama método de codificación por pares de bits. Veamos el ejemplo del caso anterior codificado mediante el algoritmo de Booth: Las parejas de bits formadas en este caso son: (-1, 0) => este par equivale a -2* (el multiplicando) (-1,+1) => -1* (el multiplicando) ( 0, 0) => 0* (el multiplicando) Si en lugar de la codificación de Booth tomamos los valores iniciales de número a codificar tenemos: (1,0) con 0 a la derecha=>-2*(el multiplicando) (1,0) con 1 a la derecha=> -1*(el multiplicando) (1,1) con 1 a la derecha=> 0*(el multiplicando) Podemos mostrar la tabla de codificaciones en función de los bits del multiplicador original: Multiplicador pares de bits (i+1, i) Bit de la derecha i-1 Valor de la suma parcial para ese par de bits 0,0 0 0*M ==> (0*2 i+1 + 0*2 i )*M 0,0 1 +1*M ==> (0*2 i+1 + 1*2 i )*M 0,1 0 +1*M==> (1*2 i+1-1*2 i )*M 0,1 1 +2*M==> (1*2 i+1 + 0*2 i )*M 1,0 0-2*M==> (-1*2 i+1 + 0*2 i )*M 1,0 1-1*M==> (-1*2 i+1 + 1*2 i )*M 1,1 0-1*M==> (0*2 i+1-1*2 i )*M 1,1 1 0*M==> (0*2 i+1 + 0*2 i )*M Tabla de codificaciones.

16 Ejemplo: A = B = Primero codificamos B = , la multiplicación a realizar es: A= 13 * B= Z= Del ejemplo podemos ver que los sumando ahora al pertenecer a parejas de bits, hay que desplazarlos para que se ajuste a la posición correspondiente del primer bit de que forma la pareja. Ejercicio: Para representaciones de 6 bits realizar las multiplicaciones siguientes: (10)*(-9) y (-10)*(9) Realización: (10) = (001010) (-10) = (110110) (9) = (001001) (-9) = (110111) 1ª) (10)*(-9): * º) (-10)*(9): * Ejercicio: Para representaciones de 4 bits realizar las multiplicaciones siguientes: (6)*(3) (6)*(-3) (-6)*(3) (-6)*(-3) Realización: (6) = (0110) (-6) = (1010) (3) = (0011) (-3) = (1101) Realización combinacional del Algoritmo de Booth Modificado.

17

18

19 PROBLEMA 1: Realizar el producto de (23)*(-7)= -161 usando representaciones de 6 bits en C-2 y una realización combinacional basada en el algoritmo de Booth Modificado (-23) C1 = * * C 0 = 0 Des 0 = C 1 = 1 Des 1 = C 2 = 0 Des 2 = C 0 = 0 Des 0 = C 1 = 1 Des 1 = C 2 = 0 Des 2 = (-161) Retardo =? PROBLEMA 2: Realizar el producto de (10)*(-7) usando representaciones de 6 bits en C-2 y una realización combinacional basada en el algoritmo de Booth Modificado. Da el tiempo de retardo total (= Niveles de puertas lógicas). PROBLEMA 3: Realizar el producto de (-20)*(+6) usando representaciones de 6 bits en C-2 y una realización combinacional basada en el algoritmo de Booth. Da el tiempo de retardo total (= Niveles de puertas lógicas).

20 PROBLEMA 2: Producto de (10) * (-7) con 6 bits y C-2 con Booth M. SOLUCIÓN: (10) = (10) C1 = (10) C2 = ( 7) = (-7) C1 = (-7) C2 = M = m = * P ij * C 0 = 0 Des 0 = C 1 = 1 Des 1 = C 2 = 0 Des 2 = 0 en realidad es así : P ij (-70) C2 Retardos: 6 de Productos Parciales 2*2 de CSAs 8 de AA de 12 bits. 18 Retardos.

21 PROBLEMA 3: Producto de (-20) * ( 6) con 6 bits y C-2. Con Booth Modificado SOLUCIÓN: (20)= (20) C1 = (20) C2 = ( 6)= M = m = * * C 0 = 1 Des 0 = C 1 = 0 Des 1 = C 2 = 0 Des 2 = (120) C2

22 PROBLEMAS PROPUESTOS PARA CASA. P1/ Especifica cuantos niveles de puertas lógicas se necesitan para realizar un multiplicador de números de 16 bits, según el Algoritmos de Booth y el de Booth Modificado. P2/ Realiza la multiplicación según la realización combinacional del algoritmo de Booth Modificado de los siguientes números. (23) * (-117) con N= 8 bits (resultado en 16 bits). ( 6) * ( -5) con N= 6 bits (y resultado en 12 bits). (21) * ( -23) con N= 8 bits (y resultado en 16 bits). P3/ Realiza la multiplicación según la realización combinacional del algoritmo de Booth Modificado de los siguientes números. (-33) * (-10) con N= 8 bits (y resultado en 16 bits). P4/ Que diferencias has encontrado entre las dos realizaciones con lógica combinacional estudiadas para la multiplicación de números en complemento a 2. Es decir, diferencias entre la realización combinacional del algoritmo de Booth y la realización de de Booth Modificado. P5/ Tienes que multiplicar dos números de 32 bits. Da los niveles de retardo de la realización combinacional del algoritmo de Booth y la realización de Booth Modificado. Da una tabla en la que se muestre que realización es más conveniente según el número de bits a multiplicar.

FORMATO BINARIO DE NÚMEROS NEGATIVOS

FORMATO BINARIO DE NÚMEROS NEGATIVOS FORMATO BINARIO DE NÚMEROS NEGATIVOS Introducción: Como sabemos, con un número n determinado de bits se pueden manejar 2 n números binarios distintos. Hasta ahora hemos trabajado con números binarios puros,

Más detalles

5.1.1 Sumadores con anticipación de Acarreo. g i = a i b i. c i = c i-1 p i + g i s i = p i + c i-1. c 0 = g 0 + c -1 p 0

5.1.1 Sumadores con anticipación de Acarreo. g i = a i b i. c i = c i-1 p i + g i s i = p i + c i-1. c 0 = g 0 + c -1 p 0 5.1.1 Sumadores con anticipación de Acarreo. El sumador paralelo de n bits que se ha mostrado hasta ahora, tiene un nivel de retardo de 2*n puertas, pues necesita 2*n etapas de puertas lógicas para que

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Universidad Rey Juan Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Circuitos para multiplicación y división de números en coma fija Luis Rincón Córcoles Licesio J. Rodríguez-Aragón Programa Bibliografía..

Más detalles

Aritmética del computador. Departamento de Arquitectura de Computadores

Aritmética del computador. Departamento de Arquitectura de Computadores Aritmética del computador Departamento de Arquitectura de Computadores Contenido La unidad aritmético lógica (ALU) Representación posicional. Sistemas numéricos Representación de números enteros Aritmética

Más detalles

Tema IV. Unidad aritmético lógica

Tema IV. Unidad aritmético lógica Tema IV Unidad aritmético lógica 4.1 Sumadores binarios 4.1.1 Semisumador binario (SSB) 4.1.2 Sumador binario completo (SBC) 4.1.3 Sumador binario serie 4.1.4 Sumador binario paralelo con propagación del

Más detalles

Lección 4: Suma y resta de números racionales

Lección 4: Suma y resta de números racionales GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,

Más detalles

LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS

LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS ESTRUCTURA DE COMPUTADORES Pag. 8.1 LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS 1. Circuitos de multiplicación La operación de multiplicar es mas compleja que la suma y por tanto se

Más detalles

Computación I Representación Interna Curso 2011

Computación I Representación Interna Curso 2011 Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Temario Representación de Números Enteros Representación de Punto Fijo Enteros sin signo Binarios puros

Más detalles

Aritmética Binaria. Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid

Aritmética Binaria. Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid Aritmética Binaria Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid 1 Índice Representación de números con signo Sistemas de Signo y Magnitud, Complemento a

Más detalles

Los sistemas de numeración se clasifican en: posicionales y no posicionales.

Los sistemas de numeración se clasifican en: posicionales y no posicionales. SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar

Más detalles

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria

Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria Oliverio J. Santana Jaria 3. Aritmética tica binaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Para Los La en conocer muchos aritmética comprender otros binaria tipos

Más detalles

Informática Bioingeniería

Informática Bioingeniería Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,

Más detalles

FUNCIONES ARITMÉTICAS Y

FUNCIONES ARITMÉTICAS Y Tema 3 FUNCIONES ARITMÉTICAS Y LÓGICAS 3.. INTRODUCCIÓN Hasta ahora hemos visto como se podían minimizar funciones booleanas, y como se podían implementar a partir de puertas discretas. En los temas siguientes

Más detalles

Matemáticas para la Computación

Matemáticas para la Computación Matemáticas para la Computación José Alfredo Jiménez Murillo 2da Edición Inicio Índice Capítulo 1. Sistemas numéricos. Capítulo 2. Métodos de conteo. Capítulo 3. Conjuntos. Capítulo 4. Lógica Matemática.

Más detalles

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR

UNIDAD 3: ARITMÉTICA DEL COMPUTADOR UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación

Más detalles

T6. CIRCUITOS ARITMÉTICOS

T6. CIRCUITOS ARITMÉTICOS T6. CIRCUITOS ARITMÉTICOS Circuitos Aritméticos Son dispositivos MSI que pueden realizar operaciones aritméticas (suma, resta, multiplicación y división) con números binarios. De todos los dispositivos,

Más detalles

❷ Aritmética Binaria Entera

❷ Aritmética Binaria Entera ❷ Una de las principales aplicaciones de la electrónica digital es el diseño de dispositivos capaces de efectuar cálculos aritméticos, ya sea como principal objetivo (calculadoras, computadoras, máquinas

Más detalles

Figura 1. Símbolo que representa una ALU. El sentido y la funcionalidad de las señales de la ALU de la Figura 1 es el siguiente:

Figura 1. Símbolo que representa una ALU. El sentido y la funcionalidad de las señales de la ALU de la Figura 1 es el siguiente: Departamento de Ingeniería de Sistemas Facultad de Ingeniería Universidad de Antioquia Arquitectura de Computadores y Laboratorio ISI355 (2011 2) Práctica No. 1 Diseño e implementación de una unidad aritmético

Más detalles

Apuntes de Microcontroladores (Repaso de temas previos)

Apuntes de Microcontroladores (Repaso de temas previos) Apuntes de Microcontroladores (Repaso de temas previos) Por M. C. Miguelangel Fraga Aguilar Enero 2015 Representaciones numéricas En estos apuntes se usara el posfijo b para denotar un número escrito en

Más detalles

-5.2 SUMADOR CON MULTIPLES SUMANDOS.

-5.2 SUMADOR CON MULTIPLES SUMANDOS. -5.2 SUMADOR CON MULTIPLES SUMANDOS. Sumador con acarreo almacenado. Este sumador también llamado Carry Save Adder (CSA) nos permitirá realizar la suma de N sumandos en un tiempo mínimo. Para estudiar

Más detalles

Sumador: C o. C in. Sumador serie: Sumador paralelo con propagación de arrastre:

Sumador: C o. C in. Sumador serie: Sumador paralelo con propagación de arrastre: UNIDAD ARITMETICO-LOGICA Conceptos Unidad aritmético-lógica: Elemento que realiza las operaciones aritméticas y lógicas entre los datos Operaciones típicas Sumar Restar Multiplicar Desplazamiento de registros

Más detalles

TEMA 6. Circuitos Aritméticos.

TEMA 6. Circuitos Aritméticos. Fundamentos de los Computadores. Circuitos Aritméticos T6- TEMA 6. Circuitos Aritméticos. INDICE: OPERACIONES EN EL SISTEMA BINARIO CIRCUITOS SUMADORES CIRCUITOS RESTADORES UNIDADES LÓGICO ARITMÉTICAS

Más detalles

Tema 2: Sistemas de representación numérica

Tema 2: Sistemas de representación numérica 2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,

Más detalles

Solecmexico Página 1 SUMADOR BINARIO

Solecmexico Página 1 SUMADOR BINARIO Solecmexico Página 1 SUMADOR BINARIO Esta operación es la más común que se realiza en una computadora personal. Ya que las tres operaciones básicas restantes pueden realizarse de igual manera con el principio

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Tema 4: Sistemas de Numeración. Codificación Binaria. Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 4: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL CÓRDOBA EL LENGUAJE DE LOS DATOS EN LA PC Y SU FORMA DE ALMACENAMIENTO TRABAJO REALIZADO COMO APOYO PARA LA CATEDRA INFORMATICA I Autora: Ing. Ing. Sylvia

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION

SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION CHIQUINQUIRA (BOYACA) 2015 1 CONTENIDO Pág. QUE ES UN SISTEMA BINARIO. 3 CORTA HISTORIA DE LOS

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA. Operaciones elementales con números binarios

Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA. Operaciones elementales con números binarios 1 de 10 27/09/11 09:57 Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA Operaciones elementales con números binarios Suma de números binarios Resta de números binarios Complemento

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES

SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES Unidad Aritmética Lógica La Unidad Aritmético Lógica, en la CPU del procesador, es capaz de realizar operaciones aritméticas, con datos numéricos expresados en el sistema binario. Naturalmente, esas operaciones

Más detalles

CIRCUITOS ARITMÉTICOS

CIRCUITOS ARITMÉTICOS LABORATORIO # 6 Realización: 26-05-2011 CIRCUITOS ARITMÉTICOS 1. OBJETIVOS Comprender los circuitos aritméticos dentro de la lógica binaria Utilizar sumadores totales de cuatro bits dentro de un Circuito

Más detalles

Algoritmos de multiplicación y división.

Algoritmos de multiplicación y división. Capítulo 11. 1 Algoritmos de multiplicación y división. A continuación se estudiarán algoritmos para efectuar las operaciones de multiplicación y división entera. Usualmente estas operaciones están soportadas

Más detalles

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid

Escuela Politécnica Superior Ingeniería Informática Universidad Autónoma de Madrid Tema 3: Sistemas de Numeración. Codificación Binaria Ingeniería Informática Universidad Autónoma de Madrid 1 O B J E T I V O S Sistemas de Numeración. Codificación Binaria Conocer los diferentes sistemas

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles

Representación de Datos. Representación de datos numéricos. Representación de datos caracteres. Representación de otros tipos de datos

Representación de Datos. Representación de datos numéricos. Representación de datos caracteres. Representación de otros tipos de datos Representación de Datos Representación de datos numéricos Representación de datos caracteres Representación de otros tipos de datos Sistemas de números Base Esquema posicional => N = n4 * b4 + n3 * b3

Más detalles

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true

by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad

Más detalles

TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS

TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS TEMA 6 ARITMÉTICA BINARIA Y CIRCUITOS ARITMÉTICOS . ARITMÉTICA BINARIA. Aritmética binaria básica a) Suma binaria.sea C i el acarreo (carry) generado al sumar los bits A i B i (A i +B i ) 2. Sea i= y C

Más detalles

Maria José González/ Dep. Tecnología

Maria José González/ Dep. Tecnología Señal analógica es aquella que puede tomar infinitos valores para representar la información. Señal digital usa solo un número finito de valores. En los sistemas binarios, de uso generalizado en los circuitos

Más detalles

Tema I. Sistemas Numéricos y Códigos Binarios

Tema I. Sistemas Numéricos y Códigos Binarios Tema I. Sistemas Numéricos y Códigos Binarios Números binarios. Aritmética binaria. Números en complemento-2. Códigos binarios (BCD, alfanuméricos, etc) Números binarios El bit. Representación de datos

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

1.1 Sistema de numeración binario

1.1 Sistema de numeración binario 1.1 Sistema de numeración binario Un sistema de numeración consta de: Un conjunto ordenado de cifras y un conjunto de operaciones. Llamaremos Base al número de cifras que hay en dicho conjunto. De este

Más detalles

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos: ELECTRÓNICA DIGITAL INDICE 1. TIPOS DE SEÑALES... 3 1.1. SEÑALES ANALÓGICAS... 3 1.2. SEÑALES DIGITALES... 3 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES... 3 2.1. CRONOGRAMAS... 3 2.2. TABLA DE VERDAD...

Más detalles

3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA. b a. C.S. c. s - 66 Electrónica Digital

3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA. b a. C.S. c. s - 66 Electrónica Digital 3 BLOQUES ARITMÉTICOS Y CODIFICACIÓN NUMÉRICA 3.1. Operaciones aritméticas: suma, resta, comparación y producto 3.2. Unidad lógica y aritmética: ALU 3.3. Codificación de números en binario 3.4. Codificación

Más detalles

Introducción a la Programación 11 O. Humberto Cervantes Maceda

Introducción a la Programación 11 O. Humberto Cervantes Maceda Introducción a la Programación 11 O Humberto Cervantes Maceda Recordando En la sesión anterior vimos que la información almacenada en la memoria, y por lo tanto aquella que procesa la unidad central de

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS RESPUESTA Y DESARROLLO DE EJERCICIOS AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO 1.1.- Convertir usando las

Más detalles

18. Camino de datos y unidad de control

18. Camino de datos y unidad de control Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 18. Camino de datos y unidad de control Un La versatilidad una característica deseable los Los

Más detalles

Sistema binario. Representación

Sistema binario. Representación Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza

Más detalles

Sistemas de Numeración

Sistemas de Numeración UNIDAD Sistemas de Numeración Introducción a la unidad Para la mayoría de nosotros el sistema numérico base 0 aparentemente es algo natural, sin embargo si se establecen reglas de construcción basadas

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema decimal

SISTEMAS DE NUMERACIÓN. Sistema decimal SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",

Más detalles

Representación de Datos. Una Introducción a los Sistemas Numéricos

Representación de Datos. Una Introducción a los Sistemas Numéricos Representación de Datos Una Introducción a los Sistemas Numéricos Tipos de Datos Datos Texto Número Imagen Audio Video Multimedia: Información que contiene números, texto, imágenes, audio y video. Como

Más detalles

Por ejemplo, los números binarios sin signo que se pueden construir con 4 bits son: bit más significativo more significant bit (msb)

Por ejemplo, los números binarios sin signo que se pueden construir con 4 bits son: bit más significativo more significant bit (msb) istema binario Un sistema binario utiliza únicamente dos símbolos para representar la información. Comúnmente los símbolos usados son los dígitos y 1, por eso reciben el nombre de dígitos binarios (binary

Más detalles

Tema 2. La Información y su representación

Tema 2. La Información y su representación Tema 2. La Información y su representación 2.1 Introducción. Un ordenador es una máquina que procesa información. La ejecución de un programa implica la realización de unos tratamientos, según especifica

Más detalles

Operaciones Aritméticas en Números con Signo

Operaciones Aritméticas en Números con Signo Operaciones Aritméticas en Números con Signo M. en C. Erika Vilches Parte 3 Multiplicación sin Signo Reglas básicas para multiplicar bits: 0x0 = 0 0x1 = 0 1x0 = 0 1x1 = 1 Ejemplos en números sin signo:

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97

SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97 SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo

Más detalles

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos

EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos EIE 446 - SISTEMAS DIGITALES Tema 2: Sistemas de Numeración, Operaciones y Códigos Nombre del curso: Sistemas Digitales Nombre del docente: Héctor Vargas Fecha: 1 er semestre de 2011 INTRODUCCIÓN El sistema

Más detalles

UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse

Más detalles

Modelo de examen tipo resuelto 1

Modelo de examen tipo resuelto 1 Modelo de examen tipo resuelto. Diseñar un sistema combinacional que tenga cinco entradas y dos salidas y que actúe de la siguiente forma: las cinco entradas (x 4 x 3 x 2 x x 0 ) representan una palabra

Más detalles

Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León.

Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León. Estructura y Tecnología de Computadores (ITIG) Luis Rincón Córcoles José Ignacio Martínez Torre Ángel Serrano Sánchez de León Programa 1. Introducción. 2. Operaciones lógicas. 3. Bases de la aritmética

Más detalles

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen

CIDEAD. 2º BACHILLERATO. Tecnología Industrial II. Tema 17.- Los circuitos digitales. Resumen Tema 7.- Los circuitos digitales. Resumen Desarrollo del tema.. Introducción al tema. 2. Los sistemas de numeración.. El sistema binario. 4. Códigos binarios. 5. El sistema octal y hexadecimal. 6. El Álgebra

Más detalles

EJERCICIOS DEL TEMA 1

EJERCICIOS DEL TEMA 1 EJERCICIOS DEL TEMA 1 Introducción a los ordenadores 1) Averigua y escribe el código ASCII correspondiente, tanto en decimal como en binario, a las letras de tu nombre y apellidos. Distinguir entre mayúsculas/minúsculas,

Más detalles

CIRCUITOS DIGITALES -

CIRCUITOS DIGITALES - CIRCUITOS DIGITALES - INTRODUCCIÓN CIRCUITOS DIGITALES CIRCUITOS DIGITALES SON LOS QUE COMUNICAN Y PROCESAN INFORMACIÓN DIGITAL SEÑAL DIGITAL: SOLO PUEDE TOMAR UN NÚMERO FINITO DE VALORES. EN BINARIO:

Más detalles

EL LENGUAJE DE LAS COMPUTADORAS

EL LENGUAJE DE LAS COMPUTADORAS EL LENGUAJE DE LAS COMPUTADORAS Una computadora maneja sus instrucciones por medio de un sistema numérico binario, que es el más simple de todos al contar con sólo dos símbolos para representar las cantidades.

Más detalles

Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali

Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali Sumadores En este documento se describe el funcionamiento del circuito integrado 7483, el cual implementa un sumador binario de 4 bits. Adicionalmente, se muestra la manera de conectarlo con otros dispositivos

Más detalles

La Unidad Procesadora.

La Unidad Procesadora. La Unidad Procesadora. En un sistema digital complejo, la capa de hardware de la máquina es el nivel más bajo del modelo de capas de un sistema microcomputarizado. La unidad procesadora es una parte del

Más detalles

Sistemas de Numeración Operaciones - Códigos

Sistemas de Numeración Operaciones - Códigos Sistemas de Numeración Operaciones - Códigos Tema 2 1. Sistema decimal 2. Sistema binario 3. Sistema hexadecimal 4. Sistema octal 5. Conversión decimal binario 6. Aritmética binaria 7. Complemento a la

Más detalles

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte)

Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA... 1 1. Representación interna de datos.... 1 1.2. Sistemas de numeración.... 2 1.3. Aritmética binaria...

Más detalles

Tema 11: Sistemas combinacionales

Tema 11: Sistemas combinacionales Tema 11: Sistemas combinacionales Objetivo: Introducción Generador Comprobador de paridad Comparadores Semisumador (HA) Sumador Completo (FA) Expansión de sumadores Sumador paralelo con arrastre serie

Más detalles

Sistemas secuenciales síncronos: codificación de estados de un control de volumen

Sistemas secuenciales síncronos: codificación de estados de un control de volumen Sistemas secuenciales síncronos: codificación de estados de un control de volumen Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informàtica de Sistemes i Computadors

Más detalles

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU)

21/02/2012. Agenda. Unidad Central de Procesamiento (CPU) Agenda 0 Tipos de datos 0 Sistemas numéricos 0 Conversión de bases 0 Números racionales o Decimales 0 Representación en signo-magnitud 0 Representación en complemento Unidad Central de Procesamiento (CPU)

Más detalles

CONTADORES Y REGISTROS

CONTADORES Y REGISTROS Capítulo 7 CONTADORES Y REGISTROS 7.. CONTADORES Un contador es un circuito secuencial cuya función es seguir una cuenta o conjunto predeterminado de estados como consecuencia de la aplicación de un tren

Más detalles

TEMA 11. CIRCUITOS ARITMÉTICOS TICOS DIGITALES

TEMA 11. CIRCUITOS ARITMÉTICOS TICOS DIGITALES TEM. CIRCUITOS RITMÉTICOS TICOS DIGITLES http://www.tech-faq.com/wp-content/uploads/images/integrated-circuit-layout.jpg IEEE 25 niversary: http://www.flickr.com/photos/ieee25/with/2809342254/ TEM. CIRCUITOS

Más detalles

Introducción a los Sistemas Digitales

Introducción a los Sistemas Digitales Tema Sistema Estructura y comportamiento Señal analógica y señal digital Señal binaria Sistemas de numeración Representación de números enteros Signo-magnitud Complemento a dos Codificación Códigos numéricos

Más detalles

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0 Clase 5 Un registro es un conjunto de n latch o Flip-Flops asociados que permiten almacenar temporalmente una palabra o grupo de n bit. Hay dos clases de registros típicos sincrónicos 1. el registro de

Más detalles

Organización del Computador. Prof. Angela Di Serio

Organización del Computador. Prof. Angela Di Serio Punto Flotante Muchas aplicaciones requieren trabajar con números que no son enteros. Existen varias formas de representar números no enteros. Una de ellas es usando un punto o coma fijo. Este tipo de

Más detalles

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO

DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos

Más detalles

1. Representación de la información en los sistemas digitales

1. Representación de la información en los sistemas digitales Oliverio J. SantanaJaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2005 2006 1. Representación de la información en los sistemas digitales Durante Hoy Los digital tipo muchos

Más detalles

TEMA 3 Representación de la información

TEMA 3 Representación de la información TEMA 3 Representación de la información Álvarez, S., Bravo, S., Departamento de Informática y automática Universidad de Salamanca Introducción Para que el ordenador ejecute programas necesita dos tipos

Más detalles

EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 2007/08. PROBLEMA DEL PRIMER PARCIAL

EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 2007/08. PROBLEMA DEL PRIMER PARCIAL EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 27/8. PROBLEMA DEL PRIMER PARCIAL Se desea diseñar un sistema para jugar a Piedra, papel o tijera. Como se sabe, en este juego cada uno de los dos

Más detalles

Proyecto de Diseño # 3 DISEÑO E IMPLEMENTACIÓN DE SISTEMAS ARITMÉTICOS MATERIAL ADICIONAL

Proyecto de Diseño # 3 DISEÑO E IMPLEMENTACIÓN DE SISTEMAS ARITMÉTICOS MATERIAL ADICIONAL INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA IE-3308: LABORATORIO DE DISEÑO LÓGICO Prof. Ing. Luis C. Rosales Proyecto de Diseño # 3 DISEÑO E IMPLEMENTACIÓN DE SISTEMAS ARITMÉTICOS

Más detalles

CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA.

CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA. CAPÍTULO 3 LÓGICA DIGITAL. REPRESENTACIÓN NUMÉRICA. INTRODUCCIÓN La lógica es el arte de la argumentación correcta y verdadera Organon, Aristóteles de Estagira Desde hace mucho tiempo, el hombre en su

Más detalles

4. SUMADORES EN BINARIO PURO (I)

4. SUMADORES EN BINARIO PURO (I) TEMA 3: SISTEMAS ARITMÉTICOS Introducción y objetivos (3). Representación y codificación de la información (4-7) 2. Sistemas numéricos posicionales. Binario, hexadecimal, octal, y BCD. (8-33) 3. Números

Más detalles

OPERADORES: Maquinaria para realizar las instrucciones. Capítulo Tercero Fundamentos de Computadores Ingeniería de Telecomunicación

OPERADORES: Maquinaria para realizar las instrucciones. Capítulo Tercero Fundamentos de Computadores Ingeniería de Telecomunicación OPERADORES: Maquinaria para realizar las instrucciones. Capítulo Tercero Fundamentos de Computadores Ingeniería de Telecomunicación 1 Introducción (I) ALU / Arquitectura Von Neumann CPU banco de registros

Más detalles

TEMA 1: Control y programación de sistemas automáticos

TEMA 1: Control y programación de sistemas automáticos Esquema: TEMA : Control y programación de sistemas automáticos TEMA : Control y programación de sistemas automáticos....- Introducción.....- Representación de las señales digitales...2 2.- Sistemas de

Más detalles

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN.

CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. INDICE. CONCEPTOS BÁSICOS DE INFORMÁTICA. REPRESENTACIÓN DE LA INFORMACIÓN. TÉRMINOS BÁSICOS DE LA INFORMÁTICA. REPRESENTACIÓN INTERNA DE LA INFORMACIÓN. El SISTEMA BINARIO DE NUMERACION. El sistema decimal

Más detalles

LABORATORIO DE COMPUTADORAS

LABORATORIO DE COMPUTADORAS TP 1 LABORATORIO DE COMPUTADORAS Facultad de Ingeniería. UNJu Tema: Sistemas Numéricos y Diseño Combinacional y Secuencial Apellido y Nombre: LU: Carrera: Fecha: 2013 EJEMPLOS Estándar IEEE 754 El estándar

Más detalles

Solución: exp. 1994. Febrero, primera semana. Paso 1º: Cálculo del campo exponente. Según el apartado a) del primer corolario: 53.

Solución: exp. 1994. Febrero, primera semana. Paso 1º: Cálculo del campo exponente. Según el apartado a) del primer corolario: 53. INGENIERÍA TÉCNICA en INFORMÁTICA de SISTEMAS y de GESTIÓN de la UNED. Febrero, primera semana. Obtenga la representación del número 5.7 en formato normalizado IEEE 75 para coma flotante de 6 bits (es

Más detalles

Sebastián García Galán Sgalan@ujaen.es

Sebastián García Galán Sgalan@ujaen.es Universidad de Jaén E.U.P. Linares Dpto. Telecomunicaciones Área de Ingeniería Telemática Sebastián García Galán Sgalan@ujaen.es TEMA 2: 2.1 CODIFICACIÓN 2.2 SISTEMAS DE NUMERACIÓN BASES DE NUMERACIÓN

Más detalles

Representación de números enteros: el convenio signo y magnitud

Representación de números enteros: el convenio signo y magnitud Representación de números enteros: el convenio signo y magnitud Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informàtica de Sistemes i Computadors Escola Tècnica Superior

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO DE CIRCUITOS DIGITALES

Más detalles

Capitulo 12. Tira de bits

Capitulo 12. Tira de bits Capitulo 12. Tira de bits 12.1 Representación de números naturales (enteros positivos) base 10 base 2 base 16 decimal binario hexadecimal 0 0 0 1 1 1 2 10 2 3 11 3 4 100 4 5 101 5 6 110 6 7 111 7 8 1000

Más detalles

ELO311 Estructuras de Computadores Digitales. Números

ELO311 Estructuras de Computadores Digitales. Números ELO311 Estructuras de Computadores Digitales Números Tomás Arredondo Vidal Este material está basado en: material de apoyo del texto de David Patterson, John Hennessy, "Computer Organization & Design",

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Este curso de larga duración tiene la intención de introducir a los lectores más jovenes o con poca experiencia a la Electrónica Digital, base para otras ramas

Más detalles

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C"

Capítulo 2 REPRESENTACIÓN DE LOS DATOS. Presentación resumen del libro: EMPEZAR DE CERO A PROGRAMAR EN lenguaje C Presentación resumen del libro: "EMPEZAR DE CERO A PROGRAMAR EN lenguaje C" Autor: Carlos Javier Pes Rivas (correo@carlospes.com) Capítulo 2 REPRESENTACIÓN DE LOS DATOS 1 OBJETIVOS Entender cómo la computadora

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Ejercicio 1. Solución.

Ejercicio 1. Solución. Unidad 3. Control y Programación de istemas Automáticos. Problemas. Tema 3. Circuitos Combinacionales. jercicio. l circuito de la figura es un comparador binario de dos números A (A o, A ) y B (B o, B

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Sistema binario 0,1 Sistema octal 0, 1, 2, 3, 4, 5, 6, 7 Sistema decimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Sistema hexadecimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F Una señal

Más detalles