FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: ( ) ( )"

Transcripción

1 Isbel Nóvo Arechg FORMULARIO EN DISTINTAS OPERACIONES FINANCIERAS 1. CAPITALIZACIÓN SIMPLE: El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente l ño. Si no vienen referidos l iso período, se trnsforn en ls siguientes: Siendo = 1,, 3, 4, 6, 1, 365 etc. el núero de veces que contiene l frcción de ño según veng expresdo n. Los tntos equivlentes en cpitlizción siple son proporcionles L cpitlizción siple se crcteriz porque los intereses no se cuuln l Cpitl inicil, los intereses de cd período son proporcionles e igules. CAPITALIZACIÓN COMPUESTA [ ] Los intereses correspondientes un período culquier s en cpitlizción copuest se obtienen en función del ontnte del período inedito nterior ultiplicdo por el tnto del período. [ ] L vrición que sufre l cuntí de un cpitl referido dos períodos de tiepo consecutivos es proporcionl l vlor del iso en el oento inedito nterior ultiplicdo por el tnto unitrio nul i de l Ley. L cpitlizción copuest se crcteriz porque los intereses se cuuln l Cpitl inicil pr producir conjuntente nuevos intereses. El tnto i y el tiepo n, tienen que estr correlciondos, es decir, referidos l iso período de tiepo, generlente l ño. Si no vienen referidos l iso período, se trnsforn edinte los siguientes TANTOS EQUIVALENTES, que son quellos que plicdos un iso cpitl durnte el iso período de tiepo, producen idéntico ontnte o cpitl finl, unque vengn referidos diferentes períodos de cpitlizción. ( 1 n n j n i ) 1 (1 i ) 1 j (1 i ) 1 (1 i ) Montnte de 1 unidd onetri durnte 1 ño

2 Isbel Nóvo Arechg 1 j j i i (1 i) 1 1 i 1 (1 i ) 1 j i = = i = Tnto noinl nul convertible. Con el subíndice se indic l frecuenci o núero de cpitlizciones efectuds dentro del ño, es decir, el núero de veces que h intervenido en el ño en l fijción de los intereses. Es j proporcionl l tnto i. tnto efectivo nul de cpitlizción copuest. núero de veces que se cpitliz dentro del ño. rédito periodl o frcciondo, plicdo cd -ésio de ño pr cpitlizr intereses, equivlente l tnto efectivo nul i. COMPARACION ENTRE LA CAPITALIZACIÓN SIMPLE Y LA COMPUESTA. Hy que observr l evolución de los vlores que vn tondo los ontntes en bs funciones pr un iso tipo de interés i (constnte y referido l ño) edid que vrí el tiepo. A prtir de un cpitl inicil C 0 = 1. TIEMPO CAPITALIZACIÓN SIMPLE CAPITALIZACIÓN COMPUESTA n = 0 C n = 1 C n = 1 n = ¼ C n = 1 + ¼ i C n = (1+i) 1/4 n = ½ C n = 1 + ½ i C n = (1+i) 1/ n = 1 C n = 1 + i C n = 1 + i n = C n = 1 + i C n = (1+i) n C n = 1 + i n C n = (1+i) n Se observ que: -Los vlores del ontnte en cpitlizción siple y en cpitlizción copuest coinciden cundo n=0 y pr n=1. -Pr vlores de n coprendidos entre 0 < n < 1, el ontnte en cpitlizción siple es yor que en cpitlizción copuest. -Pr vlores de n superiores l unidd, n > 1, el ontnte en cp. copuest es yor que el ontnte en cpitlizción siple. PRÁCTICAS. 1.- Se dquieren Letrs del Tesoro de noinl euros y venciiento 1 eses. El precio de copr es de 870 euros, deás se bon un coisión de 3 euros por Letr tnto en el oento de l copr coo en el de su ortizción. 1.) TAE oficil..b) Tnto de rentbilidd efectiv.

3 Isbel Nóvo Arechg dís ) i TAE itae 0, 1477 nul b) i 997 i 0,1404 nul El dí 30 de septiebre de 011 se dquieren dos Letrs del Tesoro de euros noinles l 6% de interés nul que vencen respectivente el 15 de junio y el 30 de diciebre de 01. Al venciiento de cd Letr l entidd finncier cobr 3 euros de coisión..) Precio de cd un de ls Letrs..b) Rentbilidd efectiv de cd Letr. ) Según l Dirección Generl del Tesoro se utiliz l ley de cpitlizción siple en Letrs con venciientos inferiores o igules l ño nturl y l ley de cpitlizción copuest en Letrs con venciientos superiores l ño nturl. 59 P1 1 0, P1 958,6 360 P 1 0, P 937, 76 b) L rentbilidd de l prier Letr se puede hcer en cpitlizción siple tendiendo l D.G.T. o en cpitlizción copuest tendiendo l Circulr 8/90 del Bnco de Espñ: ,61 i 997 i 5,56% , i i 5,688% 3.- Se un Letr del Tesoro de euros noinles. Precio edio resultnte en l subst 895 euros. Durción 364 dís según inforción ofrecid en el resultdo de l subst. El coprdor que dquiere est Letr en l subst, l vende en el ercdo secundrio los 90 dís. Si en ese oento el tipo de interés de ercdo está en el 9% nul. Entre qué vlores estrí l cotizción rel de ercdo? Rentbilidd del coprdor inicil: i i 11,6% E ,116 90, ,955 es el precio ínio los 90 dís, sin diferencil, ientrs que el precio de ercdo de l Letr será:

4 Isbel Nóvo Arechg ' 74 ' 90 E1 0, E 935, i 935,891 i 18,7% N=1.000 E =935,89 E 1 =895 E =90, L cotizción de l Letr vrí entre esos dos vlores E y E. Cuál es l rentbilidd del prier coprdor? Según l D.G.T, l rentbilidd del prier coprdor oscilrí entre el 11, 60% y el 18,7%. Según l CBE 8/90, l TAE estrí coprendid entre el 1,9% y el 19,86%: 895 (1+i) 90/365 = 90,961 i TAE = 1,9% 895 (1+i) 90/365 = 935,891 i TAE = 19,86% Pr el segundo coprdor su rentbilidd oscil según tendos l D.G.T., l rentbilidd estrí coprendid entre el 9% y el 11,7% ,961 1 i i = 11,7% 360 Según l CBE 8/90, l TAE estrí coprendid entre el 11,59% y el 9,%: 90,961 (1+i) 74/365 = i TAE = 11,59% 935,891 (1+i) 74/365 = i TAE = 9,% Coo se puede observr, l utilizción de dos Leyes de cpitlizción diferentes lter l interpretción de los resultdos obtenidos. 4.- Se negoci un efecto de 650 euros que vence dentro de 6 eses en un Bnco que plic el 1% de descuento siple nul y un coisión de negocición del 0,5% s/noinl (ínio 3 euros). El tibre es de,8 euros. 4.) Forfit que englob descuento y coisión. 4.b) Tipo de interés nul equivlente l de descuento. 4.c) Plnter ls expresiones prtir de ls cules se obtendrín: Tnto efectivo de coste. Tnto de rentbilidd pr el bnco. TAE oficil.

5 Isbel Nóvo Arechg ) Dc = 650 0,1 0,5 = 39 Co.= 650 0,005 = 3,5 4,5 = 650 f 0,5 f = 0,13 b) 0,1 i 0, ,1 1 c) E L = ,5 = 607,75 entreg el bnco E N = 607,75,8 = 604,95 recibe el cliente cpitliz.copuest 607,75 1 i cpitliz.copuest 604,95 1 i 610, Se l siguiente subst de LETRAS del TESORO 6 eses Peticiones copetitivs: Precios ofertdos Iporte solicitdo % (ill. euros) 98, , ,0 pp , ,5 p rginl , 00 97,0 100 Totl.000 0,5 0,5 650 i 650 i 14,387% 15,448% 0,5 i 650 i 13,66% El voluen de peticiones no copetitivs solicitdo sciende 300 illones de euros. Suponiendo que el Tesoro decide eitir illones de euros (300 no copetitivs y copetitivs) Precio rginl 97,5% 3.. Precio edio ponderdo 97,96% El Pp se clcul ponderndo los precios por ls cntiddes de ls djudicciones copetitivs ,984 0,98 0,98 0,977 0,975 0, pp 97,96% TAE El siste de subst supone que ls peticiones ceptds con un precio ofrecido inferior l precio edio ponderdo se djudicn l precio ofrecido. Ls peticiones con un precio ofertdo superior o igul l precio edio ponderdo se djudicn l Pp. Ls peticiones no copetitivs se djudicn l precio edio ponderdo. L Dirección Generl del Tesoro (D.G.T.) estblece que el tnto nul equivlente (TAE)* de ls letrs del Tesoro es el tipo de interés nul l que se obtiene l inversión, en este cso: ,61 itae itae 4,119% nul 360 (*) Este étodo no es del todo excto porque no tiene en cuent ls crcterístics coerciles de l operción, utiliz un ley sutiv pr períodos inferiores l ño nturl y deás oper con el ño coercil de 360 dís en vez del ño nturl. Es el étodo utilizdo por l Dirección Generl del Tesoro pr clculr el TAE de ls Letrs del Tesoro. p p TAE

6 Isbel Nóvo Arechg 6.- De l inforción fcilitd por el Tesoro se sbe que en l subst del dí 8 de febrero se dquirieron Letrs del Tesoro 1 y 18 eses, respectivente, l 6% de interés nul. Al venciiento de cd Letr l entidd finncier cobr 3 euros de coisión. 6.) Precio de cd un de ls Letrs. 6.b) Rentbilidd efectiv de cd Letr. L inforción fcilitd es l siguiente: Fech subst Fech eisión Fech ortizción Núero de dís Letrs 1 Letrs 18 Letrs 1 Letrs 18 8 feb r r go Según l Dirección Generl del Tesoro se utiliz l ley de cpitlizción siple en Letrs con venciientos inferiores o igules l ño nturl y l ley de cpitlizción copuest en Letrs con venciientos superiores l ño nturl. 364 P1 1 0, P1 94,8 360 P 1 0, P 917, 49 L rentbilidd efectiv de l prier Letr se puede hcer en cpitlizción siple tendiendo l D.G.T. o en cpitlizción copuest tendiendo l Circulr 8/90 del Bnco de Espñ: 94,81 i 94, ,6856% i i 5,6838% i En este cso, l diferenci es íni por que el plzo es prácticente igul 1 ño. L rentbilidd efectiv de l segund Letr se hce en cpitlizción copuest por ser su plzo superior l ño nturl: 53 i 997 i 5,785% 917,

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID EXAMEN MATEMATICAS FINANCIERAS CEU 27 JUNIO 2008 PRIMERA PREGUNTA Responder ls siguientes cuestiones: 1.1 Si plicmos un tipo nominl nul del % un préstmo, y se pg por trimestres, Cuál será el tipo trimestrl

Más detalles

EVALUACION DE PROYECTOS

EVALUACION DE PROYECTOS EVALUACION DE PROYECTOS EVALUACION DE PROYECTOS EVALUACION DE PROYECTOS FINANCIACIÓN DE PROYECTOS: CREDITOS Elementos del crédito Principl del préstmo se puede frccionr en vrios desembolsos nules, generlmente

Más detalles

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX.

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX. MERCA Ejercicios Contbilidd Tem 9 Empres dedicd l compr-vent de ordendores y servicios de progrmción. Período contble: 1 er trimestre de 20XX. ACTIVO ACTIVO NO CORRIENTE INMOVILIZADO MATERIAL PATRIMONIO

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

EXPONENTES Y RADICALES

EXPONENTES Y RADICALES . UNIDAD EXPONENTES Y RADICALES Objetivo generl. Al terinr est Unidd resolverás ejercicios probles en los que pliques ls lees de los eponentes de los rdicles. Objetivos específicos:. Recordrás l notción

Más detalles

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área

Se desea calcular la longitud de un lado de una pista de baile de forma cuadrada, cuya área es 16 u 2. Sustituyendo el valor del área Núeros irrcionles Algun vez hs utilizdo núeros irrcionles? Se dese clculr l longitud de un ldo de un pist de bile de for cudrd, cuy áre es 6 u A = 6 u x x Definios los eleentos: x = ldo del cudrdo A =

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1.

Se pide: Formular el Balance de saldos definitivo o Balance de inventario de la empresa al día 30 de Junio del año X1. CASOS TEMA 3 CASO PRÁCTICO Nº 1 El ptrimonio de l empres individul "ALFA", cuy ctividd es l comercilizción de los rtículos A, B y C, está integrdo por el siguiente conjunto de bienes derechos y obligciones,

Más detalles

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC:

CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Las combinaciones de negocios se regulan en dos normas del PGC: CASO PRÁCTICO SOBRE COMBINACIONES DE NEGOCIOS ENTRE EMRPESAS DEL GRUPO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci. Ls combinciones de negocios se reguln en dos norms

Más detalles

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería.

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería. CONSULTA DE LA IGAE Nº 13/1995 FORMULADA POR VARIAS CORPORACIONES LOCALES, EN RELACIÓN CON EL TRATAMIENTO CONTABLE DE LA RENTABILIZACIÓN DE EXCEDENTES TEMPORALES DE TESORERÍA. CONSULTA En virtud de ls

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

(2132) Repuestos de maquinaria 80.000

(2132) Repuestos de maquinaria 80.000 3. Norms prticulres sobre el inmovilizdo mteril 80.000 25.000 800 (2131) Mquinri. Motores (75.000 + 5.000) (28132) Amortizción cumuld. Repuestos de mquinri (motores) (100.000/8) x 2 (472) Hciend Públic,

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000

Venta de 6 frigoríficos a 1.000 cada uno. Las ventas del ejercicio son ingresos. Banco Clientes a Ventas de mercaderías 6000 Solución Ejercicio 3: A. Registro de l vent. Vent de 6 frigoríficos 1.000 cd uno. Ls vents del ejercicio son ingresos. 5400 Bnco Clientes Vents de mercderís 0 (+) Bnco (-) (-) Resultdo Ejer (+) 0 (+) Clientes

Más detalles

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta.

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta. GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización copuesta. Concepto de capitalización copuesta. Térinos a utilizar en la capitalización copuesta. Cálculo del capital final o ontante.

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO.

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci L Norm de Registro y

Más detalles

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar:

TEMA 3: SISTEMAS DE ECUACIONES LINEALES Para empezar: Pl Mdre Mols, nº 86- MADRID Correo: nsconsolcion@plnlf.es / Telf. 9 59 95 / 69 56 698 / F 9 55 59 / www.nsconsolcion.co TEMA : SISTEMAS DE ECUACIONES LINEALES Pr eper:. Discutir resolver los siguientes

Más detalles

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA

Ejercicios Contabilidad Tema 4 EMPRESA CRECESA EMPRESA CRECESA Ejercicios Contbilidd Tem 4 CRECESA es un empres dedicd l comercilizción de plnts de interior. Se h constituido principios de 20XX y su Blnce finles de ese ño (expresdo en uniddes monetris)

Más detalles

OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN

OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN Contbilidd (RR.LL.) T7 OBLIGACIONES DE PAGO POR OPERACIONES DE TRÁFICO Y AJUSTES DE PERIODIFICACIÓN 1. - Considerciones generles 2. - Proveedores 3. - Acreedores. 4. - El Impuesto sobre el Vlor Añdido.

Más detalles

TEMA 10 FINANCIACIÓN

TEMA 10 FINANCIACIÓN TEMA 10 FINANCIACIÓN 1.-Considerciones generles. 2.-Ptrimonio neto. 2.1.-Fondos propios. 2.2.-Subvenciones, donciones y legdos. 3.-Psivo. 3.1.-Provisiones contingentes. 3.2.-Deuds. 1.-CONSIDERACIONES GENERALES.

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas.

PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas. PRUEBA OBJETIVA Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas. 1. Capital financiero es: a) Es la edida de un bien econóico referida al oento

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

E-CONTABILIDAD FINANCIERA: NIVEL II

E-CONTABILIDAD FINANCIERA: NIVEL II E-CONTABILIDAD FINANCIERA: NIVEL II MÓDULO 5: LA FINANCIACIÓN AJENA EN LA EMPRESA OBJETIVOS DEL MÓDULO: Conocer ls distints modliddes que tiene l empres pr finncirse con recursos jenos. Estudir otrs operciones

Más detalles

Gestión de inventarios

Gestión de inventarios Gestión de inventrios José Mrí Ferrer Cj Universidd Pontifici Comills Introducción Inventrio (stock): Conjunto de bienes lmcendos pr su posterior uso Tipos de bienes del inventrio: Mteris prims en esper

Más detalles

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES

ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES ANEXO B3 ECUACIÓN DE CAMBIO DE CONDICIONES Pág. 1 B3.1 ECUACIÓN DE CAMBIO DE CONDICIONES B3.1.1 CATENARIA B3.1.1.1 Curv de equilibrio de un hilo El conductor tendido entre dos poyos dquiere l for de un

Más detalles

Tema9. Sucesiones. Tema 9. Sucesiones.

Tema9. Sucesiones. Tema 9. Sucesiones. Tem 9. Sucesiones.. Definición. Forms de definir un sucesión.. Progresión ritmétic... Definición.. Sum progresión ritmétic. Progresión geométric... Definición.. Sum finit de progresión geométric... Sum

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

TEMA 9 - INMOVILIZADO

TEMA 9 - INMOVILIZADO TEMA 9 - INMOVILIZADO 1. Considerciones generles. 1.1. Descripción. 1.2. Clsificción. 1.3. Registro y reconocimiento. 1.4. Forms de dquisición. 1.5. Vlorción. 1.6. Bjs de inmovilizdo 2. Inmovilizdo mteril.

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

Nivelación de Cálculo

Nivelación de Cálculo Guí de Conceptos y Ejercicios Aplicdos l Cálculo Desrrolldos y Propuestos 1. Potencis. Nivelción de Cálculo Ejeplo plicdo l cálculo: Clcul el siguiente líite: n n lí 5 Pr desrrollr este ejercicio de cálculo,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Casos prácticos resueltos

Casos prácticos resueltos Apéndice A Csos prácticos resueltos A.1. Introducción Hst hor, dentro de cd unidd temátic, se hn ido resolviendo supuestos concernientes l tem trtdo en el cpítulo. En éste, se pretenden desrrollr ejercicios

Más detalles

1.- Cálculo del coeficiente de autoinducción.

1.- Cálculo del coeficiente de autoinducción. Trbjo Práctico 8 1.- Cálculo del coeficiente de utoinducción. Describ el fenómeno de utoinducción en un bobin. Encuentre l expresión del coeficiente de utoinducción en un solenoide lrgo de N s = 1 espirs

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estido luno: Aquí encontrrás ls clves de corrección, ls hbiliddes y los procediientos de resolución socidos cd pregunt, no obstnte, pr reforzr tu prendizje es fundentl que sists l corrección edid por

Más detalles

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal

Tema 3 La elasticidad y sus aplicaciones Relación elasticidad-precio y gasto en la curva de demanda lineal Introducción l Teorí Económic Crmen olores Álvrez Alelo Miguel Becerr omínguez Ros Mrí Cáceres Alvrdo Mrí del ilr Osorno del Rosl Olg Mrí Rodríguez Rodríguez http://it.ly/8l8u Tem 3 L elsticidd y sus plicciones

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

PRÉSTAMO CON TIPO DE INTERÉS SUBVENCIONADO.

PRÉSTAMO CON TIPO DE INTERÉS SUBVENCIONADO. PRÉSTAMO CON TIPO DE INTERÉS SUBVENCIONADO. Gregorio Lbtut Serer. Profesor Titulr de l Universidd de Vlenci. http://gregorio-lbtut.blogspot.com.es/ Vmos presentr el trtmiento contble de los préstmos con

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

PROPORCIONALIDAD DIRECTA E INVERSA

PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA Rzón entre dos números Siempre que hblemos de Rzón entre dos números nos estremos refiriendo l cociente (el resultdo de dividirlos) entre ellos. Entonces: Rzón entre

Más detalles

DESCRIPCIÓN DEL EXAMEN

DESCRIPCIÓN DEL EXAMEN EXAMEN FINAL Nº DESCRIPCIÓN DEL EXAMEN El exmen es tipo test, de contenido teórico-práctico; const de doce pregunts con cutro lterntivs de respuest, donde sólo un es l correct. Criterios de corrección:

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones.

( ) ( ) ( ) ( ) 4. Aplique las propiedades de la potenciación y la radicación para simplificar las siguientes expresiones. DEPARTAMENTO DE MATEMÁTICAS ÁREA DE MATEMÁTICAS TEMA: PERÍODO: ORIENTADOR: ESTUDIANTE: E-MAIL: FECHA: TEORÍA DE LOS EXPONENTES, LOS RADICALES Y LOS LOGARITMOS PRIMERO UNIDAD TEORÍA DE LOS EXPONENTES, LOS

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

TEMA 3. Instrumentos contables

TEMA 3. Instrumentos contables TEMA 3 Instrumentos contbles 1 EMPRESA (PATRIMONIO) HECHO CONTABLE ACTIVIDADES CONTABLES BÁSICAS: Instrumentos contbles ASIENTOS LIBRO DIARIO INVENTARIO FÍSICO Control CUENTAS LIBRO MAYOR IDENTIFICACIÓN

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Facultad de Ciencias Exactas y Tecnologías UNSE Apuntes de Cátedra: Investigación Operativa / I Año: 2006.- II. LA PROGRAMACIÓN LINEAL

Facultad de Ciencias Exactas y Tecnologías UNSE Apuntes de Cátedra: Investigación Operativa / I Año: 2006.- II. LA PROGRAMACIÓN LINEAL Fcultd de Ciencis Ects ecnologís UNSE Apuntes de Cátedr: Investigción Opertiv / I Año: 6.- II. LA PROGRAMACIÓN LINEAL El Método Siple Definición: Un progr linel es quel que optiiz el siguiente odelo teático

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

- 1 - PLANO INCLINADO

- 1 - PLANO INCLINADO - 1 - PLNO INCLINDO DESCOMPOSICIÓN DE L FUERZ PESO Suponé que tengo un cuerpo que está poydo en un plno que está inclindo un ángulo. L fuerz peso punt pr bjo de est ner: UN CUERPO POYDO EN UN PLNO INCLINDO.

Más detalles

1. Cuales son los números naturales?

1. Cuales son los números naturales? Guí de mtemátics. Héctor. de bril de 015 1. Cules son los números nturles? Los números nturles son usdos pr contr (por ejemplo, hy cinco moneds en l mes ) o pr imponer un orden (por ejemplo,. Es t es l

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION MATEMATICAS º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION FRACCIONES Ejercicio 1: resuelve l siguiente operción psndo cd número deciml frcción previmente: ' '1'6 '1 0'15 Ejercicio : simplific ls

Más detalles

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó?

Fuerza: soluciones. 1.- Un móvil cuya masa es de 600 kg acelera a razón de 1,2 m/s 2. Qué fuerza lo impulsó? Fuerz: soluciones 1.- Un óvil cuy s es de 600 kg celer rzón de 1,2 /s 2. Qué uerz lo ipulsó? = 600 kg = 1,2 /s 2 F = >>>>> F = 600 kg 1,2 /s 2 = 720 2.- Qué s debe tener un cuerpo pr que un uerz de 588

Más detalles

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA Est metodologí es plicble ls ctividdes de proyecto que conllevn un cmbio de flot de vehículos pesdos en el trnsporte de mercncís

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

TEMA 7: EXISTENCIAS,

TEMA 7: EXISTENCIAS, TEMA 7: EXISTENCIAS, 7.1 Introducción 7.2 Clses de existencis 7.3 Procedimiento de permnenci de inventrio 7.4. Procedimiento de inventrio periódico: registros básicos. 7.5 Contbilizción de ls operciones

Más detalles

E-CONTABILIDAD FINANCIERA: NIVEL I

E-CONTABILIDAD FINANCIERA: NIVEL I E-CONTABILIDAD FINANCIERA: NIVEL I MÓDULO 8: ASPECTOS CONTABLES DE LAS EXISTENCIAS (75 Hors) OBJETIVOS DEL MÓDULO Diferencir tods ls cuents de existencis propuests por el Pln Generl de Contbilidd. Conocer

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

Los pasivos financieros. Problemática contable de los débitos y partidas a pagar

Los pasivos financieros. Problemática contable de los débitos y partidas a pagar Los psivos finncieros. Problemátic contble de los débitos y prtids pgr Rquel Flórez López rquel.florez@unileon.es Universidd de León Fc. de Ciencis Económics y Empresriles Cmpus de Vegzn, s/n 24071 León

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

Cuestiones y Ejercicios numéricos. Capítulo 4

Cuestiones y Ejercicios numéricos. Capítulo 4 1. Teniendo en cuent los vlores de l tbl de Z ef pr los primeros 18 elementos ) Cuánto vle l constnte de pntll del orbitl 1s en el átomo de He? σ 1s (He) = Z- Z ef = 2-1,69 =,31 b) Cuánto vle l constnte

Más detalles

SEGUNDA LEY DE NEWTON

SEGUNDA LEY DE NEWTON SEGUNDA LEY DE NEWTON Isc Newton (642-727), ncido el ño que urió Glileo, es el principl rquitecto de l ecánic clásic, l cul se resue en sus tres leyes del oviiento. Ls Leyes de Newton son tres principios

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización.

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización. FECHA EMISION 8 1 1992 ORGANO EMISOR INTERVENCIÓN GENERAL DE LA ADMINISTRACIÓN DEL ESTADO PUBLICACION BOLETÍN INFORMATIVO DE LA IGAE nº 5, ño 1992. TITULO CONSULTA Nº 8/1992, formuld por l Intervención

Más detalles

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE

METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE METODOLOGÍA PARA LOS PROYECTOS DE SUSTITUCIÓN DE COMBUSTIBLES FÓSILES POR ENERGÍA SOLAR EN UNA INSTALACIÓN DE RIEGO AISLADA NUEVA O YA EXISTENTE Sector: Agricultur. Est metodologí plicrá los proyectos

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar)

IMPUESTO SOBRE SOCIEDADES (Cierre fiscal ejercicio 2013) (Ajustes y conceptos a considerar) IMPUESTO SOBRE SOCIEAES (Cierre fiscl ejercicio 2013) (Ajustes y conceptos considerr) (13) LIMITACIÓN A LAS AMORTIZACIONES FISCALMENTE EUCIBLES EN EL IMPUESTO SOBRE SOCIEAES Novedd introducid por l Ley

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO 3 Aplicciones 3.5 Trbjo de un fuerz 1 Se dice que un fuerz reliz un trbjo cundo cmbi el estdo de reposo o estdo de movimiento de un cuerpo. En este sentido, el trbjo que reliz un fuerz pr llevr

Más detalles

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica.

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica. Corriente eléctric 1. Corriente eléctric: ntensidd y densidd de corriente. 2. Ley de Ohm. Resistenci. Conductividd eléctric. 3. Potenci disipd en un conductor. Ley de Joule. Fuerz electromotriz. BBLOGRAFÍA:.

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

Contabilidad (RR.LL.) T6 TEMA 6 EXISTENCIAS. 1. Consideraciones generales. 2. Valoración de las Existencias. 3. Registro de las Existencias.

Contabilidad (RR.LL.) T6 TEMA 6 EXISTENCIAS. 1. Consideraciones generales. 2. Valoración de las Existencias. 3. Registro de las Existencias. Contbilidd (RR.LL.) T6 TEMA 6 EXISTENCIAS 1. Considerciones generles. 2. Vlorción de ls Existencis. 3. Registro de ls Existencis. Contbilidd (RR.LL.) T6 1.-CONSIDERACIONES GENERALES. Contbilidd (RR.LL.)

Más detalles