Kenneth E. Train MÉTODOS DE ELECCIÓN DISCRETA CON SIMULACIÓN SEGUNDA EDICIÓN ESPAÑOL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Kenneth E. Train MÉTODOS DE ELECCIÓN DISCRETA CON SIMULACIÓN SEGUNDA EDICIÓN ESPAÑOL"

Transcripción

1 Kenneth E. Train MÉTODOS DE ELECCIÓN DISCRETA CON SIMULACIÓN SEGUNDA EDICIÓN ESPAÑOL

2 Kenneth E. Train Este libro describe la nueva generación de métodos de elección discreta, centrándose en los numerosos avances que han sido posibles gracias a la simulación. Investigadores de todo el mundo están usando estos métodos estadísticos para estudiar las elecciones que consumidores, hogares, empresas y otros agentes realizan. En este texto se tratan cada uno de los principales modelos existentes: logit, distribución generalizada del valor extremo (incluyendo logit jerárquico y logit jerárquico cruzado), probit y logit mixto, además de otras especificaciones desarrolladas a partir de estos modelos básicos. Se investigan y comparan los procedimientos de estimación basados en simulación, incluyendo el estimador de máxima verosimilitud simulada, el método de momentos simulados y el método de puntuaciones simuladas. También se describen procedimientos para extraer valores al azar de densidades de probabilidad, incluyendo técnicas de reducción de la varianza como el método de los opuestos y las extracciones de Halton. Del mismo modo, se exploran avances recientes en el terreno de los procedimientos Bayesianos, incluyendo el uso del algoritmo Metropolis-Hastings y su variante, el muestreo de Gibbs. En la segunda edición del presente libro se han añadido dos capítulos sobre endogeneidad y sobre algoritmos de maximización del valor esperado. Ningún otro libro incluye todos estos temas, que han ido surgiendo durante los últimos 25 años. Los procedimientos son aplicables en numerosos campos, incluyendo la energía, el transporte, estudios ambientales, salud, ocupación y marketing. El profesor Kenneth E. Train imparte cursos sobre econometría, regulación y organización industrial en la Universidad de California, Berkeley. Asimismo ocupa la plaza de vicepresidente de la National Economic Research Associates (NERA), Inc., en San Francisco, California. Autor de Optimal Regulation: The Economic Theory of Natural Monopoly (1991) y Qualitative Choice Analysis (1986), el Dr. Train ha escrito más de 60 artículos sobre teoría económica y regulación. Train presidió el Center for Regulatory Policy en la Universidad de California, Berkeley, desde 1993 hasta el 2000 y ha testificado como experto en procedimientos reguladores y casos judiciales. Ha recibido numerosos galardones por su actividad como docente e investigador.

3 Comentarios adicionales recibidos tras la publicación de la primera edición de Métodos de elección discreta con simulación : "El libro de Ken Train ofrece una cobertura excepcional a los elementos más avanzados de la estimación y el uso de modelos de elección discreta que requieren de simulación para tener en cuenta la aleatoriedad de la población objeto de estudio. Su escritura es clara y comprensible, proporcionando a los lectores, tanto noveles como experimentados, conocimientos y comprensión de todos los aspectos relativos a estos nuevos métodos, cada vez más importantes". Frank S. Koppelman, Universidad Northwestern "Se trata de un libro magistral, cuyo autor es uno de los principales contribuyentes al campo de los métodos y análisis de elección discreta. Ningún otro libro cubre este terreno con tal detalle hasta la fecha, tanto en el ámbito de la teoría como de la aplicación. Los capítulos sobre simulación y los recientes desarrollos como el método logit mixto son especialmente lúcidos. Como texto de referencia este trabajo debería tener vigencia durante mucho tiempo. Será de interés tanto para el profesional como para el investigador especializado que haya ejercido en este campo durante muchos años". David Hensher, Universidad de Sidney "La estimación basada en la simulación es un avance crucial en el campo de la econometría y de los modelos de elección discreta. Esta técnica ha revolucionado tanto el análisis clásico como el Bayesiano. Muchos de los trabajos de Ken Train han supuesto una gran contribución a la literatura en este ámbito. Métodos de elección discreta con simulación recopila los resultados obtenidos hasta la fecha de forma integral, dedicando capítulos a los fundamentos teóricos del comportamiento, a aspectos prácticos y teóricos de la estimación, así como a una gran variedad de aplicaciones. Este libro es, de principio a fin, una mezcla agradable de teoría, análisis y estudio de casos, así como una referencia completa para desarrolladores y profesionales". William Greene, de la Universidad de Nueva York

4 INTRODUCCIÓN 4 El porqué de esta edición en castellano Carlos Ochoa Debo confesar que soy un intruso. He desarrollado mi carrera profesional en el sector de la investigación de mercado siendo ingeniero de telecomunicaciones. Y ahora, he dedicado los últimos meses de mi vida a traducir el libro el lector tiene frente a sí, sin ser traductor. De alguna manera, ambos hechos están relacionados. Todo empezó en Aquel año me incorporé al proyecto de Netquest, con el objetivo de crear una empresa dedicada a la recolección de opiniones a través de Internet en los mercados de habla hispana y portuguesa. La idea era simple: trasladar a internet las encuestas que se llevaban a cabo de forma presencial o telefónica, con la ayuda de paneles online de personas dispuestas a compartir su opinión. La mayor parte de estas encuestas tenían un diseño clásico: un conjunto de preguntas acerca de temas variados acompañadas por una escala de respuesta para indicar preferencias. Pero de vez en cuando algún cliente se interesaba por un tipo de cuestionario diferente, los cuestionarios tipo conjoint. En este tipo de cuestionarios, en lugar de preguntar en qué medida el respondiente valora unos atributos descontextualizados, estos se agrupan formando productos sobre los que realmente se pide la opinión. En su modalidad más avanzada, los estudios conjoint enfrentan productos entre sí, haciendo que el respondiente escoja cuál de ellos prefiere. Son los conjoint basados en la elección (choice based conjoint, CBC). La idea detrás de este tipo de estudios me sedujo de inmediato. Las cosas valiosas de la vida son difíciles de lograr y pocas cosas son más valiosas que una opinión sincera. Los cuestionarios clásicos en cierto modo son una simplificación ingenua del proceso mental que lleva a una persona a tomar una decisión. Los cuestionarios tipo CBC afrontan la complejidad que subyace en cada toma de decisión, permitiendo al investigador llegar tan lejos en su comprensión como esté dispuesto a llegar. Dos son los principales hechos diferenciales de este tipo de estudios frente a los cuestionarios clásicos. En primer lugar, las personas no valoramos los atributos de los productos o servicios de forma independiente, las valoramos formando un todo. Cómo de importante es la seguridad en un vehículo? Y el precio? Y el confort? Si preguntamos las cosas así, sólo podemos obtener una respuesta: todo es importante, todos queremos cualquier atributo deseable en un producto. La importancia de un atributo sólo tiene sentido en relación al resto de atributos. Los atributos deseables suelen ir acompañados de otros menos deseables, habitualmente un incremento de precio. En segundo lugar, la mayor parte de las decisiones que toma el ser humano no son valoraciones, son elecciones. Nos pasamos el día eligiendo: comprar el producto A o B, ir al trabajo en transporte público o en automóvil Los mecanismos que nos llevan a decidir una opción son procesos sofisticados, una parte importante de los cuales operan fuera del nivel consciente del individuo. Los cuestionarios tradicionales tratan de comprender estos mecanismos preguntando directamente por ellos. Es inútil en muchos casos: las respuestas que obtendremos son reconstrucciones racionales que el decisor hace sobre cómo cree que debería decidir, no sobre cómo decide realmente. Los ejemplos de esta divergencia entre lo que decimos y lo que hacemos son numerosos: la seguridad de un vehículo debería ser su atributo más importante, pero no parece ser el elemento más valorado en el momento de elegir un nuevo automóvil. Poca gente admite comprar un producto lujoso por el impacto que produce en su entorno social. Los experimentos conjoint CBC tratan de comprender los procesos que operan en la toma de decisiones, a través de la observación de las elecciones de los individuos. La forma en que elegimos habla de la importancia relativa que otorgamos a cada atributo presente en las opciones que se nos ofrecen. Una

5 INTRODUCCIÓN 5 sucesión de elecciones puede ser suficientemente informativa como para asignar un peso o utilidad a cada uno de esos atributos. Dicho en otras palabras: no preguntemos, observemos. Sin embargo, si este tipo de metodologías ofrecen mejor información que el cuestionario clásico, por qué no se utilizan con más frecuencia? La respuesta debemos buscarla en la falta de difusión y conocimiento de los modelos estadísticos detrás de estas técnicas, los conocidos como métodos de elección discreta, que nos permiten acceder al peso de los atributos a partir de las elecciones observadas. Existe muy poca literatura accesible para personas fuera del ámbito académico, que ofrezca una visión clara y comprensible de estas metodologías. El hallazgo del libro que tiene en sus manos fue una revelación para mí. El profesor Kenneth E. Train es una de aquellas personas que tiene el don hacer fáciles las cosas difíciles. Su obra es una revisión de las diferentes técnicas existentes para el análisis de decisiones discretas, desde lo más simple a lo más complejo, redactado de una manera comprensible para aquellos lectores menos avezados en la materia, sin renunciar al rigor y a la exhaustividad que un investigador experimentado espera encontrar en la obra de una persona del prestigio del profesor Train. Pude acceder a este libro gracias a que el profesor Train decidió, de forma totalmente altruista, difundir una edición digital desde su página web personal. Un gesto que le honra, y que contribuye a la difusión de este conjunto de valiosas técnicas. Por mi parte, he querido contribuir a esta difusión traduciendo este libro y poniéndolo al alcance de investigadores y profesionales de habla hispana. Propuse la idea al profesor Train y encontré por su parte todas las facilidades para llevarla a cabo. Espero que el lector disfrute de su lectura tanto como yo lo he hecho, y que pueda dar utilidad a los contenidos que aquí se explican. Tan sólo puedo añadir que desde que descubrí estas técnicas, además de dar soporte a nuestros clientes en la programación online de estudios tipo conjoint, en Netquest hemos podido emplearlas en relación a nuestra principal área de actividad: la creación y gestión de paneles de personas. Cuestiones como qué variables determinan la participación de una persona en una encuesta, qué método de incentivación logra mejor participación o qué factores determinan el canje de puntos por regalos en un sistema de incentivos, son algunas de las preguntas para las que hemos hallado respuesta con la ayuda de las técnicas expuestas aquí. Tan sólo me queda desearle una agradable lectura y agradecerle nuevamente al profesor Train su generosidad y su colaboración para hacer posible esta edición de su obra en castellano. Carlos Ochoa

6 Dedicado a Daniel McFadden y en memoria de Kenneth Train, Sr.

7 MÉTODOS DE ELECCIÓN DISCRETA CON SIMULACIÓN Segunda Edición Autor: Kenneth E. Train Traducción all castellano: Carlos Ochoa, Este texto está protegido por derechos de autor. Salvo excepción legal y conforme a los acuerdos de licencia colectiva pertinentes, queda prohibida la reproducción de cualquier parte sin el permiso escrito explícito de Kenneth. E. Train, propietario de los derechos de autor en español del presente libro. Primera publicación en inglés Primera publicación en español 2014.

8 Contenidos 1 INTRODUCCIÓN MOTIVACIÓN PROBABILIDADES DE ELECCIÓN E INTEGRACIÓN Cálculo basado completamente en una expresión cerrada Cálculo basado completamente en la simulación Cálculo basado parcialmente en la simulación, parcialmente en una expresión cerrada ESQUEMA DEL LIBRO UN PAR DE NOTAS PROPIEDADES DE LOS MODELOS DE ELECCIÓN DISCRETA RESUMEN EL CONJUNTO DE ELECCIÓN OBTENCIÓN DE LAS PROBABILIDADES DE ELECCIÓN MODELOS ESPECÍFICOS IDENTIFICACIÓN DE MODELOS DE ELECCIÓN Sólo las diferencias de utilidad importan La escala general de la utilidad es irrelevante AGREGACIÓN Enumeración de la muestra Segmentación PREDICCIÓN RECALIBRACIÓN DE CONSTANTES LOGIT PROBABILIDADES DE ELECCIÓN EL PARÁMETRO DE ESCALA POTENCIA Y LIMITACIONES DE LOGIT Variación de preferencias Patrones de sustitución Datos de panel UTILIDAD REPRESENTATIVA NO LINEAL EXCEDENTE DEL CONSUMIDOR DERIVADAS Y ELASTICIDADES... 58

9 INTRODUCCIÓN ESTIMACIÓN Muestra exógena Muestras basadas en la elección BONDAD DE AJUSTE Y PRUEBAS DE HIPÓTESIS Bondad de ajuste Test de hipótesis ESTUDIO DE UN CASO: PREDICCIÓN PARA UN NUEVO SISTEMA DE TRÁFICO OBTENCIÓN DE LAS PROBABILIDADES LOGIT GEV INTRODUCCIÓN LOGIT JERÁRQUICO Patrones de sustitución Probabilidades de elección La descomposición en dos logits Estimación Equivalencia de las fórmulas del logit jerárquico LOGIT JERÁRQUICO DE TRES NIVELES SOLAPAMIENTO DE NIDOS Logit combinacional emparejado (PCL) Logit jerárquico generalizado (GNL) LOGIT HETEROCEDÁSTICO LA FAMILIA GEV PROBIT PROBABILIDADES DE ELECCIÓN IDENTIFICACIÓN VARIACIONES DE PREFERENCIA PATRONES DE SUSTITUCIÓN Y FALLO DE LA IIA DATOS DE PANEL SIMULACIÓN DE LAS PROBABILIDADES DE ELECCIÓN Simulador por aceptación-rechazo Simuladores AR suavizados Simulador GHK LOGIT MIXTO PROBABILIDADES DE ELECCIÓN COEFICIENTES ALEATORIOS COMPONENTES DE ERROR PATRONES DE SUSTITUCIÓN APROXIMACIÓN DE CUALQUIER MODELO DE UTILIDAD ALEATORIA SIMULACIÓN DATOS DE PANEL ESTUDIO DE UN CASO VARIACIONES SOBRE UN MISMO TEMA

10 INTRODUCCIÓN INTRODUCCIÓN DATOS DE PREFERENCIA DECLARADA Y DE PREFERENCIA REVELADA DATOS DE ORDENACIÓN Logit estándar y mixto Probit ESCALAS DE RESPUESTA ORDENADAS Escalas de respuesta ordenadas múltiples VALORACIÓN CONTINGENTE MODELOS MIXTOS Logit jerárquico mixto Probit mixto OPTIMIZACIÓN DINÁMICA Dos períodos, sin incertidumbre sobre efectos futuros Múltiples períodos Incertidumbre sobre efectos futuros MAXIMIZACIÓN NUMÉRICA MOTIVACIÓN NOTACIÓN ALGORITMOS Newton-Raphson BHHH BHHH Ascenso más rápido (steepest ascent) DFP y BFGS CRITERIO DE CONVERGENCIA MÁXIMO LOCAL Y MÁXIMO GLOBAL VARIANZA DE LAS ESTIMACIONES IDENTIDAD DE INFORMACIÓN EXTRAYENDO VALORES DE DENSIDADES INTRODUCCIÓN EXTRACCIÓN DE VALORES ALEATORIOS Distribuciones normales y uniformes estándar Transformaciones de la normal estándar Densidades acumulativas inversas para densidades univariadas Densidades univariadas truncadas Transformación Choleski de normales multivariadas Aceptación-rechazo para densidades multivariadas truncadas Muestreo por importancia Muestreo de Gibbs (Gibbs Sampling) Algoritmo Metropolis-Hastings REDUCCIÓN DE LA VARIANZA Antitéticos (antithetics) Muestreo sistemático Secuencias de Halton Secuencias de Halton aleatorizadas Secuencias de Halton mezcladas Otros procedimientos

11 INTRODUCCIÓN ESTIMACIÓN ASISTIDA POR SIMULACIÓN MOTIVACIÓN DEFINICIÓN DE ESTIMADORES Máxima Verosimilitud Simulada (maximum simulated likelihood, MSL) Método de momentos simulados (method of simulated moments, MSM) Método de puntuaciones simuladas (method of simulated scores, MSS) EL TEOREMA DEL LÍMITE CENTRAL PROPIEDADES DE LOS ESTIMADORES TRADICIONALES PROPIEDADES DE LOS ESTIMADORES BASADOS EN SIMULACIÓN Máxima verosimilitud simulada (maximum simulated likelihood, MSL) Método de momentos simulados (method of simulated moments, MSM) Método de puntuaciones simuladas (method of simulated scores, MSS) SOLUCIÓN NUMÉRICA PARÁMETROS A NIVEL INDIVIDUAL INTRODUCCIÓN DERIVACIÓN DE LA DISTRIBUCIÓN CONDICIONADA IMPLICACIONES DE LA ESTIMACIÓN DE θ ILUSTRACIÓN DE MONTE CARLO DISTRIBUCIÓN CONDICIONADA PROMEDIO CASO DE ESTUDIO: ELECCIÓN DE PROVEEDOR DE ENERGÍA Distribución en la población Distribuciones condicionadas Probabilidad condicionada para la última elección EXPOSICIÓN PROCEDIMIENTOS BAYESIANOS INTRODUCCIÓN INTRODUCCIÓN A LOS CONCEPTOS BAYESIANOS Propiedades bayesianas de θ Propiedades clásicas de θ: El teorema de Bernstein-von Mises SIMULACIÓN DE LA MEDIA POSTERIOR EXTRACCIÓN DE VALORES AL AZAR DE LA DISTRIBUCIÓN POSTERIOR DISTRIBUCIONES POSTERIORES DE LA MEDIA Y LA VARIANZA DE UNA DISTRIBUCIÓN NORMAL Resultado A: Media desconocida, varianza conocida Resultado B: Varianza desconocida, media conocida Media y varianza desconocidas PROCEDIMIENTO BAYESIANO JERÁRQUICO PARA LOGIT MIXTO Reformulación resumida CASO DE ESTUDIO: ELECCIÓN DEL PROVEEDOR DE ENERGÍA Coeficientes normales independientes Coeficientes normales multivariados Coeficientes fijos para algunas variables Log-normales Triangulares Resumen de los resultados PROCEDIMIENTOS BAYESIANOS PARA MODELOS PROBIT

12 INTRODUCCIÓN ENDOGENEIDAD DESCRIPCIÓN GENERAL EL ENFOQUE BLP Especificación La contracción Estimación por máxima verosimilitud simulada y variables instrumentales Estimación por GMM LADO DE LA OFERTA Costo Marginal Precios MC Margen fijo sobre el costo marginal Precios de monopolio y equilibrio de Nash para empresas con un solo producto Precios de monopolio y equilibrio de Nash para empresas multiproducto FUNCIONES DE CONTROL Relación con el comportamiento de los precios ENFOQUE DE MÁXIMA VEROSIMILITUD CASO DE ESTUDIO: ELECCIÓN DE CONSUMIDORES ENTRE VEHÍCULOS NUEVOS ALGORITMOS EM INTRODUCCIÓN PROCEDIMIENTO GENERAL Por qué el algoritmo EM funciona? Convergencia Errores Estándar EJEMPLOS DE ALGORITMOS EM Distribución de mezcla discreta con puntos fijos Distribución de mezcla discreta con puntos como parámetros Distribución de mezcla normal con covarianza completa CASO DE ESTUDIO: DEMANDA DE COCHES IMPULSADOS POR HIDRÓGENO BIBIOGRAFÍA

13 KENNETH E. TRAIN El profesor Kenneth E. Train imparte cursos sobre econometría, regulación y organización industrial en la Universidad de California, Berkeley. Asimismo ocupa la plaza de vicepresidente de la National Economic Research Associates (NERA), Inc., en San Francisco, California. Autor de Optimal Regulation: The Economic Theory of Natural Monopoly (1991) y Qualitative Choice Analysis (1986), el Dr. Train ha escrito más de 60 artículos sobre teoría económica y regulación. Train presidió el Center for Regulatory Policy en la Universidad de California, Berkeley, desde 1993 hasta el 2000 y ha testificado como experto en procedimientos reguladores y casos judiciales. Ha recibido numerosos galardones por su actividad como docente e investigador. TRADUCCIÓN AL CASTELLANO: Carlos Ochoa, 2014 CON LA COLABORACIÓN DE

14 1 Introducción 1.1 Motivación Cuando escribí mi primer libro, Qualitative Choice Analysis, a mediados de los años 80, este campo del conocimiento había alcanzado un momento crítico. Los conceptos innovadores que lo definían habían sido descubiertos. Los modelos básicos principalmente logit y logit jerárquico habían sido introducidos, y las propiedades estadísticas y económicas de estos modelos se habían inferido. Estos conceptos habían sido aplicados con éxito en diferentes áreas, incluyendo transporte, energía, vivienda y marketing, por nombrar sólo unas cuantas. Este ámbito está hoy en día en un momento similar en relación a una nueva generación de procedimientos. Los modelos de primera generación tenían limitaciones importantes que reducían su utilidad práctica y su realismo. Esas limitaciones fueron claramente identificadas en su momento, pero la forma de superarlas no había sido descubierta. A lo largo de los últimos veinte años se han realizado enormes progresos, lo que nos ha llevado a un cambio radical en los métodos de análisis de la elección. Los primeros modelos han sido complementados por nuevos métodos, más potentes y flexibles. Los nuevos conceptos han surgido gradualmente, gracias a investigadores edificando sobre el trabajo de otros investigadores. Sin embargo, en cierto modo, el cambio ha sido más parecido a un salto brusco que a una progresión gradual. La forma en que los investigadores piensan, especifican y estiman sus modelos, ha cambiado. Y lo que es más importante, un alto grado de consenso, o de comprensión, parece haber emergido en relación a la nueva metodología. Entre los investigadores que trabajan en este campo, un evidente sentido del propósito y del progreso prevalece. Mi propósito al escribir este nuevo libro es reunir todas estas ideas, en una forma que ejemplifique la unificación de criterios que a mi parecer se ha logrado, y de una manera que haga estos métodos accesibles para una amplia audiencia. Los avances se han centrado principalmente en la simulación. En esencia, la simulación es la respuesta del investigador a la incapacidad de los ordenadores de realizar la operación de integración. O dicho de forma más precisa, la simulación proporciona una aproximación numérica a las integrales, existiendo diferentes métodos que ofrecen diferentes propiedades, siendo aplicable cada uno de ellos a diferentes tipos de integrandos. La simulación permite la estimación de modelos intratables por otras vías. Prácticamente cualquier modelo puede ser estimado mediante alguna forma de simulación. El investigador se ve liberado de esta forma de antiguas restricciones sobre la especificación del modelo, restricciones que reflejaban más la conveniencia matemática que la realidad económica de la situación estudiada. Esta nueva flexibilidad es un tremendo impulso para la investigación. Hace posible una representación más realista de la enorme

15 INTRODUCCIÓN 14 variedad de situaciones relativas a la elección que aparecen en el mundo. Permite al investigador obtener más información a partir de un conjunto de datos y, en muchos casos, permite afrontar problemas hasta ahora inabordables. Esta flexibilidad supone, sin embargo, una nueva carga para el investigador. En primer lugar, los nuevos métodos son en sí mismos más complicados que los anteriores, y utilizan numerosos conceptos y procedimientos que no se estudian en cursos de econometría típicos. Entender las diferentes técnicas sus ventajas y limitaciones, y las relaciones entre ellas es importante para escoger el método apropiado para un caso práctico específico y para desarrollar nuevos métodos cuando ninguno de los existentes parece apropiado. El propósito de este libro es ayudar al lector a lo largo de este camino. En segundo lugar, para implementar un nuevo método o una variante de un método existente, el investigador necesita ser capaz de programar el procedimiento mediante software. Esto significa que el investigador a menudo necesitará conocer cómo funciona desde un punto de vista computacional la estimación mediante máxima verosimilitud (maximum likelihood) y otros métodos de estimación, cómo programar modelos específicos y cómo modificar programas existentes para representar variaciones en el comportamiento. Algunos modelos, como por ejemplo el logit mixto o el probit puro (adicionalmente al logit estándar), están implementados en paquetes de software estadístico disponibles comercialmente. De hecho, el código de estos y otros modelos, así como manuales y datos de ejemplo, están disponibles (de forma gratuita) en mi página web Cuando sea apropiado, los investigadores deberían usar código ya disponible en lugar de escribir su propio código. Sin embargo, el valor real del nuevo enfoque dado a los modelos de elección es la capacidad de crear modelos a medida. Las tareas de cálculo y programación que se necesitan para implementar un nuevo modelo no son difíciles por norma general. Un objetivo importante del libro es enseñar estas capacidades como parte integral de la explicación de los propios modelos. Personalmente, considero que programar es extremadamente valioso a nivel pedagógico. El proceso de programación de un modelo me ayuda a comprender cómo funciona exactamente, las motivaciones e implicaciones de su estructura, qué características constituyen los elementos esenciales que no pueden ser cambiados para preservar el enfoque básico, y qué características son arbitrarias y pueden ser fácilmente modificadas. Imagino que otras personas también aprenden de esta misma manera. 1.2 Probabilidades de elección e integración Para centrar ideas, voy a establecer la base conceptual de los modelos de elección discreta y a mostrar cómo la integración entra en juego. Un agente (por ejemplo, una persona, una empresa, un decisor) afronta la necesidad de realizar una elección, o una serie de elecciones a lo largo del tiempo, entre varias opciones disponibles. Por ejemplo, un consumidor elige qué producto comprar entre varios disponibles; una empresa decide qué tecnología usar en su producción; un estudiante elige qué respuesta dar a un test de respuesta múltiple; un participante en una encuesta elige un número entero entre 1 y 5 en una pregunta con una escala tipo likert; un trabajador elige si debe continuar trabajando cada año o retirarse. Nos referiremos al resultado de la decisión o decisiones tomadas en cualquier situación de elección como y, indicando la opción elegida o la secuencia de opciones. Asumimos para los propósitos de este libro que la variable resultado es discreta en el sentido de que puede tomar un conjunto numerable de valores. Muchos de los conceptos que describimos son fácilmente generalizables a situaciones en las que la variable resultado es continua. Sin embargo, la notación y la terminología son diferentes cuando tratamos con variables continuas en lugar de discretas. Asimismo, las elecciones discretas generalmente revelan menos información sobre el proceso de elección que las elecciones con resultado continuo, por lo que habitualmente la econometría de la elección discreta es más compleja. Nuestro objetivo es entender el proceso de comportamiento que conduce a la elección realizada por el agente. Tomamos para ello una perspectiva causal. Hay factores que colectivamente determinan, o causan, la elección del agente. Algunos de estos factores son observados por el investigador y otros no.

16 INTRODUCCIÓN 15 A los factores observados los llamaremos x, y a los factores no observados ε. Los factores se relacionen con la elección del agente a través de una función y = h(x, ε). Esta función la denominaremos proceso de comportamiento (behavioral process). Es determinista en el sentido de que dado x y ε, la elección del agente está totalmente determinada. Pero dado que ε no ha sido observado, la elección del agente no es determinista y no puede ser predicha exactamente. En su lugar, calculamos la probabilidad de cualquier posible resultado. Los términos no observados son considerados aleatorios con una densidad de probabilidad f(ε). La probabilidad de que el agente elija un resultado particular entre el conjunto de todos los posibles resultados es simplemente la probabilidad de que los factores no observados sean tales que hagan que el proceso de comportamiento arroje un resultado concreto: P(y x) = Prob(ε s. t. h(x, ε) = y). Podemos expresar esta probabilidad de una forma más práctica. Definamos una función indicadora I [h(x, ε) = y] que toma el valor 1 cuando la expresión entre corchetes es verdadera y 0 cuando es falsa. Es decir, I [ ] = 1 si el valor de ε, combinado con x, induce al agente a elegir un resultado y, y I [ ] = 0 si el valor de ε, combinado con x, induce al agente a elegir otro resultado. De esta forma, la probabilidad de que el agente escoja el resultado y es simplemente el valor esperado de esta función indicadora, donde la esperanza se calcula respecto a todos los posibles valores de los factores no observados: P(y x) = Prob(I [h(x, ε) = y] = 1) (1.1) = I [h(x, ε) = y]f(ε)dε Expresada de esta forma, la probabilidad es una integral, concretamente una integral de un indicador del resultado del proceso de comportamiento sobre todos los posibles valores de los factores no observados. Para calcular esta probabilidad, debemos evaluar esta integral. Existen tres posibilidades para hacerlo Cálculo basado completamente en una expresión cerrada Para ciertas especificaciones de h y f, la integral puede expresarse de forma cerrada. En esos casos, la probabilidad de elección puede calcularse de forma exacta a partir de dicha fórmula. Por ejemplo, consideremos un modelo logit binario relativo a si una persona realiza una acción o no, por ejemplo comprar un nuevo producto. El modelo de comportamiento se especifica de la siguiente manera. La persona obtendría cierto beneficio neto, o utilidad, en caso de realizar la acción. Esta utilidad, que puede ser positiva o negativa, está constituida por una parte que es observada por el investigador, β x, donde x es un vector de variables y β es un vector de parámetros, y una parte que no es observada, ε: U = β x + ε. La persona realiza la acción sólo si la utilidad es positiva, es decir, sólo si emprender la acción le proporciona un beneficio neto. La probabilidad de que la persona realice la acción, dada la información que el investigador puede observar, es por lo tanto P = I [β x + ε > 0] f (ε) dε, donde f es la densidad de probabilidad de ε. Asumamos que ε se distribuye logísticamente, de manera que su densidad es f(ε) = e ε /(1 + e ε ) 2 con una distribución de probabilidad acumulada F(ε) = 1/(1 + e ε ). En este caso, la probabilidad de que la persona realice la acción será: P = I [β x + ε > 0] f (ε) dε = I [ε > β x] f (ε) dε

17 INTRODUCCIÓN 16 = f (ε)dε ε= β x = 1 F( β 1 x) = e β x = eβ x 1 + e β x Para cualquier x, la probabilidad puede calcularse de forma exacta como P = exp(β x)/(1 + exp(β x)). Otros modelos también tienen una expresión cerrada para las probabilidades. Los modelos logit multinomial (capítulo 3), logit jerárquico (capítulo 4) y logit ordenado (capítulo 7) son ejemplos destacados. Los métodos que describí en mi primer libro y que fueron la base del interés inicial que despertó el análisis de la elección discreta, se apoyaban casi exclusivamente en modelos con expresión cerrada para las probabilidades de elección. En general, sin embargo, la integral necesaria para el cálculo de probabilidades no puede ser expresada de forma cerrada. O siendo más precisos, debemos aplicar restricciones sobre el modelo de comportamiento h y la distribución de probabilidad de los términos aleatorios f para lograr que la integral tenga una expresión cerrada. Estas restricciones pueden hacer los modelos poco realistas en muchas situaciones Cálculo basado completamente en la simulación En lugar de resolver la integral de forma analítica, es posible aproximar su resultado mediante simulación. La simulación es aplicable de una manera u otra a prácticamente cualquier especificación de h y f. La simulación se fundamenta en el hecho de que integrar sobre una densidad de probabilidad es una forma de promediar. Consideremos la integral t = t(ε)f(ε)dε, donde t(ε) es un estadístico basado en ε con densidad de probabilidad f(ε). Esta integral corresponde al valor esperado de t sobre todos los posibles valores de ε. Este promedio puede aproximarse de una forma intuitivamente directa. Tomemos múltiples realizaciones (valores al azar) de la variable aleatoria ε a partir de su distribución de probabilidad f, calculemos t(ε) para cada valor, y promediemos los resultados. Este promedio simulado es un estimador no sesgado del promedio real. Este procedimiento aproxima el valor del promedio real a medida que se utilizan más y más valores en la simulación. Este concepto de simulación de un promedio es la base de todos los métodos de simulación, por lo menos de todos los que consideramos en este libro. Tal y como se indica en la ecuación (1.1), la probabilidad de que se produzca un resultado concreto es un promedio del indicador I [ ] sobre todos los posibles valores de ε. La probabilidad, cuando se expresa de esta forma, puede ser simulada directamente como sigue: 1. Extraemos un valor al azar de ε a partir de f(ε). Etiquetamos este valor como ε 1, donde el superíndice indica que es la primera realización. 2. Determinamos si h(x, ε 1 ) = y usando este valor de ε. Si es así, creamos I 1 = 1 ; en caso contrario fijamos I 1 = Repetimos los pasos 1 y 2 muchas veces, hasta un total de R valores. El indicador obtenido para cada realización se etiqueta como I r donde r = 1,, R.

18 INTRODUCCIÓN Calculamos el promedio de los I r. Este promedio es la probabilidad simulada: P (y x) = 1 Ir. Es la proporción de veces que los valore extraidos al azar de los factores no R R r=1 observados, en combinación con las variables observadas x, han producido un resultado y. Como veremos en los siguientes capítulos, este simulador, aunque es fácil de comprender, tiene algunas propiedades desafortunadas. Las probabilidades de elección a menudo pueden expresarse como promedios de otros estadísticos, en lugar de promedios de una función indicadora. Los simuladores basados en estos otros estadísticos se calculan de forma análoga, mediante la extracción de valores al azar de la densidad de probabilidad, calculando el estadístico, y promediando los resultados. El modelo probit (capítulo 5) es el ejemplo más representativo de un modelo estimado completamente por simulación. Varios métodos para simular las probabilidades del modelo probit han sido desarrollados basándose en promedios de varios estadísticos sobre varias densidades (relacionadas) Cálculo basado parcialmente en la simulación, parcialmente en una expresión cerrada Hasta ahora hemos presentado los dos polos opuestos: o resolvemos la integral analíticamente o mediante simulación. En muchas ocasiones, es posible hacer un poco de ambas cosas. Supongamos que los términos aleatorios pueden descomponerse de dos partes, que llamaremos ε 1 y ε 2. La densidad de probabilidad conjunta de estos dos términos sería f(ε) = f(ε 1, ε 2 ). La densidad conjunta puede expresarse como el producto de una densidad marginal y una densidad condicionada: f(ε 1, ε 2 ) = f(ε 1 ε 2 ) f(ε 1 ). Usando esta descomposición, la probabilidad de la ecuación (1.1) puede expresarse como P(y x) = I [h(x, ε) = y]f(ε)dε I [h(x, ε 1, ε 2 ) = y]f(ε 2 ε 1 )dε 2 ε 2 f(ε 1 )dε 1 ε 1 Ahora supongamos que existe una expresión cerrada para la integral que se encuentra dentro de los corchetes grandes. Denominemos esta fórmula como g(ε 1 ) I [h(x, ε 1, ε 2 ) = y]f(ε 2 ε 1 )dε ε 2, 2 fórmula que está condicionada respecto al valor de ε 1. La probabilidad se puede simular extrayendo valores al azar de f(ε 1 ), calculando g(ε 1 ) para cada realización, y promediando posteriormente los resultados. Este procedimiento se denomina partición conveniente del error (convenient error partitioning, Train, 1995). La integral respecto a ε 2 dado ε 1 se calcula exactamente, mientras que la integral respecto a ε 1 se calcula mediante simulación. Esta aproximación al problema presenta ventajas claras respecto a la simulación completa. Las integrales analíticas son más precisas y más fáciles de calcular que las integrales simuladas. Es útil por lo tanto, cuando es posible, descomponer los términos aleatorios de manera que una parte de ellos pueda ser integrada analíticamente, aun cuando el resto de términos deban ser simulados. Logit mixto (capítulo 6) es un ejemplo representativo de modelo que usa esta descomposición de forma efectiva. Otros ejemplos son el probit binario sobre datos de un panel, a cargo de Gourieroux and Monfort (1993), y el análisis de respuestas ordenadas de Bhat (1999). 1.3 Esquema del libro El análisis de elecciones discretas consta de dos tareas interrelacionadas: la especificación del modelo de comportamiento y la estimación de los parámetros del modelo. La simulación juega un papel en ambas tareas. Por una parte, la simulación permite al investigador aproximar las probabilidades de

19 INTRODUCCIÓN 18 elección que surgen del modelo de comportamiento. Tal y como hemos mostrado, la capacidad de usar simulación da libertad al investigador para especificar modelos sin la restricción de tener que trabajar con probabilidades que tengan necesariamente una expresión cerrada. Por otra parte, la simulación también entra en juego en la tarea de estimación. Las propiedades de un estimador, como por ejemplo el estimador de máxima verosimilitud, pueden cambiar cuando se utilizan probabilidades simuladas en lugar de las probabilidades reales. Comprender estos cambios y mitigar los efectos negativos, es importante para el investigador. En algunos casos, como en los procedimientos Bayesianos, el estimador mismo es una integral sobre una densidad (en contraposición a los casos en los que la probabilidad de elección es una integral). La simulación permite implementar estos estimadores incluso cuando la integral que define el estimador no tiene una expresión cerrada. Este libro se organiza en torno a estas dos tareas. La Parte I describe modelos de comportamiento que han sido propuestos para describir el proceso de elección. Los capítulos en esta sección van desde el modelo más simple, logit, hasta modelos progresivamente más generales y consecuentemente más complejos. Dedicamos un capítulo a cada uno de los siguientes modelos: logit, la familia de modelos generalizados de valor extremo (cuyo miembro más destacado es el logit jerárquico), probit y logit mixto. Esta parte del libro finaliza con un capítulo titulado Variaciones sobre el tema, que cubre una variedad de modelos que se construyen sobre los conceptos explicados en los capítulos precedentes. El objetivo de este capítulo va más allá de simplemente introducir varios modelos nuevos. El capítulo ilustra el concepto subyacente en todo el libro, a saber, que los investigadores necesitan no confiar únicamente en las pocas especificaciones comúnmente disponibles en software comercial, sino que pueden diseñar modelos que reflejen la singularidad de la configuración, los datos y los objetivos de su proyecto, escribiendo su propio código y usando simulación cuando se requiera. La Parte II describe la estimación de los modelos de comportamiento. En primer lugar se aborda la maximización numérica, dado que la mayor parte de procedimientos de estimación implican la maximización de alguna función, como por ejemplo la función logaritmo de la verosimilitud (loglikelihood). A continuación describimos procedimientos para extraer valores al azar de diferentes tipos de densidades de probabilidad, lo cual es la base de la simulación. Este capítulo también describe diferentes tipos de extracciones de valores al azar, incluyendo variantes del método de antitéticos y las secuencias cuasi-aleatorias, que nos proporcionan mayor precisión en la simulación que el uso de valores aleatorios independientes. A continuación abordamos la estimación asistida por simulación, estudiando en primer lugar los procedimientos clásicos, incluyendo la máxima verosimilitud simulada, el método de momentos simulados y el método de puntuaciones simuladas, y posteriormente los procedimientos Bayesianos, incluyendo los métodos de Monte Carlo Cadena de Markov. Hasta este punto del libro, asumimos que las variables explicativas son exógenas, es decir, independientes de factores no observados. El capítulo 13, que es nuevo en esta segunda edición, examina la endogeneidad, identificando situaciones en las que los factores no observados están correlacionados con las variables explicativas y describiendo métodos de estimación apropiados para estas situaciones, incluyendo el enfoque BLP, las funciones de control y la máxima verosimilitud con información completa. El capítulo final, que también es nuevo, muestra cómo los algoritmos EM, usados extensamente en otras áreas de la estadística, pueden ser de ayuda para modelos de elección complejos, incluyendo la estimación no paramétrica de la distribución de preferencias entre agentes. La simplicidad y la potencia de los algoritmos EM al ser aplicados a modelos de elección hacen de este capítulo un final apropiados para el libro. 1.4 Un par de notas A lo largo de todo el libro, me refiero al investigador como ella y al decisor como él. Este uso, además de ser comparativamente neutral en relación al género (o al menos simétricamente no inclusivo), permite referirnos a ambos sujetos en la misma frase sin confusión.

20 INTRODUCCIÓN 19 Muchos colegas han proporcionado comentarios y sugerencias valiosas para este libro. Estoy muy agradecido por su ayuda. Gracias a Greg Allenby, Moshe Ben-Akiva, Chandra Bhat, Denis Bolduc, David Brownstone, Siddhartha Chib, Jon Eisen-Hecht, Florian Heiss, Stephane Hess, David Hensher, Joe Herriges, Rich Johnson, Frank Koppelman, Jordan Louviere, Aviv Nevo, Juan de Dios Ortúzar, John Rose, Ric Scarpa, Ken Small, Joan Walker, Cliff Winston, Joachim Winter y a los estudiantes de mi curso de econometría.

Proceso de la I.C.: Definir el problema y los objetivos de la investigación. Desarrollar el plan de investigación.

Proceso de la I.C.: Definir el problema y los objetivos de la investigación. Desarrollar el plan de investigación. Unidad 3. Investigación comercial. 1. Introducción. La empresa necesita información precisa, puntual y manejable sobre el mercado. La finalidad básica de la I.C 1 es obtener información que reduzca el

Más detalles

Endogeneidad. 13.1 Descripción general

Endogeneidad. 13.1 Descripción general 3 Endogeneidad 3. Descripción general Hasta ahora hemos supuesto que las variables explicativas que entran en un modelo de elección discreta son independientes de los factores no observados. Sin embargo,

Más detalles

El modelo Ordinal y el modelo Multinomial

El modelo Ordinal y el modelo Multinomial El modelo Ordinal y el modelo Multinomial Microeconomía Cuantitativa R. Mora Departmento de Economía Universidad Carlos III de Madrid Esquema Motivación 1 Motivación 2 3 Motivación Consideramos las siguientes

Más detalles

MÁSTER UNIVERSITARIO EN ANÁLISIS ECONÓMICO Y EMPRESARIAL

MÁSTER UNIVERSITARIO EN ANÁLISIS ECONÓMICO Y EMPRESARIAL MÁSTER UNIVERSITARIO EN ANÁLISIS ECONÓMICO Y EMPRESARIAL Centro Responsable: Facultad de Ciencias Económicas y Empresariales Orientación: Investigadora y Profesional Especialidades: Análisis Económico.

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

Aplicación de los modelos de credit scoring para instituciones microfinacieras.

Aplicación de los modelos de credit scoring para instituciones microfinacieras. Econ. Reynaldo Uscamaita Huillca Aplicación de los modelos de credit scoring para instituciones microfinacieras. OBJETIVO Proporcionar al ejecutivo del sistema financiero un modelo solido que permita tomar

Más detalles

Clase 8: Distribuciones Muestrales

Clase 8: Distribuciones Muestrales Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas

Más detalles

El rincón de los problemas Uldarico Malaspina Jurado Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe

El rincón de los problemas Uldarico Malaspina Jurado Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Septiembre de 2012, Número 31, páginas 131-137 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Creando problemas para educación primaria Problema

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA Eva Medina Moral (Febrero 2002) EXPRESIÓN DEL MODELO BASICO DE REGRESIÓN LINEAL La expresión formal del modelo

Más detalles

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página):

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página): Univ. de Alcalá. Estadística 2014-15 Dpto. de Física y Matemáticas Grado en Biología. Examen final. Miércoles, 21 de Enero de 2015. Apellidos: Nombre: INSTRUCCIONES (LEER ATENTAMENTE). Puedes descargar

Más detalles

GUÍA DE APOYO PARA REALIZAR UN ESTUDIO DE MERCADO GUÍA DE APOYO PARA REALIZAR UN ESTUDIO DE MERCADO GUÍA DE APOYO PARA REALIZAR UN ESTUDIO DE MERCADO

GUÍA DE APOYO PARA REALIZAR UN ESTUDIO DE MERCADO GUÍA DE APOYO PARA REALIZAR UN ESTUDIO DE MERCADO GUÍA DE APOYO PARA REALIZAR UN ESTUDIO DE MERCADO 1 GUÍA DE APOYO PARA REALIZAR UN ESTUDIO DE MERCADO GUÍA DE APOYO PARA REALIZAR UN ESTUDIO DE MERCADO 2 ÍNDICE I. INTRODUCCIÓN II. DEFINICIÓN DE ESTUDIO DE MERCADO III. UTILIDAD DE UN ESTUDIO DE MERCADO

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

INDICADORES POR ENCUESTA. Cuaderno Práctico -1 -

INDICADORES POR ENCUESTA. Cuaderno Práctico -1 - INDICADORES POR ENCUESTA Cuaderno Práctico -1 - ÍNDICE Elaboración del CUESTIONARIO...- 4 - Selección de la MUESTRA...- 5 - APLICACIÓN del cuestionario...- 7 - MECANIZACIÓN de datos...- 8 - Cálculo de

Más detalles

Modelos de elección binaria

Modelos de elección binaria Modelos de elección binaria Prof.: Begoña Álvarez García Econometría II 2007-2008 Estamos interesados en la ocurrencia o no-ocurrencia de un cierto evento (ej: participación en el mercado laboral; inversión

Más detalles

EL DISEÑO FACTORIAL COMPLETO 2 k

EL DISEÑO FACTORIAL COMPLETO 2 k EL DISEÑO FACTORIAL COMPLETO 2 k Joan Ferré Grupo de Quimiometría y Cualimetría Departamento de Química Analítica y Química Orgánica Universidad Rovira i Virgili (Tarragona) INTRODUCCIÓN En el primer artículo

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Mauricio Contreras IES Benicalap Valencia

Mauricio Contreras IES Benicalap Valencia Mauricio Contreras IES Benicalap Valencia Principios Describen las características particulares de una educación matemática de calidad Igualdad Currículo Enseñanza Aprendizaje Evaluación Tecnología La

Más detalles

Identificación fácil de los clientes adecuados

Identificación fácil de los clientes adecuados PASW Direct Marketing 18 Especificaciones Identificación fácil de los clientes adecuados Sabemos que le gustaría que sus programas de marketing sean lo más rentables posible y sabemos que conocer la información

Más detalles

VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA

VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA Título del Informe: Análisis de validez y fiabilidad del cuestionario de encuesta a los estudiantes para la evaluación de la calidad de la docencia Fecha:

Más detalles

Juan José Pompilio Sartori (**) Departamento de Economía y Finanzas Facultad de Ciencias Económicas - Universidad Nacional de Córdoba

Juan José Pompilio Sartori (**) Departamento de Economía y Finanzas Facultad de Ciencias Económicas - Universidad Nacional de Córdoba Diseño de encuestas de preferencias declaradas para la estimación del valor de los ahorros de tiempo y el pronóstico de la demanda de servicios de transporte urbano de pasajeros (*) Juan José Pompilio

Más detalles

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones Introducción Las Compañías aseguradoras determinan sus precios basadas en modelos y en información histórica

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

Econometría II. Ejercicios propuestos

Econometría II. Ejercicios propuestos Econometría II Ejercicios propuestos Román Salmerón Gómez Multicolinealidad 1. En el modelo de regresión Y t = β 1 + β 2 X t + β 3 Z t + u t se verifica que X t = 1 2 Z t. Qué parámetros son estimables?

Más detalles

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA 5.1 Introducción En este capítulo nos ocuparemos de la estimación de caracteristicas de la población a partir de datos. Las caracteristicas poblacionales

Más detalles

Tema 3. La elección en condiciones de incertidumbre

Tema 3. La elección en condiciones de incertidumbre Tema 3 La elección en condiciones de incertidumbre Epígrafes El valor esperado La hipótesis de la utilidad esperada La aversión al riesgo La compra de un seguro Cap. 5 P-R 2 Introducción Cómo escogemos

Más detalles

Estudio comparativo de los currículos de probabilidad y estadística español y americano

Estudio comparativo de los currículos de probabilidad y estadística español y americano Estudio comparativo de los currículos de probabilidad y estadística español y americano Jaldo Ruiz, Pilar Universidad de Granada Resumen Adquiere las mismas capacidades en Probabilidad y Estadística un

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

CAPÍTULO 1 INTRODUCCIÓN, HIPÓTESIS Y OBJETIVOS

CAPÍTULO 1 INTRODUCCIÓN, HIPÓTESIS Y OBJETIVOS CAPÍTULO 1 INTRODUCCIÓN, HIPÓTESIS Y OBJETIVOS 1 INTRODUCCIÓN 1.1 Justificación Esta investigación está motivada por el interés en lograr una mejor comprensión del papel que desempeña la creatividad dentro

Más detalles

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS Badler, Clara E. Alsina, Sara M. 1 Puigsubirá, Cristina B. 1 Vitelleschi, María S. 1 Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE) TRATAMIENTO DE BASES DE DATOS

Más detalles

Desarrollo de SBC. cbea (LSI - FIB) Sistemas Basados en el Conocimiento IA - Curso 2008/2009 1 / 41

Desarrollo de SBC. cbea (LSI - FIB) Sistemas Basados en el Conocimiento IA - Curso 2008/2009 1 / 41 Desarrollo de SBC Ingeniería de los SBC Desarrollo de SBC El punto más importante del desarrollo de SBC es la extracción del conocimiento Requiere la interacción entre el Ingeniero del Conocimiento y el

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

T.3 ESTIMACIÓN PUNTUAL

T.3 ESTIMACIÓN PUNTUAL T.3 ESTIMACIÓN PUNTUAL 1. INTRODUCCIÓN: ESTIMACIÓN Y ESTIMADOR 2. PROPIEDADES DE LOS ESTIMADORES 3. MÉTODOS DE ESTIMACIÓN. EJEMPLO 1, EJEMPLO 2 1. Introducción: Estimación y Estimador En este tema se analizan

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadística Matemáticas B º E.S.O. TEMA 9 ESTADÍSTICA TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS EJERCICIO : En un grupo de personas hemos preguntado por el número

Más detalles

Modelado de flujo en redes. Jhon Jairo Padilla A., PhD.

Modelado de flujo en redes. Jhon Jairo Padilla A., PhD. Modelado de flujo en redes Jhon Jairo Padilla A., PhD. Conceptos básicos Demanda o volumen de Demanda: Es el tráfico que están requiriendo los usuarios de una red. Para transportar el volumen de demanda

Más detalles

TRÁFICO DE TELEFONÍA MÓVIL: CARACTERIZACIÓN E IMPLICACIONES DEL TIEMPO DE OCUPACIÓN DEL CANAL

TRÁFICO DE TELEFONÍA MÓVIL: CARACTERIZACIÓN E IMPLICACIONES DEL TIEMPO DE OCUPACIÓN DEL CANAL ESCOLA TÈCNICA SUPERIOR D ENGINYERIA DE TELECOMUNICACIÓ DE BARCELONA TRÁFICO DE TELEFONÍA MÓVIL: CARACTERIZACIÓN E IMPLICACIONES DEL TIEMPO DE OCUPACIÓN DEL CANAL Autor: Francisco Barceló Arroyo Director:

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

3 Cómo determinar las necesidades en innovación de los problemas de la empresa

3 Cómo determinar las necesidades en innovación de los problemas de la empresa 3 Cómo determinar las necesidades en innovación de los problemas de la empresa Palabras clave Caja negra, método de prueba, reparto, valor aleatorio, tabla de decisiones y comprobación Objetivo de la formación

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 DEPARTAMENTO: MATEMÁTICAS MATERIA: MATEMÁTICAS ACADÉMICAS CURSO: 3º ESO OBJETIVOS DEL ÁREA DE MATEMÁTICAS A LAS ENSEÑANZAS ACADÉMICAS 3º ESO

Más detalles

LICENCIATURA EN ECONOMÍA y ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

LICENCIATURA EN ECONOMÍA y ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS LICENCIATURA EN ECONOMÍA y ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS GUÍA ACADÉMICA DE LA ASIGNATURA MICROECONOMÍA I CURSO 2008-09 ASIGNATURA: CURSO: TRONCAL SEGUNDO 1 1.- DATOS INICIALES DE IDENTIFICACIÓN

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012 Contenido Motivación Métodos computacionales Integración de Montecarlo Muestreo de Gibbs Rejection Muestreo Importante Metropolis - Hasting Markov Chain Montecarlo Method Complemento ejemplos libro: Bayesian

Más detalles

Pautas y recomendaciones para la calidad de la formación de los empleados públicos Premio INAP 2013 Pautas y recomendaciones para la calidad de la formación de los empleados públicos Índice 1. Objetivo

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Tema 3: El modelo de regresión lineal múltiple

Tema 3: El modelo de regresión lineal múltiple Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal

Más detalles

MASTER EN PSICOLOGÍA DEL COACHING

MASTER EN PSICOLOGÍA DEL COACHING MASTER EN PSICOLOGÍA DEL COACHING Queridos amigos: Tenemos el placer de comunicaros que, a partir del próximo curso (2011 2012) impartiremos el MASTER UNIVERSITARIO EN PSICOLOGÍA DEL COACHING, título propio

Más detalles

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. DIAGRAMA DE FLECHAS 1.- INTRODUCCIÓN Este documento sirve de guía para el proceso de planificación de proyectos. Describe desde la visualización de la secuencia de acciones a desarrollar en dichos proyectos

Más detalles

Frontera de Eficiencia de Futuros de Energía

Frontera de Eficiencia de Futuros de Energía La Aproximación Bayesiana a la Estadística El modelo de Black y Litterman con Reducción de Dimensión Un modelo de factores semiparamétrico (Borak - Weron 2008) CP usando muchos predictores (Stock y Watson

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Capítulo 7: Externalidades

Capítulo 7: Externalidades Capítulo 7: Externalidades Jean Hindricks Gareth Myles Noviembre 17 de 2011 Hindricks & Myles () Externalidades Noviembre 17 de 2011 1 / 33 Contenido 1 Externalidades e Ineficiencia 2 Algunos Ejemplos

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

Impala Risk. Simulación de Riesgo en Proyectos. Servicios. Capacitación. www.impalarisk.com

Impala Risk. Simulación de Riesgo en Proyectos. Servicios. Capacitación. www.impalarisk.com Simulación de Riesgo en Proyectos Servicios Capacitación www.impalarisk.com Software Simulador de Riesgo en Proyectos El peor riesgo es desconocer el riesgo Los actuales Gerentes de Proyectos se enfrentan

Más detalles

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 3: EL OLIGOPOLIO Y LA COMPETENCIA MONOPOLÍSTICA

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 3: EL OLIGOPOLIO Y LA COMPETENCIA MONOPOLÍSTICA ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 3: EL OLIGOPOLIO Y LA COMPETENCIA MONOPOLÍSTICA 3.1 MODELOS CLÁSICOS DE OLIGOPOLIO 3.2 DIFERENCIACIÓN DEL PRODUCTO Y

Más detalles

DOCUMENTO METODOLÓGICO GRUPOS FOCALES -FOCUS GROUP-

DOCUMENTO METODOLÓGICO GRUPOS FOCALES -FOCUS GROUP- DOCUMENTO METODOLÓGICO GRUPOS FOCALES -FOCUS GROUP- 1.- Introducción La investigación cualitativa posee características que la posicionan como una herramienta con identidad propia, tal y como en su momento

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

7 Pasos Sencillos para Encontrar El Nicho de Mercado Adecuado para tu Negocio.

7 Pasos Sencillos para Encontrar El Nicho de Mercado Adecuado para tu Negocio. 7 Pasos Sencillos para Encontrar El Nicho de Mercado Adecuado para tu Negocio. Por Roberto Marroquín COPYRIGHT Copyright 2008 Todos los Derechos Reservados. Marketing-Integral.com La información contenida

Más detalles

Tema 7: Juegos con información incompleta

Tema 7: Juegos con información incompleta Tema 7: Juegos con información incompleta Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Modelo de Spence Introducción y ejemplos Equilibrio Bayesiano de Nash Aplicaciones Señales

Más detalles

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Andrés Felipe López Lopera* Resumen. Existe una gran similitud entre vectores y las señales. Propiedades tales como la

Más detalles

Tema 7: Capital, inversión y ciclos reales

Tema 7: Capital, inversión y ciclos reales Tema 7: Capital, inversión y ciclos reales Macroeconomía 2014 Universidad Torcuato di Tella Constantino Hevia En la nota pasada analizamos el modelo de equilibrio general de dos períodos con producción

Más detalles

NOMBRE DEL PROGRAMA VENTA DE PRODUCTOS Y SERVICIOS ASIGNATURA ESTRATEGIAS DE PROMOCION Y PUBLICIDAD

NOMBRE DEL PROGRAMA VENTA DE PRODUCTOS Y SERVICIOS ASIGNATURA ESTRATEGIAS DE PROMOCION Y PUBLICIDAD NOMBRE DEL PROGRAMA VENTA DE PRODUCTOS Y SERVICIOS ASIGNATURA ESTRATEGIAS DE PROMOCION Y PUBLICIDAD CARTA DESCRIPTIVA IDENTIFICACIÓN PEDAGÓGICA, DIDÁCTICA Y METODOLÓGICA INSTITUCION UNIVERSITARIA ESCOLME

Más detalles

En la presente investigación, se contrastará el modelo propuesto en la. investigación de Marisa Bucheli y Carlos Casacubierta, Asistencia escolar y

En la presente investigación, se contrastará el modelo propuesto en la. investigación de Marisa Bucheli y Carlos Casacubierta, Asistencia escolar y Capítulo 2.- Metodología En la presente investigación, se contrastará el modelo propuesto en la investigación de Marisa Bucheli y Carlos Casacubierta, Asistencia escolar y Participación en el mercado de

Más detalles

GRADO EN ECONOMÍA GUÍA DOCENTE DE LA ASIGNATURA MICROECONOMÍA I

GRADO EN ECONOMÍA GUÍA DOCENTE DE LA ASIGNATURA MICROECONOMÍA I GRADO EN ECONOMÍA GUÍA DOCENTE DE LA ASIGNATURA MICROECONOMÍA I Curso académico 2013-14 1. DATOS DE IDENTIFICACIÓN Nombre de la asignatura MICROECONOMÍA I Código 36123 Titulación Grado en Economía Curso/semestre

Más detalles

APROVECHE AL MÁXIMO EL MEJOR SOFTWARE DE ANÁLISIS DE DATOS, ASISTA A LOS CURSOS DE CAPACITACIÓN DE SPSS CHILE

APROVECHE AL MÁXIMO EL MEJOR SOFTWARE DE ANÁLISIS DE DATOS, ASISTA A LOS CURSOS DE CAPACITACIÓN DE SPSS CHILE TRAINING 2007 APROVECHE AL MÁXIMO EL MEJOR SOFTWARE DE ANÁLISIS DE DATOS, ASISTA A LOS CURSOS DE CAPACITACIÓN DE SPSS CHILE Fundamentos en el Uso y Aplicaciones con SPSS Introducción a la Sintaxis Estadísticas

Más detalles

Servicios externalizados en España y Europa. Servicio Total Público Privado

Servicios externalizados en España y Europa. Servicio Total Público Privado Outsourcing en España y Europa en el sector público y privado La contratación de servicios de outsourcing está incrementando cada día su popularidad tanto en Europa como en España. Recientes cifras muestran

Más detalles

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse.

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse. TABLA DE DECISION La tabla de decisión es una herramienta que sintetiza procesos en los cuales se dan un conjunto de condiciones y un conjunto de acciones a tomar según el valor que toman las condiciones.

Más detalles

COMPETENCIAS GRADO EN INGENIERÍA TELEMÁTICA

COMPETENCIAS GRADO EN INGENIERÍA TELEMÁTICA COMPETENCIAS GRADO EN INGENIERÍA TELEMÁTICA COMPETENCIAS BÁSICAS Según lo establecido en el R.D. 1393/2007 de 29 de octubre, se garantizaran, como mínimo las siguientes competencias básicas, en el caso

Más detalles

EPB 603 Sistemas del Conocimiento!"#$ %& $ %'

EPB 603 Sistemas del Conocimiento!#$ %& $ %' Metodología para el Desarrollo de Proyectos en Minería de Datos CRISP-DM EPB 603 Sistemas del Conocimiento!"#$ %& $ %' Modelos de proceso para proyectos de Data Mining (DM) Son diversos los modelos de

Más detalles

PROCESO DE INNOVACIÓN EN LA ENSEÑANZA DE LA GESTIÓN DE EQUIPOS INDUSTRIALES EN INGENIERÍA

PROCESO DE INNOVACIÓN EN LA ENSEÑANZA DE LA GESTIÓN DE EQUIPOS INDUSTRIALES EN INGENIERÍA PON-C-22 PROCESO DE INNOVACIÓN EN LA ENSEÑANZA DE LA GESTIÓN DE EQUIPOS INDUSTRIALES EN INGENIERÍA A. García Sánchez (1), M. Ortega Mier (2), E. Ponce Cueto (3) Dpto. de Ingeniería de Organización, Administración

Más detalles

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid Econometría I Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco (MEI, UC3M)

Más detalles

Figura (1) diagrama del PHVA aplicado a la Metodología a de las 5 S

Figura (1) diagrama del PHVA aplicado a la Metodología a de las 5 S 6.6 Seguimiento El proceso de seguimiento dentro de la implementación de la metodología de las 5 S, requiere, antes que nada, tener una comprensión clara y un concepto uniforme, de qué significa cada uno

Más detalles

18 de julio de 2010. Respondiendo al desafío: FEEDBACK 360º

18 de julio de 2010. Respondiendo al desafío: FEEDBACK 360º 18 de julio de 2010 Respondiendo al desafío: FEEDBACK 360º Contenidos Introducción... 3 Por qué establecer un Proceso de Feedback 360º?... 4 Para qué un Feedback 360º en mi Modelo de competencias?... 5

Más detalles

IBM SPSS Missing Values 22

IBM SPSS Missing Values 22 IBM SPSS Missing Values 22 Nota Antes de utilizar esta información y el producto al que da soporte, lea la información del apartado Avisos en la página 23. Información de producto Esta edición se aplica

Más detalles

EL AHORRO Y SUS DETERMINANTES.

EL AHORRO Y SUS DETERMINANTES. EL AHORRO Y SUS DETERMINANTES. En este trabajo se expone las diferentes teorías del ahorro que han existido, los efectos del ahorro y hemos llevado acabo una regresión para comprobar si el ahorro depende

Más detalles

que tan buen predictor

que tan buen predictor Introducción Las Teorías de Finanzas y las de Economía tratan de describir lo mejor posible situaciones que ocurren en la vida real, como cualquier teoría su fortaleza radica en que tan buen predictor

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

Números aleatorios. Contenidos

Números aleatorios. Contenidos Números aleatorios. Contenidos 1. Descripción estadística de datos. 2. Generación de números aleatorios Números aleatorios con distribución uniforme. Números aleatorios con otras distribuciones. Método

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 2011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 7] Diseños con más de dos grupos independientes. Análisis de varianza con dos factores completamente aleatorizados 1 Índice 7.1 Introducción...

Más detalles

Juan Antonio García Galindo Decano de la Facultad de Ciencias de la Comunicación Universidad de Málaga. Cómo elaborar informativos en radio

Juan Antonio García Galindo Decano de la Facultad de Ciencias de la Comunicación Universidad de Málaga. Cómo elaborar informativos en radio Prólogo El desarrollo de las tecnologías de la información y de la comunicación ha abierto enormes expectativas a la transformación de los medios de comunicación convencionales, modificando sus procesos

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Estudio de mercados. M.I.A. Gabriel Ruiz Contreras gabriel2306@prodigy.net.mx

Estudio de mercados. M.I.A. Gabriel Ruiz Contreras gabriel2306@prodigy.net.mx Estudio de mercados M.I.A. Gabriel Ruiz Contreras gabriel2306@prodigy.net.mx COMPETENCIA ESPECIFICA Identificar y analizar los tipos de investigación aplicables en el estudio de mercado: cuantitativa,

Más detalles

CURSO INTENSIVO DE INTRODUCCÓN A LA DIRECCIÓN / GESTIÓN DE PROYECTOS y CURSO DE PREPARACION INTENSIVA EXAMEN PMP / CAPM (52 HORAS) PARTE 1

CURSO INTENSIVO DE INTRODUCCÓN A LA DIRECCIÓN / GESTIÓN DE PROYECTOS y CURSO DE PREPARACION INTENSIVA EXAMEN PMP / CAPM (52 HORAS) PARTE 1 CURSO INTENSIVO DE INTRODUCCÓN A LA DIRECCIÓN / GESTIÓN DE PROYECTOS y CURSO DE PREPARACION INTENSIVA EXAMEN PMP / CAPM (52 HORAS) PARTE 1 CURSO INTENSIVO DE INTRODUCCÓN A LA DIRECCIÓN / GESTIÓN DE PROYECTOS

Más detalles

Un Service Desk flexible?

Un Service Desk flexible? W H I T E P A P E R Un Service Desk flexible? Encargado por Numara Software Publicado por: Dr. Cherry Taylor (BSc, PhD) Dynamic Markets Limited PO Box 19 Abergavenny NP7 8YF UK Tel.: +44 870 7076767 1)

Más detalles

El enfoque ideal para la erm se diseña de forma personalizada para que se adecue a los

El enfoque ideal para la erm se diseña de forma personalizada para que se adecue a los ALEXANDRA PSICA, CMC DIRECTORA GENERAL INTERIS CONSULTING INC. El enfoque ideal para la erm se diseña de forma personalizada para que se adecue a los objetivos de la organización, al nivel de riesgo inherente

Más detalles

INVESTIGACION Y ESTADISTICA I GLOSARIO GUIA PARA LOS CONCEPTOS BASICOS DE LA LOGICA CUANTITATIVA 1

INVESTIGACION Y ESTADISTICA I GLOSARIO GUIA PARA LOS CONCEPTOS BASICOS DE LA LOGICA CUANTITATIVA 1 INVESTIGACION Y ESTADISTICA I GLOSARIO GUIA PARA LOS CONCEPTOS BASICOS DE LA LOGICA CUANTITATIVA I. El problema y las hipótesis María Teresa Sirvent Qué caracteriza a una pregunta científica que orienta

Más detalles

Estándares de ingeniería de proyecto

Estándares de ingeniería de proyecto 2002 Emerson Process Management. Todos los derechos reservados. Vea este y otros cursos en línea en www.plantwebuniversity.com. Fieldbus 401 Estándares de ingeniería de proyecto Generalidades Especificaciones

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA Pensemos en los tres siguientes ejemplos: Hacemos una encuesta entre los clientes de una tienda para preguntarles su opinión sobre cambios generales que pretendemos hacer en diversas

Más detalles

CÓDIGO DE BUENAS PRÁCTICAS DE LAS ESTADÍSTICAS EUROPEAS

CÓDIGO DE BUENAS PRÁCTICAS DE LAS ESTADÍSTICAS EUROPEAS CÓDIGO DE BUENAS PRÁCTICAS DE LAS ESTADÍSTICAS EUROPEAS PARA LAS AUTORIDADES ESTADÍSTICAS DE LOS ESTADOS MIEMBROS Y DE LA COMUNIDAD APROBADO POR EL COMITÉ DE PROGRAMA ESTADÍSTICO EL 24 DE FEBRERO DE 2005

Más detalles

Universidad Carlos III de Madrid Teoría de Juegos Lista de Ejercicios de Juegos Repetidos y Bayesianos

Universidad Carlos III de Madrid Teoría de Juegos Lista de Ejercicios de Juegos Repetidos y Bayesianos Sesión 1: 1, 2, 3, 4 Sesión 2: 5, 6, 8, 9 Universidad Carlos III de Madrid Teoría de Juegos Lista de Ejercicios de Juegos Repetidos y Bayesianos 1. Considere el siguiente juego en forma normal: Jugadora

Más detalles

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz

Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 1 Prácticas de Simulación (Sistemas) Autor: M. en C. Luis Ignacio Sandoval Paéz 2 ÍNDICE Introducción 3 Aplicaciones de la Simulación 3 La Metodología de la Simulación por Computadora 5 Sistemas, modelos

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

EL PROCESO DE BENCHMARKING

EL PROCESO DE BENCHMARKING EL PROCESO DE BENCHMARKING Michael J. Spendolini El benchmarking es un proceso sistemático y continuo para evaluar los productos, servicios y procesos de trabajo de las organizaciones que son reconocidas

Más detalles

El Modelo de MECLABS. Investigación científica aplicada a Marketing Online

El Modelo de MECLABS. Investigación científica aplicada a Marketing Online El Modelo de MECLABS. Investigación científica aplicada a Marketing Online MECLABS es un laboratorio de investigación -investigación básica- con una consultoría -aplicación de la investigación básica-

Más detalles

1) Configuración general del curso:

1) Configuración general del curso: GUÍA MOODLE UP PROFESORES Moodle es una herramienta para dar soporte y apoyo a procesos de enseñanza aprendizaje. Dicha herramienta permite crear espacios virtuales de trabajo a través de los recursos

Más detalles

Cómo mejorar la calidad de los aprendizajes de nuestros estudiantes?

Cómo mejorar la calidad de los aprendizajes de nuestros estudiantes? Cómo mejorar la calidad de los aprendizajes de nuestros estudiantes? Con frecuencia a los profesores nos gustaría que alguien nos diera una receta para que nuestros estudiantes aprendan mucho, se entusiasmen,

Más detalles

Percepción social de la ciencia y la tecnología en ingresantes a la carrera de Ingeniería Resumen Palabras clave Introducción

Percepción social de la ciencia y la tecnología en ingresantes a la carrera de Ingeniería Resumen Palabras clave Introducción Percepción social de la ciencia y la tecnología en ingresantes a la carrera de Ingeniería Ferrando, Karina; Páez, Olga Universidad Tecnológica Nacional Facultad Regional Avellaneda kferrando@fra.utn.edu.ar

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

I.3. Teoría económica

I.3. Teoría económica I.3. Teoría económica I.3.1. Metodología económica y modelos económicos La teoría económica, dada la complejidad de los procesos que estudia y con el fin de analizar la interacción entre causa y efecto,

Más detalles