UNIVERSIDAD DON BOSCO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD DON BOSCO"

Transcripción

1 CICLO I 2013 NOMBRE DE LA PRACTICA : LUGAR DE EJECUCIÓN: TIEMPO ESTIMADO: ASIGNATURA: DOCENTE(S): UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA GUÍA DE LABORATORIO Nº 05 Modulación en Amplitud (2da parte) Laboratorio de Telecomunicaciones 3 Horas Sistemas de Comunicaciones I Denis Altuve / Edward Arévalo/ Eduardo Henríquez I. OBJETIVOS Medir el porcentaje de modulación de una señal de AM. Medir y constatar la relación entre potencia de portadora y bandas laterales de un sistema de AM. II. INTRODUCCIÓN TEÓRICA Porcentaje de modulación Tal como se comprobó en la práctica anterior, al incrementar o decrementar la amplitud de la señal de mensaje, los picos y valles de la envolvente de la señal de AM se vuelven mayores o menores, respectivamente. Esto corresponde a cambiar el porcentaje de modulación, que es el término usado cuando el índice de modulación m se expresa como porcentaje. El porcentaje de modulación es igual a m multiplicado por 100%. El índice de modulación es un parámetro importante en AM. Se define como la razón entre la amplitud de la señal de mensaje y de la portadora antes de ser modulada. El índice de modulación de AM se mide utilizando como señal de mensaje un tono sinusoidal puro. Índice de Modulación de AM = amplitud pico de la señal moduladora / amplitud pico de la portadora no modulada % de modulación = m x 100% La Fig. 1 muestra cómo se define y mide el índice de modulación. En ella aparece una señal sinusoidal de mensaje con una amplitud pico de 200mV, mientras que la amplitud de la portadora no modulada es de 600mV. Por lo tanto: m = Em / Ec = 200mV / 600mV = 0.33 M = 0.33 x 100% =33% Figura 1. Índice de Modulación de AM. 1

2 NOTA: La señal de mensaje usualmente pasa a través de una combinación de amplificadores, filtros y otros circuitos a la entrada de un transmisor AM. Esto significa que la amplitud de la señal de mensaje que realmente afecta a la portadora sin modular no es la misma que el valor a la entrada, y el índice de modulación calculado con dicho valor será incorrecto. En la práctica, el índice de modulación se determina directamente de la señal de AM. El índice de modulación se puede determinar de la forma de onda de AM tal como se muestra en la Fig. 1 Las medidas de A y B se efectúan con un osciloscopio, y luego se utiliza la ecuación: m = A B / A + B En el caso particular de la figura anterior, A = 7.6 divisiones y B = 3.8 divisiones. Por tanto, m= / = 0.33 Existen otros dos métodos para determinar el índice de modulación de una señal de AM. Para el primero de ellos, el osciloscopio se coloca en modo de operación XY y la señal de mensaje se conecta a la entrada X. La señal modulada se conecta a la entrada Y, y se obtiene un patrón trapezoidal, como el que se muestra en la Fig. 2. Figura 2. Método Trapezoidal para Determinar el Índice de Modulación. Luego se mide A y B y se calcula el índice de modulación, utilizando la misma ecuación que antes. En el segundo método, se utiliza un analizador espectral para determinar el índice de modulación. En este caso, la diferencia (delta) entre la potencia de la portadora y la de la banda lateral corresponde a un índice de modulación dado. Por ejemplo, en la Figura 3, es 7.5 db. Usando la gráfica de la Fig. 4, puede determinarse que esto corresponde a un índice de modulación de El índice de modulación de 0.33 usado en los ejemplos anteriores corresponde a una diferencia de cerca de 15.5 db. Figura 3. Diferencia entre la potencia de la portadora y la banda lateral. 2

3 Potencia de portadora y de banda lateral Al variar el índice de modulación, el nivel de potencia de las bandas laterales cambia, mientras que la potencia de la portadora permanece constante. Dado que la información útil contenida en la señal de RF se encuentra en las bandas laterales, es deseable maximizar sus niveles de potencia. Sin embargo, en AM, el índice de modulación no debe ser mayor que 1 o se producirá distorsión o interferencia. La potencia total (P T ) en una señal de AM es la suma de la potencia de la portadora (P C ), y la potencia de las bandas superior e inferior (P LSB + P USB ). En forma de ecuación, P T = P C + P SB, donde P SB = P LSB + P USB. Para señales de AM, las potencias de las bandas laterales superior e inferior son iguales. La fracción de la potencia total que contienen las bandas laterales es una medida de la eficiencia de transmisión (μ). En forma de ecuación, esto puede ser expresado como μ = P SB / P T. Dado que P SB está directamente relacionada con el índice de modulación (m), la razón P SB / P T, y la eficiencia teórica, pueden determinarse por medio del índice de modulación usando la siguiente ecuación. Figura 4. Medición del Índice de Modulación con un Analizador de Espectros. III. MATERIALES Y EQUIPO Nº Requerimientos Cantidad 1 Modulo Veneta T10A 1 2 Modulo AM/DSB/SSB Veneta T10B 1 3 Osciloscopio Agilent InfiniiVision Puntas de osciloscopio 2 5 Cables de conexión DEGEM x 6 Fuente de Alimentación 1 3

4 IV. PROCEDIMIENTO PARTE I. PORCENTAJE DE MODULACIÓN Y ANCHO DE BANDA EN AM DSBFC 1. Realizar las conexiones entre los módulos T10A y T10B para realizar un proceso de modulación de AM DSBFC. Suministrar la alimentación de +12V/-12V a los módulos y efectuar las predisposiciones siguientes: - FUNCTION GENERATOR: senoidal (J1); LEVEL en unos 0.5Vpp y FREQ. a 1kHz aproximadamente. - VCO2: LEVEL en 1Vpp aproximadamente y FREQ. en unos 450kHz. - BALANCED MODULATOR 1: CARRIER NULL totalmente girado en el sentido de las agujas del reloj o en el sentido contrario; OUT LEVEL en posición intermedia. 2. Mida la amplitud pico a pico de la portadora y de la señal moduladora (puntos 2 y 1), posteriormente, determine el porcentaje de modulación. M= 3. Desplace OUT LEVEL en el BALANCED MODULATOR 1 al máximo, y haciendo uso del osciloscopio, dibuje la forma de onda de salida de AM. Mida A y B tal como se muestra en la figura 1 y determine el índice de modulación y porcentaje de modulación. m= M= 4. Coloque el osciloscopio en modo X-Y para obtener un patrón trapezoidal como en la figura 2. Ajuste los controles del osciloscopio para obtener la mayor área posible de visualización. Mida A y B, determine el porcentaje de modulación y compárelo con el obtenido en el literal anterior. m= M= 5. Conecte la salida del modulador a la entrada del Osciloscopio Agilent InfiniiVision 2000, pues con este dispositivo se dispondrá a realizar una medición FFT (Transformada Rápida de Fourier) en la forma de onda de salida de AM para observar el espectro de la misma. Dibuje el espectro observado. 6. A partir del espectro visualizado determine el ancho de banda para la forma de onda modulada. B = 7. Determine el ancho de banda de forma teórica y compárelo con el resultado obtenido anteriormente. 8. Varié la frecuencia de la señal modulante y observe que sucede con el espectro visualizado. Explique sus observaciones. 9. Lleve nuevamente la frecuencia de la señal modulando a 1kHz, y determine Δ, la diferencia en db entre la potencia de la portadora y de la banda lateral, tal como se muestra en la figura 3. Utilice la figura 4 para determinar el porcentaje de modulación. Δ= M= Cómo se compara este resultado con los obtenidos anteriormente? 10. Varíe la amplitud de la señal moduladora para obtener dos valores intermedios entre 20 y 70% del índice de modulación. Mida y anote los valores de Δ y determine el índice de modulación utilizando la figura 4. PARTE II. POTENCIA DE PORTADORA Y DE BANDAS LATERALES 11. Manteniendo las conexiones anteriores, utilice el método trapezoidal para obtener m= Haciendo uso del Osciloscopio Agilent InfiniiVision, mida y anote los valores de potencia en la tabla 1 para la portadora y las bandas laterales de la forma de onda modulada (espectro de la envolvente). Repita el procedimiento para los índices de modulación indicados en la tabla. Auxíliese de la figura 5 para las conversiones de dbm a mw. Analizador de Espectros (Transformada Rápida de Fourier) m μ P SB / P T (mw) P T =P C + P SB P C P LSB P USB m 2 / (2+m 2 ) % dbm mw dbm mw dbm mw dbm mw Tabla 1. Medidas de Potencia para diferentes valores de m. 4

5 Figura 5. Conversión de dbm a mw y voltaje RMS. V. ANÁLISIS DE RESULTADOS Presente a su docente un reporte con todos los datos obtenidos y cálculos realizados a lo largo del desarrollo de la práctica, así como las respuestas a las preguntas que se le plantean en la misma. 5

Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Tema: Modulación de Amplitud Segunda Parte.

Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Tema: Modulación de Amplitud Segunda Parte. 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Tema: Modulación de Amplitud Segunda Parte. Objetivos Medir el porcentaje de modulación de una señal de AM. Medir y constatar

Más detalles

Tema: Modulación de Amplitu d - Primera Parte. Objetivos. Equipos y materiales. Introducción teórica. Sistemas de Comunicación I.

Tema: Modulación de Amplitu d - Primera Parte. Objetivos. Equipos y materiales. Introducción teórica. Sistemas de Comunicación I. 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Modulación de Amplitu d - Primera Parte. Objetivos Observar la forma de una señal AM en el dominio del tiempo y

Más detalles

Instructivo de Laboratorio 2 Introducción al analizador de espectros y al generador de RF

Instructivo de Laboratorio 2 Introducción al analizador de espectros y al generador de RF Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Laboratorio de Teoría Electromagnética II Prof. Ing. Luis Carlos Rosales Instructivo de Laboratorio 2 Introducción al analizador de

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO TRABAJO PRACTICO No 7 MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO INTRODUCCION TEORICA: La distorsión es un efecto por el cual una señal pura (de una única frecuencia)

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 01-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 06 NOMBRE DE LA PRACTICA: Análisis de Circuitos en Corriente Alterna

Más detalles

SOFTWARE DE SIMULACIÓN EN TELECOMUNICACIONES ANALÓGICAS (LVSIM -ACOM), MODELO 9480

SOFTWARE DE SIMULACIÓN EN TELECOMUNICACIONES ANALÓGICAS (LVSIM -ACOM), MODELO 9480 A Telecomunicaciones SOFTWARE DE SIMULACIÓN EN TELECOMUNICACIONES ANALÓGICAS (LVSIM -ACOM), MODELO 9480 DESCRIPCIÓN GENERAL El Software de simulación en telecomunicaciones analógicas (LVSIM -ACOM) es un

Más detalles

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA 1 SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA I. OBJETIVOS 1. Implementar un modulador de frecuencia utilizando el XR-2206. 2. Complementar

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL SÍLABO

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL SÍLABO UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA : TELECOMUNICACIONES I CODIGO: 2H0008 1. DATOS GENERALES 1.1 DEPARTAMENTO ACADEMICO : Ingeniería

Más detalles

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 8 MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL Familiarizarse

Más detalles

Tema: Modulación de Ángulo Primera Parte. Objetivos. Equipos y materiales. Procedimiento

Tema: Modulación de Ángulo Primera Parte. Objetivos. Equipos y materiales. Procedimiento 1 Tema: Modulación de Ángulo Primera Parte Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Objetivos Conocer las características en el dominio del tiempo de una señal de

Más detalles

USO DE INSTRUMENTOS DE LABORATORIO

USO DE INSTRUMENTOS DE LABORATORIO 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). USO DE INSTRUMENTOS DE LABORATORIO Objetivo General Obtener

Más detalles

Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz"

Práctica No. 6 del Curso Meteorología y Transductores. Mediciones de valor medio y valor eficaz Objetivo. Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz" Graficar varias señales del generador de señales y comprobar en forma experimental el voltaje

Más detalles

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ INGENIERÍA ELECTRÓNICA MODULACIÓN AM

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ INGENIERÍA ELECTRÓNICA MODULACIÓN AM MODULACIÓN AM Las señales de información deben ser transportadas entre un transmisor y un receptor sobre algún medio de transmisión. Sin embargo, las señales de información no se encuentran preparadas,

Más detalles

AMPLIFICADOR PUSH PULL BJT.

AMPLIFICADOR PUSH PULL BJT. Electrónica I. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). AMPLIFICADOR PUSH PULL BJT. Objetivos

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Escuela Técnica Superior de Ingeniería Informática PRÁCTICA 5: DISEÑO DE MODULADORES (FSK), DEMODULADORES (ASK) Tecnología Básica de las Comunicaciones (Ingeniería Técnica Informática

Más detalles

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF INTRODUCCION TEORICA: El análisis de una señal en el modo temporal con ayuda de un osciloscopio permite conocer parte de la información contenida

Más detalles

DISEÑO E IMPLEMENTACIÓN DE UNA TARJETA DE ADQUISICIÓN DE DATOS PARA EL LABORATORIO DE TELECOMUNICACIONES DE LA FIEC.

DISEÑO E IMPLEMENTACIÓN DE UNA TARJETA DE ADQUISICIÓN DE DATOS PARA EL LABORATORIO DE TELECOMUNICACIONES DE LA FIEC. TESIS DISEÑO E IMPLEMENTACIÓN DE UNA TARJETA DE ADQUISICIÓN DE DATOS PARA EL LABORATORIO DE TELECOMUNICACIONES DE LA FIEC. DIRECTOR DE TESIS.- Ing. Francisco Novillo AUTOR Walter Mestanza Vera. Egresado

Más detalles

VOLTIMETRO VECTORIAL

VOLTIMETRO VECTORIAL VOLTIMETRO VECTORIAL El voltímetro vectorial HP 8405 tiene un voltímetro y un fasímetro que permiten medir la amplitud y la relación de fase entre 2 componentes fundamentales de una tensión de RF. El rango

Más detalles

Laboratorio de Señales y Comunicaciones (LSC) 3 er curso, Ingeniería de Telecomunicación. Curso 2005 2006. (1 sesión)

Laboratorio de Señales y Comunicaciones (LSC) 3 er curso, Ingeniería de Telecomunicación. Curso 2005 2006. (1 sesión) Transmisión Digital en Banda Base PRÁCTICA 8 (1 sesión) Laboratorio Señales y Comunicaciones (LSC) 3 er curso, Ingeniería Telecomunicación Curso 2005 2006 Javier Ramos, Fernando Díaz María y David Luengo

Más detalles

Práctica 3: Señales en el Tiempo y Dominio de

Práctica 3: Señales en el Tiempo y Dominio de Práctica 3: Señales en el Tiempo y Dominio de Frecuencia Número de Equipo: Nombres: Fecha: Horario: Dia de clase: Profesor: Objetivos: Al finalizar esta práctica, usted será capaz de: Predecir el contenido

Más detalles

OSCILADOR DE RELAJACIÓN

OSCILADOR DE RELAJACIÓN Electrónica II. Guía 7 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADOR DE RELAJACIÓN Objetivos específicos

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

Conceptos y Terminologías en la Transmisión de Datos. Representaciones de Señales.

Conceptos y Terminologías en la Transmisión de Datos. Representaciones de Señales. Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Conceptos y Terminologías en la Transmisión de Datos y Sistemas de Comunicaciones Electrónicos. Representaciones de Señales.

Más detalles

Osciloscopio Funciones

Osciloscopio Funciones Uso del osciloscopio para determinar las formas de onda Uno de los procedimientos para realizar diagnósticos acertados, en las reparaciones automotrices, es el buen uso del osciloscopio. Este instrumento

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1 SEÑALES Y ESPECTROS INTRODUCCIÓN. TERMINOLOGÍA USADA EN TRANSMISIÓN DE DATOS. FRECUENCIA, ESPECTRO Y ANCHO DE BANDA. DESARROLLO EN SERIE DE FOURIER PARA SEÑALES PERIÓDICAS. TRANSFORMADA DE FOURIER PARA

Más detalles

1. Instrumentos de medida. 2. Fundamentos teóricos. 3. El Analizador de Espectro. Asignatura: Comunicaciones

1. Instrumentos de medida. 2. Fundamentos teóricos. 3. El Analizador de Espectro. Asignatura: Comunicaciones Grado en Ingeniería de Tecnologías de Telecomunicación ETSIIT Universidad de Cantabria Asignatura: Comunicaciones Curso 2015-2016 Práctica 1: Medida del espectro de señales Objetivo Esta primera práctica

Más detalles

Tema: Códigos de Línea.

Tema: Códigos de Línea. Sistemas de comunicación II. Guía 4 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación II Tema: Códigos de Línea. Contenidos Codificación AMI/HDB3 Visualización del Espectro

Más detalles

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso:

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso: INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO Alumnos 1.- Fecha: 2.- 3.- Curso: OBJETIVO Usar el osciloscopio como instrumento para visualizar señales y medir en ellas voltaje, frecuencia

Más detalles

CAPITULO 6 GUIA DE USUARIO

CAPITULO 6 GUIA DE USUARIO GUIA DE USUARIO 6 Guía de usuario 6.1 Introducción Esta guía tiene como objetivo familiarizar al usuario con el uso del demodulador sintonizable de AM así como indicarle el software y hardware necesarios

Más detalles

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Comprender el principio de funcionamiento del osciloscopio

Más detalles

Sistemas de Medida Electronicos: Medicion de Variables Mecanicas y Fisico-Quimicas

Sistemas de Medida Electronicos: Medicion de Variables Mecanicas y Fisico-Quimicas Sistemas de Medida Electronicos: Medicion de Variables Mecanicas y Fisico-Quimicas Universidad Tecnológica de Pereira Pereira, 15 de Diciembre de 2010 Juan David Vasquez Jaramillo. Ingeniero Electronico,

Más detalles

Medición del nivel de intensidad de diferentes ruidos

Medición del nivel de intensidad de diferentes ruidos Universidad Nacional Autónoma de Honduras Facultad de ciencias Escuela de física Medición del nivel de intensidad de diferentes ruidos Objetivos. Conocer y manejar los conceptos básicos de ruido.. Aprender

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA CICLO 01 2016 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA GUÍA DE LABORATORIO 01 NOMBRE DE LA PRACTICA: Instrumentación ASIGNATURA: Sistemas de Comunicación Analógicos/Sistemas

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Stimulus / Response Measurement Suite

Stimulus / Response Measurement Suite Stimulus / Response Measurement Suite El paquete de medición de Estimulo-Respuesta del Analizador de Espectros Agilent N1996a-506 permite hacer una fácil y precisa medición de las características de transmisión

Más detalles

Práctica 3. LABORATORIO

Práctica 3. LABORATORIO Práctica 3. LABORATORIO Electrónica de Potencia Convertidor DC/AC (inversor) de 220Hz controlado por ancho de pulso con modulación sinusoidal SPWM 1. Diagrama de Bloques En esta práctica, el alumnado debe

Más detalles

PRÁCTICA 15 El espectrómetro de difracción

PRÁCTICA 15 El espectrómetro de difracción PRÁCTICA 15 El espectrómetro de difracción Laboratorio de Física General Objetivos Generales 1. Medir el rango de longitudes que detecta el ojo humano. 2. Analizar el espectro de emisión de un gas. Equipo

Más detalles

UNIVERSIDAD DE ANTIOQUIA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE COMUNICACIONES ESPECTRO DE TREN PULSADO

UNIVERSIDAD DE ANTIOQUIA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE COMUNICACIONES ESPECTRO DE TREN PULSADO UNIVERSIDAD DE ANTIOQUIA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE COMUNICACIONES ESPECTRO DE TREN PULSADO OBJETIVOS: Adquirir destrezas en la operación y el manejo del Analizador de espectros

Más detalles

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S

OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S OSCILOSCOPIO Objetivos - Conocer los aspectos básicos que permiten comprender el funcionamiento del osciloscopio - Manejar el osciloscopio como instrumento de medición de magnitudes eléctricas de alta

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

Práctica 6: Amplificador operacional inversor y no inversor.

Práctica 6: Amplificador operacional inversor y no inversor. NOMBRE: NOMBRE: GRUPO: PUESTO: Práctica 6: Amplificador operacional inversor y no inversor. Introducción al amplificador operacional inversor y no inversor 47K (R ) 100K (R ) V E 4K7 (R 1 ) 3 - + +15 7

Más detalles

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO

19 EL OSCILOSCOPIO OBJETIVO MATERIAL FUNDAMENTO TEÓRICO 19 EL OSCILOSCOPIO OBJETIVO Familiarizarse con el manejo del osciloscopio. Medida del periodo y del valor eficaz y de pico de una señal alterna de tensión. Visualización de las figuras de Lissajous. MATERIAL

Más detalles

Universidad de Pamplona Laboratorio de Electronica Li211-Li211. Manual de Funcionamiento Gw Instek Gos-6112

Universidad de Pamplona Laboratorio de Electronica Li211-Li211. Manual de Funcionamiento Gw Instek Gos-6112 Universidad de Pamplona Laboratorio de Electronica Li211-Li211 Manual de Funcionamiento Gw Instek Gos-6112 1. Objetivo. Conocer, Manejar y Aplicar el Osciloscopio Analogo gw instek gos-6112. 2. Descripción.

Más detalles

Determinación experimental de la respuesta en frecuencia

Determinación experimental de la respuesta en frecuencia Determinación experimental de la respuesta en frecuencia Análisis Dinámico de Sistemas (Teleco) Área de Ingeniería de Sistemas y Automática Escuela Politécnica Superior de Ingeniería Gijón Universidad

Más detalles

CIRCUITOS ELECTRÓNICOS DIGITALES (II-IS) Práctica 3: Función combinacional con puertas NAND

CIRCUITOS ELECTRÓNICOS DIGITALES (II-IS) Práctica 3: Función combinacional con puertas NAND CIRCUITOS ELECTRÓNICOS DIGITALES (II-IS) Práctica 3: Función combinacional con puertas NAND 1. OBJETIVOS DE LA PRÁCTICA - Comprobar que la puerta NAND es un operador completo en la realización de funciones

Más detalles

PRACTICA Nº 4 EL OSCILOSCOPIO

PRACTICA Nº 4 EL OSCILOSCOPIO PRACTICA Nº 4 EL OSCILOSCOPIO Objetivos Comprender el principio de funcionamiento del osciloscopio analógico y estar en capacidad de identificar los diferentes bloques de controles en los instrumentos

Más detalles

Última actualización: 1 de julio de 2010. www.coimbraweb.com

Última actualización: 1 de julio de 2010. www.coimbraweb.com RUIDO Y COMUNICACIONES Contenido 1.- Definición de ruido eléctrico. 2.- Formas de ruido eléctrico. 3.- Ruido térmico. 4.- Relación señal a ruido S/N. 5.- Temperatura de ruido. 6.- Diafonía o crosstalk.

Más detalles

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000 Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos electrónicos Otoño 2000 Tarea para casa 11 Boletín F00-057 Fecha de entrega: 6/12/00 Introducción

Más detalles

Tema 07: Acondicionamiento

Tema 07: Acondicionamiento Tema 07: Acondicionamiento Solicitado: Ejercicios 02: Simulación de circuitos amplificadores Ejercicios 03 Acondicionamiento Lineal M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com edfrancom@ipn.mx

Más detalles

PRACTICA NO. 0 LABORATORIO FUNDAMENTOS DE CIRCUITOS

PRACTICA NO. 0 LABORATORIO FUNDAMENTOS DE CIRCUITOS Facultad de Ingeniería Departamento de Ingeniería Eléctrica y Electrónica PRACTICA NO. 0 LABORATORIO FUNDAMENTOS DE CIRCUITOS Introducción a la implementación de circuitos eléctricos Descripción general

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com Contenido DOMINIOS DEL TIEMPO Y DE LA FRECUENCIA 1.- Señales analógicas y digitales. 2.- Señales analógicas periódicas. 3.- Representación en los dominios del tiempo y de la frecuencia. 4.- Análisis de

Más detalles

Medidor De Potencia RF ImmersionRC

Medidor De Potencia RF ImmersionRC Medidor De Potencia RF ImmersionRC Manual del usuario Edición de Octubre 2013, Preliminar 1 Visión Del Modelo El medidor de potencia RF de ImmersionRC es portátil y autónomo, con un medidor de potencia

Más detalles

Usos de un Analizador de Respuesta en Frecuencia

Usos de un Analizador de Respuesta en Frecuencia Usos de un Analizador de Respuesta en Frecuencia La respuesta en frecuencia es la medida del espectro de salida de un sistema en respuesta a un estímulo. El análisis de respuesta en frecuencia mide la

Más detalles

INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES

INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES Son sistemas que funcionan automáticamente, sin necesidad de

Más detalles

FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA SECRETARÍA GENERAL SECRETARÍA DE TECNOLOGÍA EN APOYO A LA DOCENCIA DEPARTAMENTO DE CÓMPUTO

FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA SECRETARÍA GENERAL SECRETARÍA DE TECNOLOGÍA EN APOYO A LA DOCENCIA DEPARTAMENTO DE CÓMPUTO FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA SECRETARÍA GENERAL SECRETARÍA DE TECNOLOGÍA EN APOYO A LA DOCENCIA DEPARTAMENTO DE CÓMPUTO Determinar la capacidad de un regulador según la placa de datos:

Más detalles

Trabajo práctico Nº 1

Trabajo práctico Nº 1 Circuito de acoplamiento 1. Introducción 1.1. Requisitos 2. Funcionamiento 2.1. Sintonización 2.2. Adaptación 3. Diseño 3.1. Consideraciones generales 3.2. Diseño inductor 3.3. Factor de calidad 3.4. Cálculo

Más detalles

Preguntas teóricas de la Clase N 5

Preguntas teóricas de la Clase N 5 Preguntas teóricas de la Clase N 5 1) Respecto a la cadena de amplificación del sistema vertical (eje Y) de un osciloscopio de rayos catódicos (ORC) Qué entiende por: 1. Impedancia de entrada? Componentes

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones

Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones Práctica de Laboratorio: Introducción al laboratorio de Radiocomunicaciones Apellidos, nombre Departamento Centro Bachiller Martín, Carmen (mabacmar@dcom.upv.es) Fuster Escuder, José Miguel (jfuster@dcom.upv.es)

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3 ~ 1 ~ ÍNDICE Introducción...página 3 Prácticas LabVolt...página

Más detalles

6. Amplificadores con transistores

6. Amplificadores con transistores 6. Amplificadores con transistores Objetivos: Obtención, mediante simulación y con los equipos del laboratorio, de las carácterísticas de entrada y salida de un transistor bipolar. Obtención de los modelos

Más detalles

β = 2.4 Para el primer nilo de la portadora, por lo tanto J ELECTRONICA Y TELECOMUNICACIONES Competencia Individual Nivel 2 Segunda Ronda

β = 2.4 Para el primer nilo de la portadora, por lo tanto J ELECTRONICA Y TELECOMUNICACIONES Competencia Individual Nivel 2 Segunda Ronda ELECTONICA Y TELECOMUNICACIONES Competencia Individual Nivel Segunda onda 1. Se transmite un tono utilizando FM. Cuando no hay mensaje, el transmisor emite 100 W sobre 50 ohmios. La desviación de frecuencia

Más detalles

Prácticas de Laboratorio Sistemas de Comunicaciones Análogas y Digitales

Prácticas de Laboratorio Sistemas de Comunicaciones Análogas y Digitales 1 Prácticas de Laboratorio Sistemas de Comunicaciones Análogas y Digitales Formato del reporte de laboratorio Todo reporte de laboratorio debe contener las siguientes secciones: Portada: Titulo de la practica

Más detalles

Un producto exclusivo en el mercado Para que su radio sea siempre la mejor. Avance con flecha

Un producto exclusivo en el mercado Para que su radio sea siempre la mejor. Avance con flecha Un producto exclusivo en el mercado Para que su radio sea siempre la mejor Avance con flecha El VA 16X sintoniza por aire cualquier estación de FM y analiza su comportamiento mediante procesado digital

Más detalles

SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO

SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO I. OBJETIVOS Analizar componentes. Montaje del circuito. Análisis de CA y CD. Sistema de rectificación tipo fuente. Filtraje. Uso del osciloscopio. Gráfico

Más detalles

3. Es suficientemente buena la antena?

3. Es suficientemente buena la antena? 1. Qué es una antena? 2. Tipos de antena 2.1. Antenas para Estación Base 2.2. Antenas Móviles 3. Es suficientemente buena la antena? 4. Mediciones de antenas Página 1 de 12 1. Qué es una antena? Una antena

Más detalles

Procesamiento digital de señales y radios definidas en software

Procesamiento digital de señales y radios definidas en software 1 2 2 3 4 5 5 6 Procesamiento digital de señales y radios definidas en software Marcelo Franco, N2UO www.qsl.net/n2uo En los últimos tiempos se han popularizado dos siglas entre los radioaficionados: DSP

Más detalles

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc.

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc. Tema: EL TRANSFORMADOR MONOFASICO. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Establecer el procedimiento para determinar la polaridad

Más detalles

MODULACIONES ANGULARES. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

MODULACIONES ANGULARES. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. MODULACIONES ANGULARES. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. INTRODUCCIÓN. 1. MODULACIÓN DE FASE (PM) Y MODULACIÓN

Más detalles

UTN- FRM Medidas Electrónicas I Página 1 de 6

UTN- FRM Medidas Electrónicas I Página 1 de 6 UTN- FRM Medidas Electrónicas I Página 1 de 6 Trabajo Practico Nº 8 MEDID DE POTENCI EN C Objeto: Medir potencia activa, reactiva y otros parámetros en C. Tener en cuenta los efectos de los elementos alinéales

Más detalles

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES.

PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. PRÁCTICA NÚMERO 1. MANEJO DEL OSCILOSCOPIO Y DEL GENERADOR DE SEÑALES. 1.1. Introducción Teórica. (a) El osciloscopio El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra

Más detalles

UNIDAD VI. También cuenta con diferentes escalas de amplitud para cada canal, así como también en la base de tiempo.

UNIDAD VI. También cuenta con diferentes escalas de amplitud para cada canal, así como también en la base de tiempo. UNIDAD VI 6.1 Plano X-Y, escalas. El osciloscopio es un medidor de indicación cartesiana x-y, es decir, grafica formas de onda en dos planos que pueden ser voltajes vs. tiempo, voltaje vs. voltaje, etc.

Más detalles

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2 GUIA DE LABORATORIO Nº2 Universidad Nacional de Misiones MÉTODOS CLÁSICOS PARA MODELACIÓN DE SISTEMAS 1. Objetivo de la práctica. Modelación a través de la Respuesta en frecuencia Este laboratorio tiene

Más detalles

Apuntes para el diseño de un amplificador multietapas con TBJs

Apuntes para el diseño de un amplificador multietapas con TBJs Apuntes para el diseño de un amplificador multietapas con TBJs Autor: Ing. Aída A. Olmos Cátedra: Electrónica I - Junio 2005 - Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACIONAL DE TUCUMAN

Más detalles

Laboratorio Amplificador Operacional

Laboratorio Amplificador Operacional Objetivos Laboratorio Amplificador Operacional Medir las características más importantes de un amplificador operacional en lazo abierto y lazo cerrado. Textos de Referencia Principios de Electrónica, Cap.

Más detalles

Ángel Hernández Mejías (angeldpe@hotmail.com) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1

Ángel Hernández Mejías (angeldpe@hotmail.com) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 Índice Índice... Pág. 2 Breve descripción de la práctica... Pág. 3 Enumeración de recursos comunes... Pág. 3 Desarrollo

Más detalles

Conversor Analógico Digital (CAD)

Conversor Analógico Digital (CAD) Conversor Analógico Digital (CAD) La salida de los sensores, que permiten al equipo electrónico interaccionar con el entorno, es normalmente una señal analógica, continua en el tiempo. En consecuencia,

Más detalles

PRÁCTICA #1.- OSCILOSCOPIOS

PRÁCTICA #1.- OSCILOSCOPIOS 1 PRÁCTICA #1.- OSCILOSCOPIOS OBJETIVOS -Revisar el funcionamiento básico de los osciloscopios, y a partir de esta base teórica, ser capaz de manejar y realizar mediciones con el osciloscopio existente

Más detalles

Inductancias Acopladas Magnéticamente

Inductancias Acopladas Magnéticamente Inductancias Acopladas Magnéticamente Omar X. Avelar & Diego I. Romero SISTEMAS ELECTRICOS INDUSTRIALES (ESI 013AA) Instituto Tecnológico y de Estudios Superiores de Occidente () Departamento de Electrónica,

Más detalles

Teoría de Telecomunicaciones

Teoría de Telecomunicaciones Capítulo 1. Generalidades Universidad del Cauca Teoría de Telecomunicaciones 1 Limitaciones en las Comunicaciones Eléctricas En el diseño de sistemas de comunicaciones eléctricos, siempre se debe enfrentar

Más detalles

Cómo vibran las estructuras? problemas dinámicos estructurales

Cómo vibran las estructuras? problemas dinámicos estructurales Cómo vibran las estructuras? Uso de herramientas para resolver problemas dinámicos estructurales MC571 Vibraciones Mecánicas Análisis i Modal Estudio de las características naturales de las estructuras

Más detalles

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Circuitos Magnéticamente Acoplados Contenidos Desfase de una señal. Inductancia. Inductancia Mutua.

Más detalles

PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA

PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA I. Objetivos. 1. Estudiar el efecto que tienen ciertas sustancias sobre la luz polarizada. 2. Encontrar la gráfica y ecuación de la concentración

Más detalles

3.2.- Fundamento teórico y de funcionamiento del instrumento. Metodología. 3.2.1.- Tests de componentes.

3.2.- Fundamento teórico y de funcionamiento del instrumento. Metodología. 3.2.1.- Tests de componentes. PRÁCTICA 3. Osciloscopios HM 604 y HM 1004 (III): Test de componentes y modulación en frecuencia. Sumario: Elementos del osciloscopio III. Test de componentes teórico/práctico. Modulación en frecuencia.

Más detalles

Atenuación = 10 log 10 db 1.10. Amplificación = 10 log 10

Atenuación = 10 log 10 db 1.10. Amplificación = 10 log 10 cable es más largo, se insertan uno o más amplificadores, también llamados repetidores a intervalos a lo largo del cable a fin de restablecer la señal recibida a su nivel original. La atenuación de la

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. Tema: CONEXIÓN DE BANCOS TRIFÁSICOS. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Que el alumno: Realice la conexión de un banco de transformadores

Más detalles

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES

USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES PRACTICA Nº 5 Objetivos USO DE LA PRESENTACION X-Y DEL OSCILOSCOPIO CARACTERISTICAS CORRIENTE- VOLTAJE DE ELEMENTOS LINEALES Y NO LINEALES Profundizar en el conocimiento del osciloscopio y familiarizar

Más detalles

Montaje y medida de un multiplicador de frecuencia basado en un diodo SRD

Montaje y medida de un multiplicador de frecuencia basado en un diodo SRD Montaje y medida de un multiplicador de frecuencia basado en un diodo SRD D. Cordobés, J.A. López Pérez, C. Almendros, J.A. Abad, J. M. Yagüe, S. Henche Informe Técnico IT - OAN 2008-10 CONTENIDO I. Introducción

Más detalles

Laboratorio de Electrónica

Laboratorio de Electrónica Listado de materiales: Trabajo Práctico: ectificadores 4 Diodos 1N4001 1 esistencia de 1 KΩ/ ½W Preset 1 KΩ 1 Puente ectificador Integrado. 1 esistencia de 3,9 KΩ/ ½W Cables y herramientas básicas. 1 esistencia

Más detalles

Práctico 1 - Osciloscopio

Práctico 1 - Osciloscopio Medidas Eléctricas Repartido 1: Osciloscopio 1/5 Problema 1 Práctico 1 - Osciloscopio Suponga para el tubo de rayos catódicos el modelo simplificado que se muestra en la figura 1. Las placas de desviación

Más detalles

PRACTICA 2B EL OSCILOSCOPIO DE PROPÓSITO GENERAL. 1. Procurar mantener el osciloscopio en un lugar fijo, en caso de tener que trasladarlo:

PRACTICA 2B EL OSCILOSCOPIO DE PROPÓSITO GENERAL. 1. Procurar mantener el osciloscopio en un lugar fijo, en caso de tener que trasladarlo: PRECAUCIONES ANTES DEL ENCENDIDO PRACTICA 2B EL OSCILOSCOPIO DE PROPÓSITO GENERAL 1. Procurar mantener el osciloscopio en un lugar fijo, en caso de tener que trasladarlo: a) Hacerlo sujetando la manija

Más detalles

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA INSTRUMENTOS DE MEDICION INFORME DE LABORATORIO Presentado por: Andrés González - 0329032 Andrea Herrera - 0327121 Hans Haeusler - 0332903 Rafael Triviño -

Más detalles

AMPLIFICADORES SINTONIZADOS DE PEQUEÑA SEÑAL

AMPLIFICADORES SINTONIZADOS DE PEQUEÑA SEÑAL AMPLIFICADORES SINTONIZADOS DE PEQUEÑA SEÑAL RECEPTOR FM DE BANDA ANGOSTA CON MC3357 GUÍA DE LABORATORIO Nº 3 Profesor: Ing. Aníbal Laquidara. J.T.P.: Ing. Isidoro Pablo Perez. Ay. Diplomado: Ing. Carlos

Más detalles

. Cómo es la gráfica de z[n]?

. Cómo es la gráfica de z[n]? UNIVERSIDAD INDUSTRIAL DE SANTANDER Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones - E³T Perfecta combinación entre energía e intelecto TRATAMIENTO DE SEÑALES Actividades de Clase:

Más detalles

Representación de señales de audio

Representación de señales de audio Representación de señales de audio Emilia Gómez Gutiérrez Síntesi i Processament del So I Departament de Sonologia Escola Superior de Musica de Catalunya Curso 2009-2010 emilia.gomez@esmuc.cat 28 de septiembre

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

Practica 2 Filtro Activo Butterworth Pasa-Banda de Segundo Orden

Practica 2 Filtro Activo Butterworth Pasa-Banda de Segundo Orden Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 4 Segundo Semestre 2015 Auxiliar: Estuardo Toledo Practica 2 Filtro Activo

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA PROGRAMA SINTÉTICO CARRERA: Ingeniería en Comunicaciones y Electrónica ASIGNATURA: Mediciones SEMESTRE: Cuarto OBJETIVO GENERAL: El alumno identificará los equipos de medición, para utilizarlos en los

Más detalles