EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo"

Transcripción

1 EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b) El ángulo que forman el vector velocidad y aceleración en el instante t=2 s.; c) La aceleración media entre 0 y 2 segundos. a) Para calcular la posición en el instante t=2s, utilizamos la función que nos han dado de la posición frente al tiempo y únicamente tenemos que sustituir el instante dado y operar: r(t)= t i + (t 2 +2) j para t=2s; r(2)= 2 i + (2 2 +2) j = 2i + 6j; La posición en el instante t=2s es: r(2)= 2i + 6j (m) Las unidades es importante ponerlas, en nuestro caso nos indican que están en el sistema internacional (S.I.) Para calcular la velocidad en el instante t=2s, utilizaremos la definición de velocidad, la cual nos dice que la velocidad es la variación de la posición con respecto al tiempo, y como ya sabemos, en física una variación se explica matemáticamente, derivando nuestra función. Por lo tanto la variación de posición con respecto al tiempo no es más que la derivada de nuestro vector posición con respecto al tiempo: (t)= d (t) dt = +2t Una vez que tenemos nuestro vector velocidad volvemos a sustituir nuestro instante t=2s en la función: v(2) = i + (2 2) j = i + 4j La velocidad en el instante t=2s es: v(2) = i + 4j (m/s)

2 Y por último para calcular la aceleración realizamos el mismo planteamiento que para la velocidad, pero en este caso dado que la aceleración es la variación de la velocidad con respecto al tiempo, derivaremos el vector de velocidad con respecto al tiempo: (t)= d (t) dt =2 Una vez derivada nos damos cuenta de que no depende del tiempo, y por tanto este movimiento lleva una aceleración constante (MUA) para cualquier instante de tiempo: a(t)= 2j (m/ ) b) Para calcular el ángulo que forman el vector velocidad y el vector aceleración en el instante t=2s calculados anteriormente, primero los representamos en el plano: v(2) = i + 4j a(t)= a(2) = 2j El ángulo que nos piden es el que forman los dos vectores (α). Para ello utilizamos la relación trigonométrica que relaciona el cateto opuesto con el contiguo que es la tg α, ya que estos dos lo conocemos: tg α =.. =

3 Y despejamos α: α = arc tg (1/4) = 14,04 c) En este apartado no nos hace falta calcular nada si nos damos cuenta de que la aceleración es constante para cualquier instante y por lo tanto podríamos decir que la aceleración media es la calculada en el apartado a): a(t)= 2j (m/ ) Pero si no nos damos cuenta de esto utilizaremos la definición de aceleración media. La aceleración media se define como: = v = Para calcular la aceleración media entre los instantes t=0s y t=2s, calcularemos las velocidades en los instantes t=0s y t=2s y sustituiremos en la fórmula: v(t) = i + 2t j v(0)= i + 0j = i (m/s) v(2) ya la calculamos en el apartado a): v(2) = i + 4j (m/s) = = = ( ) ( ) = = = ( / ) 2. Desde un punto situado a 100 m. sobre el suelo se dispara horizontalmente un proyectil a 400 m/s. Tomar g= 10 m/s 2. Calcular: a) Cuánto tiempo tardará en caer; b) Cuál será su alcance; c) Con qué velocidad llegará al suelo. Para resolver este ejercicio utilizaremos las fórmulas de la cinemática: =

4 = + Planteamiento gráfico: a) Para calcular el tiempo que tarda en caer utilizamos la ecuación de la posición en el eje Y: =0= = ( 10) =0 = =4,47 ; Tarda en caer 4,47s b) Para calcular el alcance utilizamos la ecuación de la posición en el eje X, ya que queremos averiguar Xf: Imponemos el sistema de referencia en la posición inicial del proyectil, por tanto la posición inicial es cero y puesto que tampoco hay ninguna aceleración en el eje X: = = El tiempo que tarda en alcanzar la posición final en X es el mismo que el que tarda en alcanzar el suelo y que hemos calculado anteriormente:

5 = +, +, =, = c) La velocidad con la que llega al suelo tiene dos componentes la del eje x y la del eje y, por tanto tendremos que averiguar las velocidades finales en el eje y, y en el eje x: = + =400+0 =400 / = + =0+ = 10 4,47= 44,7 / = + =, ( / ) 3. Un pájaro parado en un cable a 5 metros sobre el suelo deja caer un excremento libremente. Dos metros por delante de la vertical del pájaro, y en sentido hacia ella, va por la calle una persona a 5 Km/h. La persona mide 1,70 m. Calcula; a) si le cae en la cabeza y b) a qué velocidad debería ir para que le cayera encima. Planteamiento gráfico: Para calcular si le cae en la cabeza podemos hacerlo por varios procedimientos, pero en este caso vamos a utilizar el siguiente:

6 Primero calculamos cuánto tiempo tarda en llegar el excremento a la altura donde estaría colocada la cabeza de la persona si le llegase a caer, y posteriormente sustituimos ese tiempo calculado en la fórmula de la posición de la persona para ver si se encuentra debajo en ese instante, si no es así, lógicamente el excremento no le cae encima. Utilizamos las fórmulas de la cinemática para caída libre (excremento) y para un movimiento rectilíneo constante (MRU): = + = Calculamos el tiempo que tarda el excremento en llegar a la altura de la persona (1,7m): =1,7= = ( 10) 5-1,7 = 5 = 3,3/5 = 0,81s; Este es el tiempo que tarda el excremento en llegar a la altura de la persona, ahora sustituimos este tiempo en la fórmula de la posición de la persona para ver dónde se encuentra en ese momento. Suponemos sistema de referencia en el suelo y en la vertical del pájaro, por lo tanto la persona se encuentra en la posición 2m: v =-5 Km/h 1000/3600 = -1, m/s ( )= 2+ 1, ,81=0,875 Dado que la vertical del pájaro hemos dicho que pasa por el origen de coordenadas el excremento se encuentra en la posición x=0 y la persona está situada a x=0,875 m por lo tanto no le cae encima. b) Para calcular la velocidad a la que debería de ir, mantenemos constantes el tiempo de caída del excremento y por tanto la persona debería estar en la posición x=0 en el instante en que el excremento se encuentra en y=1,7 y despejamos la velocidad de la persona:

7 = + = 0 0= 2+ 0,81; = =, /, 4. Un avión, que vuela horizontalmente a m de altura con una velocidad constante de 100 m/s, deja caer una bomba para que dé sobre un vehículo que está en el suelo. Calcular a qué distancia del vehículo, medida horizontalmente, debe soltar la bomba si éste: a) está parado y b) se aleja del avión a 72 Km/h. a) Si el coche está parado, calculamos sólo el movimiento de la bomba y donde caiga, a esa distancia debe soltar la bomba: = =0 0=

8 = =14,14 ; Este es el tiempo que tarda en caer la bomba, ahora sustituimos en la fórmula del eje x para averiguar dónde cae la bomba: = + + = +, + = A esa distancia debe soltar la bomba para que impacte en el blanco. b) Si el coche se aleja del avión a 72 Km/h, suponemos como si el avión estuviese parado en la posición x=0 y el que se mueve es el coche. la bomba sabemos que recorre 1414 m desde donde se lanza, pero tarda un tiempo en caer y en ese tiempo el coche se habrá desplazado. Calculamos cuánto se mueve el coche en el tiempo que tarda en caer la bomba: Sabemos que la bomba tarda 14,14s en caer: MRU: = = =72 14,14 =282,8 El coche recorre 282,8 m en el tiempo que tarda la bomba en caer por lo tanto habrá que lanzar la bomba 282,8 metros más cerca del coche para que la bomba caiga en el coche: ,8 = 1131,2 m; A esta distancia habrá que lanzarla en este caso. 5. Desde una azotea a 20 m de altura del suelo se lanza verticalmente hacia arriba una piedra con velocidad de 25 m/s. Al mismo tiempo desde el suelo, se lanza otra piedra, también verticalmente hacia arriba, con una velocidad de 30 m/s. Calcula: a) la distancia del suelo a la que se cruzan y el tiempo que tardan en cruzarse; b) las velocidades de cada piedra en ese instante. Planteamiento gráfico:

9 Sabemos que las dos se lanzan al mismo tiempo por lo tanto el tiempo que tardan en cruzarse es el mismo para las dos y la distancia al suelo en el cruce también es la misma para las dos, por tanto realizamos un sistema de ecuaciones con dos ecuaciones y dos incógnitas: = = Dado que = y t2=t1: = (1) = (2) Restamos (1) (2) =0= =5 t = 4s; Este es el tiempo que tardan hasta cruzarse. Ahora sustituimos en una de las dos ecuaciones el tiempo y hallamos la distancia de cruce:

10 Sustituimos en (2) por ejemplo: = + = Esta es la distancia del cruce al suelo. b) Para hallar las velocidades de cada una en el instante de cruce aplicamos las fórmulas correspondientes de la cinemática para lanzamiento vertical: = + (1) Para la piedra lanzada desde la azotea: = 10 =25 10 Sustituimos el tiempo que tardan en cruzarse. = = / Velocidad de la piedra lanzada desde la azotea. (2) Para la piedra lanzada desde el suelo: = 10 =30 10 Sustituimos el tiempo que tardan en cruzarse. = = / Velocidad de la piedra lanzada desde el suelo. Para que salgan las soluciones puestas en el enunciado sólo hay que considerar la aceleración de la gravedad como g=-9,8 m/s2. 6. Una rueda de 15 cm de radio se pone en movimiento con una aceleración angular de 0,2 rad/s 2. Halla el tiempo que tarda la rueda en dar 20 vueltas

11 20 2 =40 1 Partimos del reposo por tanto: velocidad inicial igual a cero Utilizamos la fórmula de la posición que nos da la cinemática para el movimiento angular: = + + =40 Como =0 y =0 40 = ,2 Despejamos t: = 80 0,2 =35,4 7. Desde lo alto de una torre de 30 m de altura se deja caer una piedra 0,2 segundos después de haber lanzado hacia arriba otra piedra desde la base a 15 m/s. Calcula el punto de encuentro entre ambas piedras. Tomar g= 10 m/s 2. Planteamiento gráfico:

12 Al dejarse caer la piedra de la torre con 0,2 segundos de demora el tiempo que tardan en encontrarse desde que comienza el movimiento de cada piedra no será el mismo, sin embargo la posición de encuentro si es la misma ya que se encuentran en la misma posición, valga la redundancia. El sistema de referencia lo tomamos en la vertical de la piedra que se deja caer y en el suelo. Por lo tanto el procedimiento a seguir es el mismo que para ejercicios anteriores, utilizaremos las fórmulas de la cinemática: (1) Piedra que se deja caer desde la torre: = Sabemos g, =0, =30 y que es la posición que queremos calcular: = ( 10) = 30 5 Y sabemos que = 0,2 ya que al salir con 0,2 segundos de demora tarda menos tiempo que la otra piedra, que ha sido lanzada 0,2 segundos antes, en llegar al punto de encuentro. Por tanto:

13 = 30 5( 0,2) Resolviendo el paréntesis: = ,2+2 = ,8 (2) Piedra lanzada desde el suelo: = Sabemos g, =15, =0 y que es la posición que queremos calcular: = Nos queda un sistema con dos ecuaciones y dos incógnitas: (1) = ,8 (2) = 15 5 Resolvemos por igualación ya que despejar es muy complicado, por lo tanto hallamos primero el tiempo que tarda la piedra lanzada desde el suelo para después introducir este tiempo en una de las dos ecuaciones y despejar = , =29,8 13 =29,8 = 29,8 13 =2,29 Por tanto: = 15 5 =15 2,29 5 2,29 = =,, =, =,

14 8. Un niño da un puntapié a un balón que está a 20 cm del suelo, con un ángulo de 60º sobre la horizontal. A 3 metros, delante del niño, hay una alambrada de un recinto deportivo que tiene una altura de 3 metros. Qué velocidad mínima debe comunicar al balón para que sobrepase la alambrada? Planteamiento gráfico: En este caso tenemos un tiro parabólico el cual debe cumplir la condición de pasar por la valla, por lo tanto para que pase la alambrada la posición final en Y debe ser como mínimo 3 m cuando la X sea igual a 3 m ya que la alambrada se encuentra a 3 m en el eje x. Antes de plantear las ecuaciones descomponemos la velocidad inicial en los dos ejes: = (60º) = (60º) (1) Eje X: =

15 Sabemos que la posición final en el eje x es 3m que la inicial es cero ya que situamos ahí nuestro sistema de referencia, que no hay aceleración en el eje x y que la velocidad inicial en x la tenemos en función de la velocidad inicial total. 3= 0+ cos (60º) +0 Nos queda una ecuación con dos incógnitas. (1) 3= cos (60º) (2) Eje Y: = Sabemos que la posición final en el eje y debe ser como mínimo 3m por lo que imponemos este valor que la inicial es 0,20m ya que nuestro sistema de referencia está situado en el suelo, que la aceleración en el eje y es la de la gravedad y que la velocidad inicial en y la tenemos en función de la velocidad inicial total. 3= 0,20+ (60º) = 0,20+ (60º) 5 (2) 5 (60º) +2,8=0 Nos queda un sistema de dos ecuaciones y dos incógnitas: (1) 3= cos (60º) (2) 5 (60º) +2,8=0 Despejamos en la ecuación (1) y lo sustituimos en (2) para hallar primeramente t, ya que es más complicado hallar directamente. (1) = 3 cos(60º) 5 3 cos(60º) (60º) +2,8=0

16 5 3 cos(60º) (60º) +2,8=0 5 3 (60º)+2,8=0 5 = 3 (60º) 2,8=2,4 = 2,4 5 =0,693 Sustituimos en (1): (1) 3= cos (60º) 3= cos (60º) 0,693 = =, / ( º) 0, Se lanza un proyectil desde lo alto de un acantilado de 150 metros de altura a 400 m/s con una inclinación de 30º. Calcula: a) El tiempo que tarda en caer al suelo y b) La altura máxima que alcanza. Planteamiento gráfico:

17 a) Para hallar el tiempo que tarda en caer al suelo plantearemos la ecución de posición de la cinemática para el Eje Y, y para ello hay que descomponer la velocidad inicial en velocidad inicial en el eje Y, y en el eje X: =400 / = (30º)= =200 / 2 Planteamos la ecuación: = Sabemos que =150m ya que el sistema de referencia lo colocamos en la vertical del proyectil en el momento inicial y en el suelo por lo tanto también sabemos que =0, conocemos y g. Nos queda una ecuación con una incógnita, y resolvemos: 0= Ecuación de 2º grado: x1 = 40,74s x2 = -0,74s El tiempo no puede ser negativo por lo que cogemos la primera solución x1 = 40,74s Tiempo que tarda en caer = 40,74s b) Para calcular la altura máxima que alcanza suponemos que la velocidad en el Eje Y pasa de ser positiva a ser negativa en un instante posterior, por lo tanto sabemos que =0 en ese instante. Planteamos la ecuación: = = =

18 Aplicamos la fórmula de la velocidad de la cinemática, para el recorrido que tiene el proyectil desde que se inicia el movimiento hasta que llega al punto máximo y su velocidad es cero: = + 0= = =20 Sustituimos este tiempo en la ecuación de la posición en el eje Y, calculada anteriormente: = = Esta es la altura máxima alcanzada. Clases particulares de Física, Química, Dibujo Técnico, y Matemáticas (Álvaro) Precio por horas sueltas: 8 /hora 1 Pers. Dos horas semanales: 60 /mes Grupo i de 2 Pers. Dos horas semanales: 50 /mes cada Persona Grupo de 4 Pers. Dos horas semanales: 40 /mes cada Persona Aprobados seguros y baratos. i Los grupos de personas deben dar la misma asignatura para que la clase sea conjunta de una misma materia.

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j. IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo

Más detalles

3 Estudio de diversos movimientos

3 Estudio de diversos movimientos 3 Estudio de diversos movimientos EJERCICIOS PROPUESTOS 3.1 Un excursionista, de pie ante una montaña, tarda 1,4 s en oír el eco de su voz. Sabiendo que el sonido viaja en el aire a velocidad constante

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas

Más detalles

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO:

www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: Estes exercicios foron sacados de www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: 1- Define brevemente los siguientes conceptos: Posición. Trayectoria. Espacio recorrido. Desplazamiento Velocidad

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme

Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil

Más detalles

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática

Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática Problemas de Cinemática Movimiento rectilíneo uniforme y uniformemente variado 1.- Un móvil recorre una recta con velocidad constante. En los instantes t1= 0,5s. y t2= 4s. sus posiciones son: X1= 9,5cm.

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

Taller: Análisis gráfico de situaciones dinámicas. Por: Ricardo De la Garza González, MC.

Taller: Análisis gráfico de situaciones dinámicas. Por: Ricardo De la Garza González, MC. Taller: Análisis gráfico de situaciones dinámicas Por: Ricardo De la Garza González, MC. Agenda Introducción La ciencia escolar Enfoque epistémico Modelo de Giere Breve semblanza histórica del estudio

Más detalles

Tema 1. Movimiento de una Partícula

Tema 1. Movimiento de una Partícula Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento

Más detalles

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO. COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;

Más detalles

EJEMPLOS DE CUESTIONES DE EVALUACIÓN

EJEMPLOS DE CUESTIONES DE EVALUACIÓN EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes

Más detalles

1. CARACTERÍSTICAS DEL MOVIMIENTO.

1. CARACTERÍSTICAS DEL MOVIMIENTO. Tema 6. Cinemática. 1 Tema 6. CINEMÁTICA. 1. CARACTERÍSTICAS DEL MOVIMIENTO. 1.- Indica por qué un motorista que conduce una moto siente viento en su cara aunque el aire esté en calma. (2.R1) 2.- Se ha

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda.

ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda. FÍSICA GENERAL I Descripción del movimiento 1 Responda las siguientes cuestiones en el caso de un movimiento rectilíneo ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda. a

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS

CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA FÍSICA Y QUÍMICA Solucionario CINEMÁTICA 1.* Indicad qué tipo o tipos de movimiento corresponden a cada afirmación. a) MRU b) MRUA c) MCU d) Caída libre e) No hay movimiento 1.1. Una piedra lanzada desde

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

un coche está parado en un semáforo implica v 0 =0.

un coche está parado en un semáforo implica v 0 =0. TEMA 1 CINEMÁTICA DE LA PARTÍCULA CONSEJOS PREVIOS A LA RESOLUCIÓN DE PROBLEMAS Movimiento con aceleración constante Al abordar un problema debes fijar el origen de coordenadas y la dirección positiva.

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

PRIMERA EVALUACIÓN. Física del Nivel Cero A

PRIMERA EVALUACIÓN. Física del Nivel Cero A PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple

Más detalles

Juan de la Cruz González Férez

Juan de la Cruz González Férez Curso 0: Matemáticas y sus Aplicaciones Vectores, Bases y Distancias Aplicaciones Juan de la Cruz González Férez IES Salvador Sandoval Las Torres de Cotillas (Murcia) 2012 Composición de movimientos Los

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO

CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO Estudiar el movimiento es importante: es el fenómeno más corriente y fácil de observar en la Naturaleza. Todo el Universo está en constante

Más detalles

Recordando la experiencia

Recordando la experiencia Recordando la experiencia Lanzadera Cohete En el Taller de Cohetes de Agua cada alumno, individualmente o por parejas construisteis un cohete utilizando materiales sencillos y de bajo coste (botellas d

Más detalles

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO

CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO CINEMATICA El objetivo de este tema es describir los movimientos utilizando un lenguaje científico preciso. En la primera actividad veremos qué magnitudes se necesitan introducir para lograr este objetivo.

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual

Más detalles

Teoría y Problemas resueltos paso a paso

Teoría y Problemas resueltos paso a paso Departamento de Física y Química 1º Bachillerato Teoría y Problemas resueltos paso a paso Daniel García Velázquez MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL Magnitud es todo aquello que puede ser

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

LAS FUERZAS Y EL MOVIMIENTO

LAS FUERZAS Y EL MOVIMIENTO Página 1 LAS UEZAS Y EL MOVIMIENTO DINÁMICA: Es la parte de la ísica que estudia las fuerzas como productoras de movimientos. UEZA: Es toda causa capaz de modificar el estado de reposo o movimiento de

Más detalles

LANZAMIENTOS VERTICALES soluciones

LANZAMIENTOS VERTICALES soluciones LANZAMIENTOS VERTICALES soluciones 1.- Desde un puente se lanza una piedra con una velocidad inicial de 10 m/s y tarda 2 s en llegar al agua. Calcular la velocidad que lleva la piedra en el momento de

Más detalles

PROBLEMAS DE CINEMÁTICA DE MECANISMOS

PROBLEMAS DE CINEMÁTICA DE MECANISMOS TEORÍA DE MÁQUINAS PROBLEMAS DE CINEMÁTICA DE MECANISMOS Antonio Javier Nieto Quijorna Área de Ingeniería Mecánica E.T.S. Ingenieros Industriales Capítulo 1 GRADOS DE LIBERTAD. 1.1. PROBLEMA. En la figura

Más detalles

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero.

1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. A) Trabajo mecánico 1. Indica cuáles son las condiciones que han de cumplirse para que el trabajo sea distinto de cero. 2. Rellena en tu cuaderno las celdas sombreadas de esta tabla realizando los cálculos

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad 14 1.- Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación

Más detalles

MCBtec Mas información en

MCBtec Mas información en MCBtec Mas información en www.mcbtec.com INTRODUCCIÓN A LA SIMULACION POR ORDENADOR Indice: Objetivo de este texto. Simulación por ordenador. Dinámica y simulación. Ejemplo disparo de un proyectil. Ejemplo

Más detalles

INTERCAMBIO MECÁNICO (TRABAJO)

INTERCAMBIO MECÁNICO (TRABAJO) Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO

PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO PROBLEMAS Física 2º Bachillerato CAMPO GRAVITATORIO 1) Si la velocidad de una partícula es constante Puede variar su momento angular con el tiempo? S: Si, si varía el valor del vector de posición. 2) Una

Más detalles

Para revisarlos ponga cuidado en los paréntesis. No se confunda.

Para revisarlos ponga cuidado en los paréntesis. No se confunda. Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene

Más detalles

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría

Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE. Objetivos. Teoría Experimento 4 MOVIMIENTO CON ACELERACIÓN CONSTANTE Objetivos 1. Medir la distancia recorrida y la velocidad de un objeto que se mueve con: a. velocidad constante y b. aceleración constante,. Establecer

Más detalles

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS Un arquero dispara una flecha que produce un fuerte ruido al chocar contra el blanco. La velocidad media de la flecha es de 150 m/s. El arquero escucha

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia.

asociados a cada cuerpo de referencia, que sirven para describir el movimiento mecánico de los cuerpos respecto a esos tomados como referencia. CAP. 4: CINEMÁTICA DE LA PARTÍCULA. Modelo de partícula: se aplica a cuerpos muy pequeños comparados con el diámetro de la menor esfera donde cabe la trayectoria completa del cuerpo. Equivale a considerar

Más detalles

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones Departamento de Física Año 011 Trabajo Práctico º Movimiento en dos o tres dimensiones Problema 1. Se está usando un carrito robot para explorar la superficie de Marte. El módulo de descenso es el origen

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

Cinemática en una dimensión

Cinemática en una dimensión Capítulo 2. Cinemática en una dimensión La meánica, la más antiüa de las ciencias físicas es el estudio del movimiento de los cuerpos. 1. Distinción entre cinemática y dinámica Cuando describimos el mvimiento

Más detalles

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O.

EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º E.S.O. EJERCICIOS DE TRABAJO, POTENCIA Y ENERGÍA. CONSERVACIÓN DE LA ENERGÍA MECÁNICA. 4º La finalidad de este trabajo implica tres pasos: a) Leer el enunciado e intentar resolver el problema sin mirar la solución.

Más detalles

TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA

TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA Departamento de Física y ATC DIVISIÓN DE FÍSICA APLICADA TEMA 2. CINEMÁTICA. DINÁMICA. TRABAJO Y ENERGÍA 1. CINEMÁTICA 1.1 Conceptos Generales 1.2 Tipos de movimiento 2. DINÁMICA 2.1 Leyes de Newton 2.2

Más detalles

Respuestas a las preguntas conceptuales.

Respuestas a las preguntas conceptuales. Respuestas a las preguntas conceptuales. 1. Respuesta: En general es más extensa la distancia recorrida. La distancia recorrida es una medición que pasa por todos los puntos de una trayectoria, sin embargo

Más detalles

LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces:

LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces: LA RAPIDEZ es una cantidad escalar. Si un objeto requiere de un tiempo t para recorre una distancia d, entonces: Rapidez promedio = distancia total recorrida = d Tiempo transcurrido t La dirección del

Más detalles

Cinemática (II): algunos tipos de

Cinemática (II): algunos tipos de 9 Cinemática (II): alunos tipos de.. 3. 4. La velocidad de un barco es de 4 nudos. Sabiendo que un nudo corresponde a una velocidad de milla náutica/h y que una milla náutica equivale a,85 km, calcula

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 011 UNIVERSIDAD DE CASTILLA-LA MANCHA Apellidos Nombre DNI Centro Población Provincia Fecha Teléfonos (fijo y móvil) e-mail (en mayúsculas) PUNTUACIÓN Tómese

Más detalles

Guía de Repaso 6: Cantidades Vectoriales y Escalares

Guía de Repaso 6: Cantidades Vectoriales y Escalares Guía de Repaso 6: Cantidades Vectoriales y Escalares 1- En cada una de las frases siguientes, diga si la palabra en cursivas corresponde a una cantidad escalar o vectorial. a) El volumen de un depósito

Más detalles

A) Posición, velocidad, desplazamiento, espacio recorrido: MRU

A) Posición, velocidad, desplazamiento, espacio recorrido: MRU A) Posición, velocidad, desplazamiento, espacio recorrido: MRU 1.- Un móvil se mueve sobre un plano horizontal de la siguiente forma: primero 5 m hacia el norte, a continuación 3 m al oeste, seguido de

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

Física Movimiento en 2 dimensiones

Física Movimiento en 2 dimensiones Física Movimiento en 2 dimensiones Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Ejemplo 1 Una piedra se deja caer de un acantilado de 100 metros de altura. Si la velocidad inicial de la piedra

Más detalles

PROBLEMAS CINEMÁTICA

PROBLEMAS CINEMÁTICA 1 PROBLEMAS CINEMÁTICA 1- La ecuación de movimiento de un cuerpo es, en unidades S.I., s=t 2-2t-3. Determina su posición en los instantes t=0, t=3 y t=5 s y calcula en qué instante pasa por origen de coordenadas.

Más detalles

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO 1 Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO IES FRANCÉS DE ARANDA. TERUEL. DEPARTAMENTO DE FÍSICA Y QUÍMICA 2 FÍSICA Y QUÍMICA. 1º BACHILLERATO. CONTENIDOS. I.- CINEMÁTICA. 1. Movimiento: sistema de

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

Principio de Conservación de la nergía nergía La energía es una propiedad que está relacionada con los cambios o procesos de transformación en la naturaleza. Sin energía ningún proceso físico, químico

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO

EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO NOTA DEL PROFESOR: La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15

EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 Personas Adultas PARTE ESPECÍFICA: DIBUJO TÉCNICO OPCIÓN B DATOS DEL ASPIRANTE CALIFICACIÓN Apellidos:. Nombre:.... EJERCICIO PARTE ESPECÍFICA OPCIÓN B DIBUJO TÉCNICO Duración: 1h 15 EJERCICIO 1. CIRCUNFERENCIAS

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática 1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS Solucionario 6 CÓNICAS 6.I. Calcula las ecuaciones de los siguientes lugares geométricos e identifícalos. a) Puntos que equidistan de A(3, 3) y de B(, 5). b) Puntos que equidistan de r: y 0 y s: y 0. c)

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Capitulo 2: Movimientos en 2 y 3 dimensiones

Capitulo 2: Movimientos en 2 y 3 dimensiones Capitulo 2: Movimientos en 2 3 dimensiones Índice 1. Posicionamiento en mas de una dimensión 2 1.1. Propiedades de Vectores................................. 5 1.2. Componentes de un Vector................................

Más detalles