3.1. FUNCIÓN SINUSOIDAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.1. FUNCIÓN SINUSOIDAL"

Transcripción

1 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff. Asociación de resistencias. Análisis de redes. Métodos de análisis de circuitos. Teoremas de redes. CIRCUITOS CON CORRIENTE VARIABLE 97 Componentes. Circuito R - L serie. Circuito R - C serie. Circuito R - L -Cserie. CIRCUITOS DE CORRIENTE ALTERNA 125 Función sinusoidal. Análisis de componentes pasivos. Análisis del circuito R - L serie. Análisis del circuito R - C serie. Análisis del circuito R - C serie. Análisis del circuito R - L - C serie. Asociación de impedancias. Potencia. Análisis con frecuencia variable. ANÁLISIS DE REDES 179 Métodos de análisis. Teoremas de redes. Cuadripolos. A RELACIONES MATEMÁTICAS 243 B TABLAS 249 Bibliografía 253 GLOSARIO 255

2 128 CAPÍTULO 3. CIRCUITOS DE CORRIENTE ALTERNA Vamos a estudiar el comportamiento de circuitos eléctricos en el caso de que se aplique una tensión de forma sinusoidal. Se supone, que tanto el generador o fuente como los componentes del circuito, son lineales. Estudiar el comportamiento de un circuito sometido a una tensión o voltaje sinusoidal es la forma más sencilla de analizar los fenómenos estacionarios en un circuito eléctrico. Existen generadores de tensión periódica no sinusoidal. Cuando este tipo de voltaje se aplica a un circuito su respuesta es muy compleja, pero pueden analizarse los resultados partiendo de que todo voltaje periódico puede representarse mediante una serie de Fourier en la que cada término es de forma sinusoidal. Por esta razón interesa estudiar el comportamiento de circuitos cuando se les aplican tensiones sinusoidales, ya que los resultados son aplicables tanto al caso sinusoidal como al periódico no sinusoidal FUNCIÓN SINUSOIDAL La expresión general de una onda sinusoidal viene dada por cualquiera de las siguientes funciones: ( ) = sin( ) (3.1) ( ) = cos( ) (3.2) es la amplitud, es la pulsación o frecuencia angular y es el ángulo de fase. En la figura 3.1 se representa esta señal, indicando sus parámetros principales. El periodo de la señal viene dado por, = 2 = 1 Donde es la frecuencia de la señal, que es la inversa del periodo. se mide en rad/s ; en s y en hertzios (Hz ó c/s). El valor medio de la función es = = 1 Z 0 sin( ) =0 (3.3)

3 3.1. FUNCIÓN SINUSOIDAL 129 yelvalor eficaz: = µ 1 Z [ sin( )] 2 = (3.4) 2 Figura3.1 Al hablar de corriente alterna (c. a.), se entiende que nos referimos a corriente alterna de tipo sinusoidal. Fundamentalmente esto es así porque la onda seno o coseno es la que se obtiene en los generadores de c.a. (alternadores) de las centrales eléctricas y constituye además la base de la producción, transporte y distribución de la energía eléctrica. Además, desde el punto de vista de la teoría de circuitos la onda sinusoidal presenta las siguientes ventajas: Se puede diferenciar e integrar repetidamente y seguir siendo una sinusoidal de la misma frecuencia La suma de ondas sinusoidales de igual frecuencia, pero de amplitud y fase arbitrarias es una sinusoide de la misma frecuencia, lo cual es interesante para aplicar las leyes de Kirchhoff. Admite una representación de tipo exponencial y esto a su vez, como veremos más adelante, permite operar con vectores giratorios denominados fasores, que admiten una representación en el plano complejo. Por ello los circuitos de c.a. utilizan como base operativa los números complejos. Además, se ha de destacar que según el desarrollo en serie de Fourier, cualquier función periódica puede representarse como una suma de ondas sinusoidales de diferentes frecuencias. Este análisis puede extenderse incluso a señales no periódicas y discretas empleando la integral de Fourier.

4 130 CAPÍTULO 3. CIRCUITOS DE CORRIENTE ALTERNA Representación compleja de una magnitud sinusoidal Las funciones sinusoidales 1 ( ) = sin( ) 2 ( ) = cos( ) Se pueden considerar como el resultado de proyectar un vector giratorio sobre los ejes de coordenadas del plano complejo. Para mostrar esto en la figura3.2sehadibujadounvector de módulo que forma con el eje real un ángulo. Sus componentes serán por tanto: = cos sin (3.5) El vector complejo se puede representar, teniendo en cuenta la relación de Euler, de forma exponencial, = (3.6) Figura 3.2 Ahora bien, si este vector gira en sentido contrario a las agujas del reloj a una velocidad angular (rad/s), en un instante, medidoapartirdela posición inicial, habrá recorrido un ángulo que, unido al inicial supondrá un recorrido angular total dado por = Sus componentes, en dicho instante, son = cos ( )+ sin ( ) (3.7) O bien, en forma exponencial = ( ) (3.8)

5 3.1. FUNCIÓN SINUSOIDAL 131 La posición correspondiente se ilustra en la figura 3.3. Como podemos observar en esta figura, la proyección en el eje real del vector giratorio viene dada por h Re ( )i = cos ( ) (3.9) La proyección sobre el eje imaginario del vector giratorio es h Im ( )i = sin ( ) (3.10) En la figura 3.3 se muestran ambas proyecciones, real e imaginaria, que corresponden a las funciones coseno y seno respectivamente. El vector giratorio se puede representar también = La parte entre paréntesis representa la posición del vector en = 0, mientras que el término cuyo módulo es la unidad, indica el movimiento del vector. Dicha parte se denomina fasor y se trata, como hemos visto, de un vector cuyo origen es siempre el origen de coordenadas. Por este motivo se representa también con una letra mayúscula y en negrita: A = (3.11) Podemos ver que conocido el módulo de un fasor y su fase, la evolución sinusoidal queda determinada por el factor Puesto que un fasor es un número complejo, admite también la representaciónenformapolar: A = (3.12) La representación fasorial permite ver con sencillez el desfase entre diferentes señales sinusoidales e interpretar geométricamente las operaciones efectuadas sobre las magnitudes que representan. Las relaciones entre los valores eficaces y el máximo de la tensión y corriente sinusoidal, teniendo en cuenta la ecuación (3.4) son, = 2 y = 2 En la práctica de la ingeniería eléctrica, dado que los voltímetros y amperímetros miden valores eficaces, se representan los fasores con los valores

6 132 CAPÍTULO 3. CIRCUITOS DE CORRIENTE ALTERNA eficaces. Figura 3.3 Por ejemplo, los valores instantáneos de una tensión y una corriente, donde e son los valores eficaces de tensión y corriente respectivamente, se representan por, ( ) = cos ( ) ( ) = cos ( ) Teniendo "in mente"que la amplitud de la señal es, respectivamente e Los fasores asociados serán. V = ; I = Cuya representación se muestra en la figura 3.4a. Obsérvese que ambos fasores, al girar a la misma velocidad angular siempre tendrán la misma posición relativa. El desfase de los fasores de esta figura es = lo que indica que la tensión se adelanta a la corriente (o la corriente se retrasa a la tensión). En muchos casos es conveniente tomar una de las señales como

7 3.2. ANÁLISIS DE COMPONENTES PASIVOS 133 referencia de fases, lo que simplifica el cálculo con los números complejos. Por ejemplo, en la figura 3.4b se ha tomado la tensión como referencia. El desfase entre ambos vectores giratorios sigue siendo el mismo. Figura 3.4 En lo que sigue utilizaremos los valores eficaces para la representación de los fasores ANÁLISIS DE COMPONENTES PASIVOS Dominios del tiempo y de la frecuencia Vamos a analizar la respuesta en el dominio del tiempo y en el dominio de la frecuencia de los tres elementos pasivos simples: resistencia, inductancia y capacidad. Supongamos que conocemos la corriente que circula por estos elementos y que es de la forma ( ) = cos ( ) Se trata de calcular la tensión en bornes en cada uno de ellos, que será también de tipo sinusoidal ( ) = cos ( ) La solución será encontrar los valores y en función de los valores conocidos para la corriente y del parámetro pasivo de que se trate. Las expresiones fasoriales de la tensión y la corriente son: V = = ; I = = Hemos tomado los valores eficaces, e, te tensión y corriente. A partir de estas expresiones y conociendo las relaciones entre la tensión y la corriente

8 134 CAPÍTULO 3. CIRCUITOS DE CORRIENTE ALTERNA para cada elemento pasivo, podremos determinar su respuesta sinusoidal Resistencia De acuerdo con la ley de Ohm, se cumple ( ) = ( ) Sustituyendo los valores temporales por su representación exponencial, ( ) = ( ) Como en los dos miembros tenemos el factor común, la relación en el dominio del tiempo se transforma en el dominio de la frecuencia en la siguiente relación fasorial, = V = I (3.13) Figura 3.5 Aplicando la igualdad de números complejos se deduce que, = y = Por consiguiente, la tensión en bornes de la resistencia en el dominio del tiempo es, ( ) = cos ( ) (3.14)

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable. PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de

Más detalles

TEMA 4 ONDAS DE SEÑAL: ONDA ALTERNA SENOIDAL

TEMA 4 ONDAS DE SEÑAL: ONDA ALTERNA SENOIDAL EMA 4 ONDAS DE SEÑAL: ONDA ALERNA SENOIDAL 4..- Clasificación de ondas. 4..- Valores asociados a las ondas periódicas 4.3.- Onda alterna senoidal. 4.3..- Generación de una tensión alterna senoidal. 4.3..-

Más detalles

CORRIENTE ALTERNA. Fig.1 : Corriente continua

CORRIENTE ALTERNA. Fig.1 : Corriente continua CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones

Más detalles

Índice. prólogo a la tercera edición...13

Índice. prólogo a la tercera edición...13 Índice prólogo a la tercera edición...13 Capítulo 1. CONCEPTOS BÁSICOS Y LEYES FUNDAMENTALES DE LOS CIRCUITOS...17 1.1 CORRIENTE ELÉCTRICA...18 1.1.1 Densidad de corriente...23 1.2 LEY DE OHM...23 1.3

Más detalles

COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO

COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO COMPONENTES PASIVOS DE UN CIRCUITO ELECTRICO 1.- INTRODUCCION Los tres componentes pasivos que, en general, forman parte de los circuitos eléctricos son los resistores, los inductores y los capacitores.

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7:

PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7: PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7: MANEJO DEL OSCILOSCOPIO - MEDIDA DE ANGULOS DE FASE Y MEDIDA DE PARAMETROS DE UNA BOBINA 1. OBJETIVOS Adquirir conocimientos

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Tema 3. Circuitos de Corriente Alterna Sinusoidal. Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla.

Tema 3. Circuitos de Corriente Alterna Sinusoidal. Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla. Tema 3 Circuitos de Corriente Alterna Sinusoidal Tecnología Eléctrica Dpto. Ingeniería Eléctrica Escuela Politécnica Superior Universidad de Sevilla Curso 2010/2011 Tecnología Eléctrica (EPS) Tema 3 Curso

Más detalles

Guía de Aprendizaje ELECTROTECNIA DE CORRIENTE ALTERNA COMPETENCIA GENERAL

Guía de Aprendizaje ELECTROTECNIA DE CORRIENTE ALTERNA COMPETENCIA GENERAL PLAN 2008 Guía de Aprendizaje ELECTROTECNIA DE CORRIENTE ALTERNA COMPETENCIA GENERAL COMPETENCIA GENERAL Soluciona problemas de circuitos de corriente alterna monofásicos y trifásicos, de acuerdo a los

Más detalles

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor. CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS Circuitos Eléctricos Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 3 Créditos: 9 Clave: F0120 Asignaturas antecedentes y subsecuentes PRESENTACIÓN

Más detalles

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados.

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. CORRIENTE ALTERNA Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. Generalidades sobre la c. alterna. Respuesta de los elementos pasivos básicos

Más detalles

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Introducción teórica En el cuadro de la última página resumimos las caídas de tensión, potencia instantánea

Más detalles

CIRCUITOS DE CA EN SERIE Y EN PARALELO. Mg. Amancio R. Rojas Flores

CIRCUITOS DE CA EN SERIE Y EN PARALELO. Mg. Amancio R. Rojas Flores CIRCUITOS DE CA EN SERIE Y EN PARALELO Mg. Amancio R. Rojas Flores LA LEY DE OHM PARA CIRCUITOS DE CA Resistores El voltaje senoidal Puede ser escrito en forma de faso como siendo Dado que la resistencia

Más detalles

Circuitos de Corriente Alterna

Circuitos de Corriente Alterna Tema 5 Circuitos de Corriente Alterna 5.1. Introducción Dado que en el Tema 4 se han establecido algunas de las leyes físicas que rigen el comportamiento de los campos eléctrico y magnético cuando éstos

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 01-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 06 NOMBRE DE LA PRACTICA: Análisis de Circuitos en Corriente Alterna

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S.

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S. CORRIENTE ALTERNA 1. En el circuito de la figura R1 = 20 Ω, R2 = 30Ω, R3 =40Ω, L= 2H. Calcular: (INF-ExSust- 2003-1) a) La potencia entrega por la batería justo cuando se cierra S. S b) La potencia disipada

Más detalles

TEMA11. CORRIENTE ALTERNA

TEMA11. CORRIENTE ALTERNA TEMA. OENTE ATENA..-FUEAS EETOMOTES SNUSODAES. Se ha visto el comportamiento de algunos circuitos de corriente continua, en los que las corrientes, tensiones y fem son constantes, no varían en el tiempo,

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

LÍNEA DE TRANSMISIÓN

LÍNEA DE TRANSMISIÓN 11 LÍNEA DE TRANSMISIÓN 1. DESCRIPCION DEL ESQUEMA DEL GENERADOR DE PULSOS PM 5715 1.1 DESCRIPCIÓN DEL ESQUEMA DE BLOQUES 1.1.1 Multivibrador astable 1.1.2 Circuito de disparo 1.1.3 Puerta, amplificador

Más detalles

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS.

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. 9.. Potencias en sistemas equilibrados y simétricos en tensiones Un sistema trifásico puede considerarse como circuitos monofásicos, por lo que la potencia total

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

EJERCICIOS DE AUTOEVALUACIÓN "CIRCUITOS ALIMENTADOS EN CORRIENTE ALTERNA"

EJERCICIOS DE AUTOEVALUACIÓN CIRCUITOS ALIMENTADOS EN CORRIENTE ALTERNA EJERCICIOS DE AUTOEVALUACIÓN "CIRCUITOS ALIMENTADOS EN CORRIENTE ALTERNA" EJERCICIO 1 Simular con PSIM el siguiente circuito y obtener: a) Valores eficaces de la tensión en el generador, en la resistencia

Más detalles

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002.

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002. TEMA 11. FENÓMENOS TRANSITORIOS. 11 Fenómenos transitorios. Introducción. 11.1. Evolución temporal del estado de un circuito. 11.2. Circuitos de primer y segundo orden. 11.3. Circuitos RL y RC en régimen

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

TEMA 5 CIRCUITOS DE CORRIENTE ALTERNA

TEMA 5 CIRCUITOS DE CORRIENTE ALTERNA TEMA 5 CIRCUITOS DE CORRIENTE ALTERNA V.A Trigonometría V.B Coordenadas vectoriales V.C Operaciones vectoriales V. Generación de la CA V. Características de la CA V.3 Receptores ideales de CA V.4 Asociación

Más detalles

ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA TEMA VII ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA.-Introducción..-Respuesta en frecuencia...-diagrama cero-polar. 3.-Representación gráfica de la respuesta en frecuencia. 3..-Diagramas de Bode. 3..-Diagrama

Más detalles

Cuando un condensador se comporta como una bobina

Cuando un condensador se comporta como una bobina Cuando un condensador se comporta como una bobina Milagros Montijano Moreno Objetivo Se pretende señalar en este trabajo la diferencia entre el componente electrónico ideal y el real y aportar un procedimiento

Más detalles

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores TRANSFORMADORES (parte ) Mg. Amancio R. Rojas Flores CRCUTO EQUALENTE DE UN TRANSFORMADOR La ventaja de desarrollar circuitos equivalentes de máquinas eléctricas es poder aplicar todo el potencial de la

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Máquinas e Instalaciones Eléctricas / Electrónicas

Máquinas e Instalaciones Eléctricas / Electrónicas MODULO 1 1- NOCIONES TRIGONOMETRICAS: 1.1 Pitágoras y relaciones trigonométricas. seno a = cateto opuesto hipotenusa hip cateto opuesto coseno a = cateto adyacente hipotenusa tangente a = cateto opuesto

Más detalles

CORRIENTE ALTERNA MONO Y TRIFÁSICA

CORRIENTE ALTERNA MONO Y TRIFÁSICA UNERSDAD DE ANTABRA DEARTAMENTO DE NGENERÍA EÉTRA Y ENERGÉTA OEÓN: EETROTENA ARA NGENEROS NO ESEASTAS ORRENTE ATERNA MONO Y TRFÁSA Miguel Angel Rodríguez ozueta Doctor ngeniero ndustrial OBSERAONES SOBRE

Más detalles

Nombre de la asignatura: Análisis de Circuitos Eléctricos. Créditos: 2-4-6. Aportación al perfil

Nombre de la asignatura: Análisis de Circuitos Eléctricos. Créditos: 2-4-6. Aportación al perfil Nombre de la asignatura: Análisis de Circuitos Eléctricos Créditos: 2-4-6 Aportación al perfil Conocer y manejar software de aplicación para el diseño y simulación de circuitos eléctricos. Analizar, calcular,

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Objetivos: El papel de la inductancia: Recuerde el comportamiento de una inductancia ε = L di

Objetivos: El papel de la inductancia: Recuerde el comportamiento de una inductancia ε = L di Guía 1 : El tubo fluorescente Objetivos: Estudio del uso de inductancias y condensadores en un dispositivo práctico: el tubo fluorescente. Estudio de la compensación del factor de potencia de un circuito

Más detalles

MEDICIONES ELECTRICAS II

MEDICIONES ELECTRICAS II Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS II Trabajo Práctico N 3 Tema: MEDICION DE FASE CONTRASTE DE COFIMETRO. Conceptos Fundamentales El período de una señal senoidal se corresponde con

Más detalles

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador P. Abad Liso J. Aguarón de Blas 13 de junio de 2013 Resumen En este informe se hará una pequeña sinopsis de la práctica

Más detalles

CAPITULO 5. Corriente alterna

CAPITULO 5. Corriente alterna CAPITULO 5 Corriente alterna Se denomina Corriente Alterna (CA) a la corriente eléctrica en la cual la magnitud y el sentido varían periódicamente, siendo la forma sinusoidal la más utilizada. El uso doméstico

Más detalles

Electrotecnia General Tema 17 TEMA 17 APARATOS DE MEDIDA

Electrotecnia General Tema 17 TEMA 17 APARATOS DE MEDIDA TEMA 17 APARATOS DE MEDIDA 17.1. DEFINICIÓN. Un aparato de medida es un sistema que permite establecer la correspondencia entre una magnitud física que se pretende medir, con otra susceptible de ser percibida

Más detalles

CUESTIONES (MASTER ESYR) Principios de electrónica

CUESTIONES (MASTER ESYR) Principios de electrónica CUESTIONES (MASTER ESYR) Principios de electrónica 1. Fórmula que relaciona la corriente y la tensión en una resistencia (ley de Ohm) 2. Fórmula que relaciona la corriente y la tensión en un condensador

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

Corriente alterna monofásica

Corriente alterna monofásica Corriente alterna monofásica Qué es la corriente alterna? + - - + La corriente alterna se caracteriza por alternar la polaridad en la fuente de alimentación en forma períodica, provocando que la corriente

Más detalles

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier

Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Fundamentos para la Representación y Análisis de Señales Mediante Series de Fourier Andrés Felipe López Lopera* Resumen. Existe una gran similitud entre vectores y las señales. Propiedades tales como la

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

Circuitos de corriente continua

Circuitos de corriente continua nidad didáctica 3 Circuitos de corriente continua Qué aprenderemos? Cuáles son las leyes experimentales más importantes para analizar un circuito en corriente continua. Cómo resolver circuitos en corriente

Más detalles

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION

TRANSFORMADA DE FOURIER. Transformada de Fourier (Parte 1) Página 1 INTRODUCCION Transformada de Fourier (Parte 1) Página 1 INTRODUCCION En una primera aproximación, podemos decir que todos los dominios transformados, que se utilizan dentro del tratamiento digital de imagen, tienen

Más detalles

UNIDAD. Transformadores

UNIDAD. Transformadores NIDAD 8 Transformadores Transformador de una subestación. (A.L.B.) E l transformador nos resulta muy familiar en el ámbito doméstico. Su uso más común y conocido es para adaptar la tensión de la red a

Más detalles

Propiedades de la corriente alterna

Propiedades de la corriente alterna Propiedades de la corriente alterna Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Alternating Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente.

Más detalles

Al finalizar este programa el estudiante estará en condiciones de:

Al finalizar este programa el estudiante estará en condiciones de: ASIGNATURA :CIRCUITOS ELECTRICOS I CODICO :TEC-115 CREDITOS :04 INTRODUCCIÓN: Este programa tiene como propósito proveer al estudiante de una base sólida, en el análisis y métodos de solución de circuitos

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

TEMA II TRANSFORMADAS DE LAPLACE. FUNCIONES DE TRANSFERENCIA. 2.1.-Introducción. 2.2.-Transformada de Laplace. 2.3.-Transformada Inversa de Laplace.

TEMA II TRANSFORMADAS DE LAPLACE. FUNCIONES DE TRANSFERENCIA. 2.1.-Introducción. 2.2.-Transformada de Laplace. 2.3.-Transformada Inversa de Laplace. TEMA II TRANSFORMADAS DE LAPLACE. FUNCIONES DE TRANSFERENCIA 2.1.-Introducción. 2.2.-Transformada de Laplace. 2.3.-Transformada Inversa de Laplace. 2.4.-Análisis de Circuitos en el dominio de Laplace.

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Introducción. Se estudiarán diferentes combinaciones de resistores o resistencias, así como las reglas para determinar la resistencia equivalente

Introducción. Se estudiarán diferentes combinaciones de resistores o resistencias, así como las reglas para determinar la resistencia equivalente FEM y Circuitos DC Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción Las baterías proporcionan un

Más detalles

SAF-1302 3-2-5 SATCA 1 : Carrera:

SAF-1302 3-2-5 SATCA 1 : Carrera: 1. Datos Generales de la asignatura Nombre de la asignatura: Clave de la asignatura: SATCA 1 : Carrera: Análisis de Circuitos Eléctricos SAF-1302 3-2-5 Ingeniería en Sistemas Automotrices 2. Presentación

Más detalles

MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA

MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA OBJETIVOS: I Utilizar el vatímetro análogo y el digital para medir la potencia activa absorbida por una puerta. II Repasar los fundamentos teóricos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

UNIVERSIDAD DE COSTA RICA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO DE MÁQUINAS ELÉCTRICAS I

UNIVERSIDAD DE COSTA RICA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO DE MÁQUINAS ELÉCTRICAS I UNIVERSIDAD DE COSTA RICA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO DE MÁQUINAS ELÉCTRICAS I Reporte 1 INTEGRANTES FÉLIX SUÁREZ BONILLA A45276 FECHA DE ENTREGA JUEVES, 15 DE FEBRERO

Más detalles

Modelos de líneas de transmisión en estado estacionario... 2

Modelos de líneas de transmisión en estado estacionario... 2 Modelos de líneas de transmisión en estado estacionario Prof Ing Raúl ianchi Lastra Cátedra: CONTENIDO Modelos de líneas de transmisión en estado estacionario Introducción Constantes del cuadripolo Modelos

Más detalles

Figura 1 Fotografía de varios modelos de multímetros

Figura 1 Fotografía de varios modelos de multímetros El Multímetro El multímetro ó polímetro es un instrumento que permite medir diferentes magnitudes eléctricas. Así, en general, todos los modelos permiten medir: - Tensiones alternas y continuas - Corrientes

Más detalles

1 Introducción. 1.1 Magnitudes eléctricas.

1 Introducción. 1.1 Magnitudes eléctricas. 1 Introducción....2 1.1 Magnitudes eléctricas....2 1.1.1 Corriente continua....2 1.1.2 Corriente alterna....3 1.1.3 Desfase....4 1.1.4 Valor medio....6 1.1.5 Valor de Pico y de pico-pico....6 1.1.6 Valor

Más detalles

4. Circuito eléctrico Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca

4. Circuito eléctrico Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca 4. Circuito eléctrico Félix Redondo Quintela y Roberto Carlos Redondo Melchor Universidad de Salamanca Fuerza electromotriz Supóngase que se quiere conseguir una corriente estacionaria en la dirección

Más detalles

LONGITUD MASA TIEMPO AREA VOLUMEN, ETC AREA VOLUMEN VELOCIDAD ACELERACION, ETC LONGITUD MASA TIEMPO, ETC DESPLAZAMIENTO VELOCIDAD ACELERACION, ETC

LONGITUD MASA TIEMPO AREA VOLUMEN, ETC AREA VOLUMEN VELOCIDAD ACELERACION, ETC LONGITUD MASA TIEMPO, ETC DESPLAZAMIENTO VELOCIDAD ACELERACION, ETC MAGNITUDES FISICAS SEGÚN SU ORIGEN SEGÚN SU NATURALEZA FUNDAMENTALES DERIVADAS ESCALARES VECTORIALES LONGITUD MASA TIEMPO, ETC AREA VOLUMEN VELOCIDAD ACELERACION, ETC LONGITUD MASA TIEMPO AREA VOLUMEN,

Más detalles

Transformada de Laplace: Análisis de circuitos en el dominio S

Transformada de Laplace: Análisis de circuitos en el dominio S Transformada de Laplace: Análisis de circuitos en el dominio S Trippel Nagel Juan Manuel Estudiante de Ingeniería en Sistemas de Computación Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía

Más detalles

FACTOR DE POTENCIA. Cos φ

FACTOR DE POTENCIA. Cos φ FACTOR DE POTENCIA Cos φ El Factor de Potencia, es el indicador del correcto aprovechamiento de la energía Eléctrica y puede tomar valores, entre 0 y 1, lo que significa que: Factor de Potencia, es un

Más detalles

Práctica 3: Circuitos RLC

Práctica 3: Circuitos RLC Práctica 3: Circuitos RLC Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha 3.1 Material necesario Material básico del laboratorio de Electrónica y Circuitos. MTX-3240 o similar. Osciloscopio diital

Más detalles

Mejora del factor de potencia

Mejora del factor de potencia Práctica de corriente alterna. Mejora del factor de potencia Luis Íñiguez de Onzoño Sanz Fundamentos Físicos para Ingenieros III 28 de noviembre de 2007 Índice 1. Conceptos relacionados I 2. Principios

Más detalles

Análisis de circuitos de CA con impedancias complejas *

Análisis de circuitos de CA con impedancias complejas * Análisis de circuitos de CA con impedancias complejas * Federico Davoine ** Facultad de Ingeniería Universidad de la República Resumen Introduciremos brevemente el uso de las impedancias complejas para

Más detalles

TEMA 7. POTENCIA EN CIRCUITOS MONOFÁSICOS. 7.1.- Potencia instantánea, media y fluctuante de un dipolo

TEMA 7. POTENCIA EN CIRCUITOS MONOFÁSICOS. 7.1.- Potencia instantánea, media y fluctuante de un dipolo EMA 7. POENCA EN CRCUOS MONOFÁSCOS pasivo. 7..- Potencia instantánea, media y fluctuante de un dipolo 7...- Elemento Resistencia. 7..2.- Elemento nductancia. 7..3.- Elemento Condensador. 7.2.- Potencia

Más detalles

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2 2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,

Más detalles

Carrera: EMM - 0504. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM - 0504. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Análisis de Circuitos Eléctricos II Ingeniería Electromecánica EMM - 0504 3 2 8

Más detalles

Máquinas eléctricas: Máquinas rotativas de corriente alterna

Máquinas eléctricas: Máquinas rotativas de corriente alterna Máquinas eléctricas: Máquinas rotativas de corriente alterna Ya has visto en temas anteriores el estudio de los motores de corriente continua y la clasificación de las máquinas, pues bien, ahora vas a

Más detalles

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE FÍSICA Y ELECTRÓNICA PROGRAMA DE GRADO ASOCIADO EN TECNOLOGÍA ELECTRÓNICA

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE FÍSICA Y ELECTRÓNICA PROGRAMA DE GRADO ASOCIADO EN TECNOLOGÍA ELECTRÓNICA UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE FÍSICA Y ELECTRÓNICA PROGRAMA DE GRADO ASOCIADO EN TECNOLOGÍA ELECTRÓNICA A Título: B Codificación del curso: TEEL 1021 C Numero de horas crédito:

Más detalles

Carrera: EMM-0504 3-2-8. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos y de la D.G.I.T.

Carrera: EMM-0504 3-2-8. Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos y de la D.G.I.T. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Análisis de circuitos eléctricos II Ingeniería Electromecánica EMM-0504 3-2-8 2.-

Más detalles

Circuitos de Corriente Alterna

Circuitos de Corriente Alterna Capítulo 6 Circuitos de Corriente Alterna Fuentes de CA Voltaje máximo o amplitud frecuencia angular Símbolo Resistores en un circuito de CA Corriente y voltaje alcanzan valores máximos en el mismo instante

Más detalles

CIRCUITOS DE CORRIENTE ALTERNA TRIFÁSICA

CIRCUITOS DE CORRIENTE ALTERNA TRIFÁSICA UNIVERSIDAD DE ANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉTRIA Y ENERGÉTIA OLEIÓN: ELETROTENIA PARA INGENIEROS NO ESPEIALISTAS IRUITOS DE ORRIENTE ALTERNA TRIFÁSIA Miguel Angel Rodríguez Pozueta Doctor Ingeniero

Más detalles

Guía de Ejercicios de Electromagnetismo II Lapso I-2010

Guía de Ejercicios de Electromagnetismo II Lapso I-2010 UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO LUIS BELTRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FÍSICA ELECTROMAGNETISMO II Objetivo: Analizar

Más detalles

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO

CAPITULO VI. AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO CAPITULO VI AMPERIMETRO, VOLTIMETRO, OHMETRO y MULTIMETRO 6.1 INTRODUCCION. En el Capítulo V estudiamos uno de los dispositivos más útiles para detectar el paso de una corriente por un circuito: El galvanómetro

Más detalles

Osciloscopio. Primeros pasos

Osciloscopio. Primeros pasos Osciloscopio. Primeros pasos Objetivos Conocer el funcionamiento básico de un osciloscopio analógico. Aprender a medir amplitudes y periodos en un osciloscopio. Introducción. Los osciloscopios son de gran

Más detalles

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE

Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE aboratorio de Electricidad PACTCA - 10 CAACTEÍSTCAS DE NA NDCTANCA EN N CCTO SEE - Finalidades 1.- Estudiar el efecto en un circuito de alterna, de una inductancia y una resistencia conectadas en serie.

Más detalles

Corriente continua y corriente alterna

Corriente continua y corriente alterna Electricidad ENTREGA 1 Corriente continua y corriente alterna Elaborado por Jonathan Caballero La corriente o intensidad eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se

Más detalles

CIRCUITOS ELECTRICOS I

CIRCUITOS ELECTRICOS I 1. JUSTIFICACIÓN. CIRCUITOS ELECTRICOS I PROGRAMA DEL CURSO: Circuitos Eléctricos I AREA: MATERIA: Circuitos Eléctricos I CODIGO: 3001 PRELACIÓN: Electricidad y Magnetismo UBICACIÓN: IV T.P.L.U: 5.0.0.5

Más detalles

Capítulo 9: POTENCIA . I. Fuente. V Z(jω) - Introducción

Capítulo 9: POTENCIA . I. Fuente. V Z(jω) - Introducción apítulo 9: POTENA ntroducción En este capítulo estudiaremos el flujo de energía en los circuitos lineales de corriente alterna En cualquier circuito, la potencia instantánea p(t) en una rama del mismo

Más detalles

E 1 - E 2 = I 1. r 1 + (I 1 - I). r 2 E 1 - E 2 = I 1. (r 1 + r 2 ) - I. r 2. E 2 = I. R + (I - I 1 ). r 2 E 2 = I. (R + r 2 ) - I 1.

E 1 - E 2 = I 1. r 1 + (I 1 - I). r 2 E 1 - E 2 = I 1. (r 1 + r 2 ) - I. r 2. E 2 = I. R + (I - I 1 ). r 2 E 2 = I. (R + r 2 ) - I 1. Dos pilas de f.e.m. y resistencias internas diferentes se conectan en paralelo para formar un único generador. Determinar la f.e.m. y resistencia interna equivalentes. Denominamos E i a las f.e.m. de las

Más detalles

Manual Teórico Práctico del Módulo Autocontenido Transversal: Aplicación de Corriente Alterna Para las carreras de Profesional Técnico-Bachiller en:

Manual Teórico Práctico del Módulo Autocontenido Transversal: Aplicación de Corriente Alterna Para las carreras de Profesional Técnico-Bachiller en: Manual Teórico Práctico del Módulo Autocontenido Transversal: Para las carreras de Profesional Técnico-Bachiller en: Mantenimiento de Sistemas Automáticos Sistemas Electrónicos de Aviación e-cbcc Capacitado

Más detalles

MEDIDAS ELECTRICAS FACTOR DE POTENCIA Y CORRECCIÓN

MEDIDAS ELECTRICAS FACTOR DE POTENCIA Y CORRECCIÓN MEDIDAS ELECTRICAS FACTOR DE POTENCIA Y CORRECCIÓN OBJETIVOS Conocer en forma generalizada conceptos relacionados con el Factor de Potencia y su corrección. Conocer los beneficios que genera la corrección

Más detalles

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W

Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Circuitos Magnéticamente Acoplados Contenidos Desfase de una señal. Inductancia. Inductancia Mutua.

Más detalles

72 2. Análisis de Fourier

72 2. Análisis de Fourier 72 2. Análisis de Fourier Un objeto matemático relacionado con las series es la transformada, introducida por Fourier al estudiar la conducción del calor en una barra de longitud infinita. Se ha aplicado

Más detalles

GUÍA DOCENTE: GRADO en Ingeniería Informática. Centro: Escuela Politécnica Superior CURSO ACADÉMICO DATOS DE LA ASIGNATURA 1

GUÍA DOCENTE: GRADO en Ingeniería Informática. Centro: Escuela Politécnica Superior CURSO ACADÉMICO DATOS DE LA ASIGNATURA 1 GUÍA DOCENTE: GRADO en Ingeniería Informática CENTRO Escuela Politécnica Superior CURSO ACADÉMICO Grado: en Ingeniería Informática Centro: Escuela Politécnica Superior Denominación de la asignatura: Física

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna.

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. CONTENIDO: 6.1. El motor asíncrono trifásico, principio de funcionamiento. 6.2. Conjuntos constructivos. 6.3. Potencia, par y rendimiento.

Más detalles

FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA FNDAMENTOS DE TECNOLOGÍA ELÉCTRCA CRSO 03-04 ÍNDCE Determinación del coeficiente de autoinducción de una bobina. Medidas de tensiones y corrientes mediante el uso del osciloscopio, determinación de curvas

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL 8.1. CAMPO MAGNÉTICO CREADO POR UN ELEMENTO DE CORRIENTE Una carga eléctrica en movimiento crea, en el espacio que la rodea, un campo magnético.

Más detalles