EJERCICIOS RESUELTOS DE SECUENCIALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS RESUELTOS DE SECUENCIALES"

Transcripción

1 EJERCICIOS RESUELTOS DE SECUENCIALES 1) El sistema de apertura de una caja fuerte está compuesto por dos teclas A y B, un circuito secuencial a diseñar y un temporizador que mantiene la caja fuerte abierta durante 5 minutos cuando recibe un nivel lógico 1 desde el circuito secuencial. Este temporizador vuelve a cerrar la caja fuerte pasado dicho tiempo, independientemente del circuito secuencial. Cuando se pulsa la tecla A, se produce un nivel lógico 1 que entra al circuito secuencial, mientras que cuando se pulsa la tecla B se produce un nivel lógico de entrada al circuito a diseñar. Mientras no se pulse ninguna tecla no se genera ningún nivel lógico de entrada al circuito secuencial. A B Circuito secuencial Temporizador Caja fuerte Para abrir la caja fuerte, la combinación secreta es: pulsar dos veces seguidas la tecla A, a continuación pulsar una vez la tecla B, y finalmente pulsar una vez la tecla A. Si se hace de esta manera, el circuito secuencial dará una salida a nivel lógico 1, que actuará sobre el temporizador, permitiendo la apertura de la caja fuerte durante 5 minutos. Si en cualquier momento se introdujera un error al pulsar la secuencia secreta, en el siguiente ciclo de reloj todos los biestables se pondrán a cero (el sistema pasará al estado inicial), y la secuencia debe volver a introducirse desde el principio. a) Dibujar el diagrama de estados, explicando claramente en qué consiste cada estado. b) Implementar el circuito secuencial a diseñar usando biestables JK y las puertas necesarias. 1. Paso de las especificaciones verbales al diagrama de estados En este caso, el diagrama de estados tiene que ser capaz de reconocer la combinación de entrada 111. Partimos de un estado inicial en el que se espera la introducción del código. A continuación, se pasará a un nuevo estado cada vez que se reconozca correctamente el siguiente bit del código, mientras que si éste no corresponde al código se volverá al estado inicial, y habrá que teclear todo el código de nuevo. El significado de los estados será por tanto el de la siguiente tabla. / Estado Definición Q1 Q q Estado inicial. No hay código q 1 Se ha recibido 1 el primer 1 q 2 Se han recibido dos 1 1 consecutivos q 3 Se ha recibido el después 1 1 de dos 1 consecutivos 1/1 q3 / / q 1/ q2 / 1/ q1 1/ El funcionamiento del diagrama será el que se explica a continuación. Inicialmente nos encontramos en el estado q. Mientras no se teclee un 1 (recordemos que la combinación válida es 111) nos mantendremos en este estado. Cuando llegue el primer uno pasamos a q 1. Si el siguiente bit es de nuevo un 1, habremos reconocido los dos primeros correctamente, por lo que 1

2 el siguiente estado será q 2. Sin embargo, si en lugar de un 1 se recibe un, la secuencia es incorrecta, y como resultado habrá que regresar a q, para que el código sea tecleado por completo de nuevo. Del mismo modo, al recibir un estando en q 2 pasaremos a q 3 (hemos reconocido 11). Y finalmente, si en q3 la entrada es un 1, el código ha sido correcto, y por lo tanto la salida del circuito será 1 y volveremos a q. Si la entrada es un, entonces falló el último bit, y aunque volvamos también a q, en este caso la salida del circuito es, puesto que el código fue erróneo. 2. Construcción de la tabla de estados Tomando el diagrama de estados de la figura anterior debe generarse la tabla de estados, en la que a partir de las entradas y el estado actual se obtendrá el siguiente estado, y en la que a partir de ambos, y con ayuda de la tabla de excitación se calcularán las entradas a los biestables (JK en este caso). Nótese como ahora sí aparece una función de salida (S) diferente del estado que almacenan los biestables. E Q1(t) Q(t) Q1(t+1) Q(t+1) J1 K1 J K S x x 1 x x x 1 x 1 1 x 1 x x 1 x x x x 1 x x 1 x Minimización de las funciones e implementación del circuito Simplificando por Karnaugh obtendremos las funciones de entrada a los biestables (J1, K1, J y K) para el cálculo del nuevo estado, y la función de salida S. J1 = E Q K1 = E + Q J = E XOR Q1 K = 1 S = E Q1 Q 2) Se pretende diseñar un sistema secuencial síncrono con dos entradas E1 y E, y una salida S usando biestables D, de manera que proporcione salida alta sólo cuando las dos entradas estén a nivel bajo habiendo estado también a nivel bajo ambas entradas en el ciclo de reloj anterior. Las transiciones se producen en el flanco de bajada del reloj. En los restantes ciclos de reloj, la salida debe ser baja. Las señales de entrada son periódicas, con un periodo 5 veces superior al período de reloj, y son las mostradas en la figura. NOTA: Observar que no se producen todas las transiciones posibles. a) Realizar el diagrama de transición de estados, definiendo y codificando los estados y las entradas. b) Realizar la tabla de verdad que resuelve el problema. c) Encontrar el circuito. 2

3 1. Paso de las especificaciones verbales al diagrama de estados Para determinar el número de estados necesarios debemos fijarnos en qué situaciones S toma los valores y 1. En este caso la salida S solamente se activará cuando ambas entradas (E1 y E) tomen el valor, y además también hayan sido en el ciclo anterior. Nos interesará diferenciar, por tanto, dos situaciones diferentes: aquélla en la que las últimas entradas fueron y otra en la que no se cumple esta condición. Si se da la primera, y las entradas vuelven a ser de nuevo S tomará el valor 1. En cualquier otro caso S será. 1 periodo reloj E1 E S Para realizar el diagrama, hay que tener en cuenta que sólo se dan las siguientes transiciones: entrada E1E=11 desde q 1, entrada E1E= desde q 1, Entrada E1E= desde q, que es la única que da salida 1 y entrada E1E=1 desde q. Esto nos permite simplificar el diseño. Estado Definición q Entrada anterior = q 1 Estada anterior <> /1 q 1/ q1 11/ Este comportamiento queda reflejado en el diagrama de estados anterior. Obsérvese como estando en el estado q (las entradas anteriores fueron ), mientras las entradas sigan siendo la salida del circuito será 1. Si no, cambiaremos de estado a q 1, puesto que E1 y E no fueron ambas. Estando en q 1 la salida siempre será, pues en el ciclo anterior las entradas no eran, pero si lo fueran en el ciclo que se evalúa volveríamos de nuevo a q. 2. Construcción de la tabla de estados Tomando el diagrama de estados de la figura anterior debe generarse la tabla de estados, en la que a partir de las entradas y el estado actual se obtendrá el siguiente estado, y en la que a partir de ambos, y con ayuda de la tabla de excitación se calcularán las entradas al biestable (D en este caso). E1 E Q(t) Q(t+1) D S x x x 1 1 x x x x x x 1 1 x x x / 3

4 1. Minimización de las funciones e implementación del circuito Simplificando por Karnaugh obtendremos la función de entrada al biestable D para el cálculo del nuevo estado, y la función de salida S. D = E1 S = Q E1 = (Q + E1) 3) Se pretende diseñar el sistema de encendido de intermitencia de un coche. Para ello hay que diseñar un circuito secuencial que cumpla las siguientes especificaciones, de acuerdo con la figura adjunta. Cuando la palanca se coloque en la posición DERECHA, se deberá encender y apagar de forma intermitente la luz identificada como D, de forma síncrona con un reloj de 1 Hz. Cuando la palanca se coloque en la posición IZQUIERDA, se deberá encender y apagar de forma intermitente la luz identificada como I, de forma síncrona con un reloj de 1 Hz. Cuando la palanca se coloque en la posición central (APAGADO) no se encenderá ninguna luz. Cuando se active el interruptor de EMERGENCIA, se activarán ambas luces simultáneamente, y se desactivarán ambas de forma síncrona con el reloj, independientemente de la posición de la palanca, es decir, la entrada de emergencia tiene prioridad absoluta. a) Diseñar la circuitería adicional necesaria para que nunca entre más de una señal activa al codificador y poner una tabla de salida del codificador para todos los casos posibles. b) Definir los estados, su codificación y su diagrama. c) Realizar la tabla de excitación usando biestables D. d) Implementar el circuito. derecha apagado izquierda palanca D APAG I EMER COD 4x2 A B CK circuito a diseñar emergencia reloj 1 Hz NOTA: Aunque en un caso real sería imposible mecánicamente pasar la palanca de izquierda a derecha directamente, sin pasar por la posición Apagado, considerar que sí se puede al resolver este ejercicio. En primer lugar debe diseñarse la circuitería necesaria para asegurar que nunca entra más de una señal activa en el codificador. Obsérvese en la figura del enunciado que las señales externas proceden de dos lugares diferentes. Por un lado, las señales D, APAG e I son generadas por un interruptor, por lo que por construcción es imposible que se activen dos simultáneamente. Por otro lado tenemos la señal EMER, que procede de la señal emergencia. Por lo tanto, lo que sí puede suceder es que ésta última y alguna de las anteriores se activen simultáneamente. Para evitarlo es necesario inhibir alguna de las dos cuando se dé este caso. 4

5 Puesto que la señal de emergencia es más prioritaria, lo que haremos será utilizarla como señal de enable del resto, tal y como se muestra en la siguiente figura. Si EMER es 1, entonces EMER es y las tres AND darán como resultado, independientemente de si también alguna de las señales I, D o APAG es 1. Si EMER es entonces EMER es 1 y las puertas AND permitirán el paso de las 3 señales, de las cuales, como ya se ha comentado, sólo una estará activa. Tal como se encuentran conectadas las entradas al codificador, el código de entrada en las señales A y B será el recogido por la siguiente tabla. Q1 intermitentes izquierdos y Q intermitentes derechos. Es un autómata de Moore, conocido el estado, se conoce la salida. I A D E Definición Codificación Q1 Q 1 Emergencia 1 Derecha encendida 1 1 Ambas apagadas 1 1 Izquierda encendida Paso de las especificaciones verbales al diagrama de estados Los cuatro posibles estados corresponden a las 4 combinaciones de los dos pilotos de intermitente. Hemos asignado la codificación tal y como se indica en la tabla bajo estas líneas, de manera que el mismo estado puede utilizarse como señal de salida para la activación de los intermitentes, simplificando de esta manera la función de salida. Estado Definición Codificación q Ambas apagadas q 1 Derecha encendida 1 q 2 Izquierda encendida 1 q 3 Ambas encendidas 11 Según esta codificación, el diagrama de estados del circuito secuencial a diseñar sería el siguiente. 1 1, q 1 q ,1 1,1 1 q1 q

6 Mientras nos encontremos en el estado q, por ejemplo, y la entrada de A y B sea 1 el siguiente estado será q, puesto que las luces deben permanecer apagadas. Supongamos que ahora se activa la señal I, solicitando un intermitente a la izquierda. En tal caso se recibirá el código 11 por A y B, por lo que, como se ve en el diagrama pasaremos al estado q 2. Nótese como en el siguiente ciclo de reloj, si la entrada sigue siendo 11 el siguiente estado será q, provocando que el piloto de la izquierda se apague. La razón de que se produzca esta transición, en lugar de permanecer en q 2 es que si no el piloto izquierdo permanecería iluminado permanentemente, sin parpadear. De esta manera, por tanto, mientras la entrada al circuito secuencial sea 11, la máquina de estados estará constantemente oscilando entre q y q2, provocando así la intermitencia. El resto de situaciones funcionan de la misma manera. 2. Construcción de la tabla de estados Tomando el diagrama de estados de la figura anterior debe generarse la tabla de estados, en la que a partir de las entradas A y B y el estado actual se obtendrá el siguiente estado, y en la que a partir de ambos, y con ayuda de la tabla de excitación, se calcularán las entradas a los biestables (D en este caso). A B Q1(t) Q(t) Q1(t+1) Q(t+1) D1 D Minimización de las funciones e implementación del circuito Simplificando por Karnaugh obtendremos las funciones de entrada a los biestables (D1 y D) para el cálculo del nuevo estado. La función de salida (S1S), como se ha comentado, consiste simplemente en conectar cada salida de los biestables a la señal de activación de cada una de los intermitentes. D1 = (A + B) (Q1 Q) + AB (Q1 + Q) D = A [ B (Q1 Q) + B (Q + Q1) ] S1 = Q1 (IZQUIERDOS) S = Q (DERECHOS) 4) Se desea diseñar el circuito de control de un semáforo de peatones, cuyo funcionamiento se describe a continuación. Mientras no se active el pulsador (P = ), el semáforo permanecerá por tiempo indefinido en VERDE. Cuando se pulse P, se encenderá en el siguiente ciclo de reloj la luz AMBAR, sin apagarse la VERDE, y transcurridos 5 segundos, se apagarán ambas y se encenderá la ROJA durante 4 segundos, finalizados los cuales se volverá a la situación inicial con sólo la luz VERDE encendida. Se supone que P se pulsa sólo cuando esté encendida la luz 6

7 VERDE, y nunca en los restantes casos. El sistema completo funciona según el esquema de la figura adjunta. P circuito secuencial R R A V reloj 1 Hz bloque 1 A B NOR NOR Reset FA contador 5 Reset FB contador 4 E E C bloque 2 D Cuando se encienden las luces VERDE y AMBAR el bloque 2 pone la línea C a nivel, mientras que cuando se enciende sólo la luz ROJA pone la línea D a nivel. Mientras que alguna de estas líneas está a nivel, queda inhibida la entrada del reloj al circuito secuencial. Mientras el semáforo esté VERDE, los pulsos de reloj entran al circuito secuencial Los contadores tienen una entrada RESET, activa a nivel alto, y una entrada de HABILITACION (E), activa a nivel bajo. Cuando los contadores cuentan el último número previsto presentan en su salida respectiva FA/FB un nivel 1, señalando que se ha llegado al final de la cuenta. NOTA: R está conectado a las entradas de reloj de los tres biestables D que hay en el circuito secuencial a diseñar. a) Cuál es la implementación más sencilla del bloque 1 considerando que la entrada de reloj al circuito secuencial debe inhibirse (R = ) cuando A o B sean 1? b) Implementar el bloque 2, considerando que cuando estén activadas las luces VERDE y AMBAR, C debe ser, y cuando esté encendida la luz ROJA, D debe ser. Para ello usar sólo una puerta lógica y un inversor. c) Diseñar el circuito secuencial usando 3 biestables tipo D con salidas conectadas directamente a las luces del semáforo. En la figura del enunciado pueden apreciarse cuatro bloques bien diferenciados. Por un lado el circuito secuencial, encargado de generar la secuencia correcta de iluminación, por otro el bloque 2 responsable de activar los contadores en función de la transición del semáforo (de verde y amarillo a rojo, y de rojo a verde). Por último, el bloque 1 debe encargarse de inhabilitar el circuito secuencial mientras alguno de los contadores está en marcha. Esta inhabilitación se realiza desactivando la señal de reloj del circuito, de manera que así no puede cambiar de estado hasta que el reloj se active de nuevo, cosa que sucederá cuando los contadores hayan terminado. La implementación del bloque 1, por lo tanto será la que recoge la siguiente tabla de verdad. Obsérvese como cuando ninguno de los contadores está en marcha (A y B son ) la entrada al circuito secuencial es la del reloj del sistema. Sin embargo, si uno de los dos contadores se pone en marcha (A o B son ) la entrada de reloj del circuito secuencial es R =, impidiendo que pueda cambiar de estado hasta que el contador no haya terminado. Como los contadores no pueden activarse simultáneamente la combinación A y B igual a 1 no se producirá nunca. 7

8 A B R reloj X R = A B reloj = (A + B) reloj El segundo bloque es el responsable de la activación de los contadores. El primer contador, gobernado por la señal C debe ponerse en marcha (C = ) cuando se enciendan las luces verde y ámbar. El segundo, disparado por la señal D, se activará (D = ) cuando el semáforo esté en rojo. Según esta codificación, y teniendo en cuenta que existen combinaciones que no se producirán nunca (por ejemplo un semáforo en el que no esté activada ninguna luz: V =, A = y R = ) se ha completado el diseño del bloque 2. V A R C D x x x x 1 1 x x x x x x C = A D = R = V Por último, queda diseñar el circuito secuencial propiamente dicho, para lo cual procederemos como siempre. 1. Paso de las especificaciones verbales al diagrama de estados Puesto que el semáforo sólo utiliza tres de las posibles combinaciones de colores (verde, verde y ámbar, y rojo), sólo serán necesarios tres estados para su codificación. Por lo tanto, con dos biestables tendríamos suficiente para almacenar las tres codificaciones. Sin embargo, y para simplificar la salida del circuito, puesto que cada luz del semáforo es controlada por una salida diferente, podríamos utilizar tres biestables, de manera que cada uno de ellos fuera el responsable de la activación o desactivación de una de las líneas. De esta manera se desperdician 5 de las ocho posibles combinaciones posibles con los tres biestables, pero a cambio la salida del circuito es directamente el estado almacenado en sus biestables (máquina de Moore). Estado Definición Qv Qa Qr q Verde 1 q1 Verde y ámbar 1 1 q2 Rojo 1 En realidad se puede considera un contador que cuenta y así sucesivamente. 1 q q2 q1 8

9 2. Construcción de la tabla de estados Tomando el diagrama de estados de la figura anterior debe generarse la tabla de estados, en la que a partir de la entrada P y el estado actual se obtendrá el siguiente estado, y en la que a partir de ambos, y con ayuda de la tabla de excitación se calcularán las entradas a los biestables (D en este caso). P Qv(t) Qa(t) Qr(t) Qv(t+1) Qa(t+1) Qr(t+1) Dv Da Dr x x x x x x x x x x x x 1 1 x x x x x x x x x x x x x x x x x x 1 x x x x x x 1 1 x x x x x x 1 1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 3. Minimización de las funciones e implementación del circuito Simplificando por Karnaugh obtendremos las funciones de entrada a los biestables (Dv, Da, y Dr) para el cálculo del nuevo estado. La función de salida, como se ha comentado, consiste simplemente en conectar cada salida de los biestables a la señal de activación de cada una de las luces de los semáforos Dv = Qa Da = P Dr = Qa 5) Una máquina expendedora de tabaco está controlada por un circuito secuencial como el de la figura. Dicho circuito recibe como entradas el código de dos bits (tabla 1) de las monedas que va introduciendo el usuario. Como salidas, el circuito debe activar 2 señales, correspondientes a si se debe o no entregar el tabaco (T), y la cantidad de cambio a reintegrar (C1 y C), codificadas según las tablas 2 y 3 respectivamente. El funcionamiento del circuito es el siguiente. El usuario debe introducir monedas hasta alcanzar la cantidad de 1, que será el precio del tabaco. Una vez que la suma de monedas alcance dicho importe, automáticamente la máquina servirá el tabaco, retornando además el cambio correspondiente. Por ejemplo, si el usuario ha introducido 1 moneda de 25 y 2 monedas de 5, la máquina debe servirle el paquete y una moneda de 25 (salidas T C1 C = 1 1). M(2) Circuito secuencial T (1) C(2) 9

10 M1 M Significado No hay moneda 1 Nueva moneda de 25 1 Nueva moneda de Nueva moneda de 1 Tabla 1: Codificación de la entrada M T Significado No servir tabaco 1 Servir tabaco Tabla 2: Codificación de la salida T C1 C Significado No hay cambio 1 Cambio de 25 1 Cambio de Cambio de 75 Tabla 3: Codificación del cambio C Diseña el circuito secuencial correspondiente, indicando claramente: El número y codificación de estados. El diagrama de estados. La tabla de transiciones y salidas del circuito, utilizando para ello un biestable T (para el bit más significativo que almacena el estado), y biestables JK para el resto. La implementación del circuito, utilizando mapas de Karnaugh para implementar todas las funciones. 1

11 6) Diseñar un sistema secuencial capaz de reconocer el patrón 111. La entrada al circuito se realizará a través de una señal de entrada E, de forma síncrona, y en serie (un nuevo bit cada ciclo de reloj). El circuito dispondrá de una salida S que tomará el valor 1 en el instante en el que se reconozca el patrón en la secuencia de entrada, y será en todos los demás casos. NOTA: debe tenerse en cuenta que al recibir un bit fuera de secuencia no hay que desechar todos los valores recogidos hasta ese momento. Es posible que parte de la secuencia siga siendo válida. Por ejemplo, si suponemos que se ha recibido la secuencia, y a continuación llega un tercer, se considerará que los 2 últimos ceros son parte de una secuencia correcta. Se pide: a) Identificación y codificación de estados. b) Diagrama de estados. c) Completar la tabla de verdad teniendo en cuenta que deben utilizarse biestables tipo JK, T y D (de más a menos significativo) para la implementación física del circuito. 1) Definición de estados y codificación CODIFICACIÓN ESTADO Q 2(t) Q 1(t) Q (t) DEFINICIÓN q Inicial. Resto de estados q 1 1 El último bit recibido fue q 2 1 Los dos últimos bits recibidos fueron q Los tres últimos bits recibidos fueron 1 q 4 1 Los cuatro últimos bits recibidos fueron 1 q Los cinco últimos bits recibidos fueron 11 2) Diagrama de estados 3) Implementación E Q 2(t) Q 1(t) Q (t) Q 2(t+1) Q 1(t+1) Q (t+1) J 2 K 2 T 1 D S 1 X X X X X X X X X X X X X X X X X X X X X X 1 X 1 1 X X X X X X X X X X X X X X X X X X X X X 11

12 EJERCICIOS RESUELTOS DE REGISTROS Y CONTADORES 1) Dado el circuito de la figura, determinar la secuencia de salida serie por Q D si la situación inicial de los biestables es Q A =1, Q B =1, Q C =1 y Q D =. Teniendo en cuenta que ES = Q Q + Q + Q ), y considerando que el registro B C ( B D de desplazamiento mueve los datos al bit de la derecha en cada ciclo de reloj, resulta la siguiente tabla: Orden Q A (t) Q B (t) Q C (t) Q D (t) ES Q A (t+1) Q B (t+1) Q C (t+1) Q D (t+1) Tercero Quinto Segundo Cuarto Sexto Séptimo Primero La evolución particular en este circuito es la reflejada por el siguiente diagrama: con lo que la secuencia de salida en Q D será 1111 repetida periódicamente.

13 2) Dado el circuito de la figura, determinar el cronograma de las salidas de los dos contadores. Suponer que ambos contadores son activos en el flanco de subida. Inicialmente los dos contadores están a. Hay que tener en cuenta que el contador de 2 bits se pone a cuando Q B =1 y cuando x = 1, mientras que el contador de 3 bits se pone a cuando Q E =1, x = 1 y Q C =1. También debe considerarse que el impulso de cuenta del contador de tres bits se produce en las transiciones bajo-alto de C k, que es la AND de C k con X.

14 3) R1 y R2 son dos registros de desplazamiento de 8 bits, en cada uno de los cuales están almacenados dos números binarios N1 y N2 respectivamente. Se trata de diseñar un circuito secuencial síncrono con dos entradas x1 y x2 por las que entran bit a bit en cada ciclo de reloj los números N1 y N2, comenzando por el bit más significativo (MSB), y dos salidas z1 y z2 (por z1 sale el menor de los dos números y por z2 el mayor). a) Definir claramente los estados del sistema y su codificación. b) Encontrar el diagrama de estados y las tablas de transición y excitación usando biestables T. c) Encontrar las ecuaciones de salida z1 y z2 teniendo en cuenta que sólo se dispone de puertas NAND y de excitación de los biestables para implementar con puertas AND e inversores. (NO PONER EL DIAGRAMA LÓGICO, SÓLO LAS EXPRESIONES). R1 x1 z1 Circuito Secuencial a diseñar R2 x2 z2 Reloj

15 4) Se trata de diseñar un circuito secuencial que admite como entradas dos líneas A y B, procedentes de sendos registros de desplazamientos, de forma sincronizada con un reloj, por las que entran 1 bit por cada línea en cada ciclo de reloj. R1 A z1 Circuito Secuencial a diseñar R B z Reloj En cada momento se debe ver en la salida z1 z, codificado en binario, el número de ceros que faltan por introducir hasta que éste (el número de ceros introducidos) sea un múltiplo de 4. Suponer que z1 es la línea más significativa de la salida y que el estado inicial, es decir, cuando todavía no se ha introducido ningún cero, es el mismo que el estado correspondiente a introducir un número de ceros que sea múltiplo de 4. Se pide: Definición de estados, codificación de entradas, estados y salidas. Implementación del circuito usando biestables T. Si se usasen biestables D, qué relación algebraica habría entre la excitación de dichos biestables y las salidas del circuito? 1) Definición de estados y codificación ESTADO CODIFICACIÓN Q 2 (t) Q 1 (t) DEFINICIÓN q Inicial. El número de ceros introducidos es múltiplo de 4 q 1 1 Faltan por introducir tres ceros para que el número de ceros sea múltiplo de 4 q 2 1 Faltan por introducir dos ceros para que el número de ceros sea múltiplo de 4 q Falta por introducir un cero para que el número de ceros sea múltiplo de 4 Diagrama de estados (Máquina de Moore)

16 b) Implementación con biestables T T + Q 1 = A Q + A B B Q (t+1) = A B Q 1 (t) Q (t) Q 1 (t+1) = T 1 T Z 1 Z D 1 D T = A B Z + Q 1 = A B Q1 Q + A B Q1 Q + A Q1 Q + A B Q1 B Q1 Z + Q = A B Q + A B Q + A B Q A B c) Implementación con biestables D D = Z D 1 = Z1 Z

TEMA 3: Control secuencial

TEMA 3: Control secuencial TEMA 3: Control secuencial Esquema: Índice de contenido TEMA 3: Control secuencial...1 1.- Introducción...1 2.- Biestables...3 2.1.- Biestables asíncronos: el Biestable RS...4 2.1.1.- Biestable RS con

Más detalles

EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 2007/08. PROBLEMA DEL PRIMER PARCIAL

EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 2007/08. PROBLEMA DEL PRIMER PARCIAL EXAMEN DE SEPTIEMBRE DE CIRCUITOS ELECTRÓNICOS. CURSO 27/8. PROBLEMA DEL PRIMER PARCIAL Se desea diseñar un sistema para jugar a Piedra, papel o tijera. Como se sabe, en este juego cada uno de los dos

Más detalles

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ ELECTRÓNICA DIGITAL DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ IES TRINIDAD ARROYO DPTO. DE ELECTRÓNICA ÍNDICE ÍNDICE... 1 1. LIMITACIONES DE LOS CONTADORES ASÍNCRONOS... 2 2. CONTADORES SÍNCRONOS...

Más detalles

TEMA - 3 LÓGICA SECUENCIAL. REGISTROS DE DESPLAZAMIENTO Y CONTADORES. 1.- Introducción.

TEMA - 3 LÓGICA SECUENCIAL. REGISTROS DE DESPLAZAMIENTO Y CONTADORES. 1.- Introducción. T-3 Lógica ecuencial. egistros de Desplazamiento y Contadores TEMA - 3 LÓGICA ECUENCIAL. EGITO DE DEPLAZAMIENTO Y CONTADOE..- Introducción. Hemos visto que en la lógica combinacional las salidas están

Más detalles

TEMA 4. MÓDULOS COMBINACIONALES.

TEMA 4. MÓDULOS COMBINACIONALES. TECNOLOGÍA DE COMPUTADORES. CURSO 27/8 TEMA 4. MÓDULOS COMBINACIONALES. 4.. Módulos combinacionales básicos MSI. Los circuitos combinacionales realizados con puertas lógicas implementan funciones booleanas,

Más detalles

INSTRUMENTACIÓN Y CONTROL INDUSTRIAL

INSTRUMENTACIÓN Y CONTROL INDUSTRIAL 3º I.T.I. Sistemas INSTRUMENTACIÓN Y CONTROL INDUSTRIAL PRÁCTICAS PRÁCTICA 1 (opcional) El objetivo que se pretende con esta práctica es la familiarización con el autómata Simatic S7-200 así como con el

Más detalles

CONTADORES Y REGISTROS

CONTADORES Y REGISTROS Capítulo 7 CONTADORES Y REGISTROS 7.. CONTADORES Un contador es un circuito secuencial cuya función es seguir una cuenta o conjunto predeterminado de estados como consecuencia de la aplicación de un tren

Más detalles

Tema 7. SISTEMAS SECUENCIALES SISTEMAS SECUENCIALES SÍNCRONOS

Tema 7. SISTEMAS SECUENCIALES SISTEMAS SECUENCIALES SÍNCRONOS Fundamentos de Computadores. Sistemas Secuenciales. T7-1 INDICE: Tema 7. SISTEMAS SECUENCIALES INTRODUCCIÓN SISTEMAS SECUENCIALES SÍNCRONOS TIPOS DE BIESTABLES o TABLAS DE ECITACIÓN DE LOS BIESTABLES o

Más detalles

AUTOMATIZACIÓN INDUSTRIAL

AUTOMATIZACIÓN INDUSTRIAL 2º I.T.I. Electrónica Industrial AUTOMATIZACIÓN INDUSTRIAL PRÁCTICAS PRÁCTICA 1 El objetivo que se pretende con esta práctica es la familiarización con el autómata Simatic S7-200 así como con el programa

Más detalles

Problemas de Electrónica Digital Tema 5 Flip-Flops. Circuitos Secuenciales Síncronos

Problemas de Electrónica Digital Tema 5 Flip-Flops. Circuitos Secuenciales Síncronos UNIVERSIDAD DE VALLADOLID Departamento de Electricidad y Electrónica Problemas de Electrónica Digital Tema 5 Flip-Flops. Circuitos Secuenciales Síncronos. - Se desea disponer de un contador asíncrono de

Más detalles

Figura 1: Símbolo lógico de un flip-flop SR

Figura 1: Símbolo lógico de un flip-flop SR FLIP-FLOPS Los circuitos lógicos se clasifican en dos categorías. Los grupos de puertas descritos hasta ahora, y los que se denominan circuitos lógicos secuenciales. Los bloques básicos para construir

Más detalles

Sube Selector Canales. Canal. Baja. Tema 4: Bases Matemáticas II. 4.1 Sistemas con memoria o secuenciales. 4.1.1 Introducción.

Sube Selector Canales. Canal. Baja. Tema 4: Bases Matemáticas II. 4.1 Sistemas con memoria o secuenciales. 4.1.1 Introducción. Bases Matemáticas II - ágina 1 de 11 Tema 4: Bases Matemáticas II. 4.1 Sistemas con memoria o secuenciales. 4.1.1 Introducción. Hasta ahora hemos tratados con dispositivos lógicos cuyas salidas dependían

Más detalles

Sistemas secuenciales síncronos: codificación de estados de un control de volumen

Sistemas secuenciales síncronos: codificación de estados de un control de volumen Sistemas secuenciales síncronos: codificación de estados de un control de volumen Apellidos, nombre Martí Campoy, Antonio (amarti@disca.upv.es) Departamento Centro Informàtica de Sistemes i Computadors

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0

t i Q 7 Q 6 Q 5 Q 4 Q 3 Q 2 Q 1 Q 0 Clase 5 Un registro es un conjunto de n latch o Flip-Flops asociados que permiten almacenar temporalmente una palabra o grupo de n bit. Hay dos clases de registros típicos sincrónicos 1. el registro de

Más detalles

UNIVERSIDAD DE CASTILLA LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA. CIUDAD REAL

UNIVERSIDAD DE CASTILLA LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA. CIUDAD REAL TECNOLOGÍA DE COMPUTADORES / SISTEMAS DIGITALES EXAMEN FINAL EXTRAORDINARIO. 25 JUNIO 2 TIPO TEST (CORRECTA,6 PUNTOS, ERRÓNEA, -,2 PUNTOS) TIEMPO: 2 HORAS 3 MINUTOS SOLUCIÓN 1. Un ordenador utiliza palabras

Más detalles

Operaciones con Temporizadores

Operaciones con Temporizadores Operaciones con Temporizadores S7-300/400 Los temporizadores permiten distintas operaciones: Funcionamiento en un modo determinado. Borrar la temporización. Re-arrancar un temporizador (FR). Consultar

Más detalles

Electrónica digital IES GUADIANA 4º ESO

Electrónica digital IES GUADIANA 4º ESO Departamento de tecnología Electrónica digital IES GUADIANA 4º ESO Mª Cruces Romero Vallbona. Curso 2012-2013 Electrónica digital 4º ESO 1. Señales y tipos... 2 2. Ventajas y desventajas de los sistemas

Más detalles

BLOQUE "E" CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS. 1.- a) Simplificar por el método de Karnaugh la siguiente expresión:

BLOQUE E CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS. 1.- a) Simplificar por el método de Karnaugh la siguiente expresión: CONTROL Y PROGRAMACIÓN SISTEMAS 1.- a) Simplificar por el método de Karnaugh la siguiente expresión: S d a. b. d a. b. d a. b. d bcd b) Dibujar un circuito que realice dicha función con puertas lógicas.

Más detalles

Circuitos Electrónicos. Primer parcial curso 2006-07

Circuitos Electrónicos. Primer parcial curso 2006-07 Circuitos Electrónicos. Primer parcial curso 2006-07 Ante el creciente interés por las apuestas deportivas, el Departamento Técnico de las Loterías y Apuestas del Estado os ha encargado la actualización

Más detalles

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos:

ELECTRÓNICA DIGITAL. Una señal es la variación de una magnitud que permite transmitir información. Las señales pueden ser de dos tipos: ELECTRÓNICA DIGITAL INDICE 1. TIPOS DE SEÑALES... 3 1.1. SEÑALES ANALÓGICAS... 3 1.2. SEÑALES DIGITALES... 3 2. REPRESENTACIÓN DE LAS SEÑALES DIGITALES... 3 2.1. CRONOGRAMAS... 3 2.2. TABLA DE VERDAD...

Más detalles

MONOGRAFÍA CIENTÍFICA

MONOGRAFÍA CIENTÍFICA Diseño y Síntesis de Sistemas de Lógica Secuencial Autor: Jorge Portillo Meniz Profesor Titular de Escuela Universitaria Universidad de Las Palmas de Gran Canaria 2006 Jorge Portillo Meniz, 2006 SISTEMAS

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE LOS COMPUTADORES I. TEMA 5 Introducción n a los Sistemas Digitales

ESTRUCTURA Y TECNOLOGÍA A DE LOS COMPUTADORES I. TEMA 5 Introducción n a los Sistemas Digitales ESTRUCTURA Y TECNOLOGÍA A DE LOS COMPUTADORES I TEMA 5 Introducción n a los Sistemas Digitales TEMA 5. Introducción n a los Sistemas Digitales 5.1 Sistemas Digitales 5.2 Sistemas Combinacionales 5.3 Sistemas

Más detalles

Boletín de Problemas de Circuitos Combinacionales. Fundamentos de Electrónica 3º Curso Ingeniería Industrial

Boletín de Problemas de Circuitos Combinacionales. Fundamentos de Electrónica 3º Curso Ingeniería Industrial Boletín de Problemas de Circuitos Combinacionales Fundamentos de Electrónica 3º Curso Ingeniería Industrial 2 1. Utilizar el mapa de Karnaugh para implementar la forma suma de productos mínima de la función

Más detalles

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como :

El álgebra booleana (Algebra de los circuitos lógicos tiene muchas leyes o teoremas muy útiles tales como : SIMPLIFICACION DE CIRCUITOS LOGICOS : Una vez que se obtiene la expresión booleana para un circuito lógico, podemos reducirla a una forma más simple que contenga menos términos, la nueva expresión puede

Más detalles

1. Representación de la información en los sistemas digitales

1. Representación de la información en los sistemas digitales Oliverio J. SantanaJaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2005 2006 1. Representación de la información en los sistemas digitales Durante Hoy Los digital tipo muchos

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN I. P. N. ESIME Unidad Culhuacan INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA UNIDAD CULHUACAN INGENIERIA EN COMUNICACIONES Y ELECTRÓNICA ACADEMIA DE COMPUTACIÓN LABORATORIO

Más detalles

Curso a distancia: INTRODUCCIÓN AL DISEÑO LÓGICO PROGRAMABLE CON VHDL. Capítulo 3. Codificadores

Curso a distancia: INTRODUCCIÓN AL DISEÑO LÓGICO PROGRAMABLE CON VHDL. Capítulo 3. Codificadores Curso a distancia: INTRODUCCIÓN AL DISEÑO LÓGICO PROGRAMABLE CON VHDL Capítulo 3 Codificadores Codificadores binarios y codificadores de prioridad. Codificadores de 3 a 2 líneas y de 4 a dos líneas. Detector

Más detalles

IDENTIFICACIÓN DE SÍMBOLOS COMUNES DE PUERTAS LÓGICAS, TABLAS

IDENTIFICACIÓN DE SÍMBOLOS COMUNES DE PUERTAS LÓGICAS, TABLAS 5.5 CIRCUITOS LÓGICOS. IDENTIFICACIÓN DE SÍMBOLOS COMUNES DE PUERTAS LÓGICAS, TABLAS Como introducción a la lógica podemos decir que todos los días tenemos que tomar decisiones basadas en la lógica; que

Más detalles

SIMULADOR DE SISTEMAS DE EVENTOS DISCRETOS

SIMULADOR DE SISTEMAS DE EVENTOS DISCRETOS SIMULADOR DE SISTEMAS DE EVENTOS DISCRETOS MANUAL DE USUARIO 1.1 Introducción. El simulador de sistemas de eventos discretos está compuesto por dos aplicaciones: el Simulador de redes de Petri y el Simulador

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

1 Ejercicios varios. 1.1 Llenado automático de una tolva de grano

1 Ejercicios varios. 1.1 Llenado automático de una tolva de grano 1 Ejercicios varios 1.1 Llenado automático de una tolva de grano Argumento Una tolva para almacenar grano registra los límites de llenado con un detector situado en el extremo elevado que indica máximo

Más detalles

1. Utilizando el método de Karnaugh simplificar la siguiente expresión lógica:

1. Utilizando el método de Karnaugh simplificar la siguiente expresión lógica: 1. Utilizando el método de Karnaugh simplificar la siguiente expresión lógica: En primer lugar se obtiene la tabla de verdad, identificando las salidas activas, las cuales se implementan como productos

Más detalles

AUTÓMATAS PROGRAMABLES

AUTÓMATAS PROGRAMABLES AUTÓMATAS PROGRAMABLES Programación básica (2) Flancos (DIFU /DIFD) Comparaciones Movimiento de datos Incrementar/Decrementar Enclavamientos Saltos Errores Registro de desplazamiento Roberto Álvarez Sindín

Más detalles

Tema 5: Sistemas secuenciales

Tema 5: Sistemas secuenciales Tema 5: Circuitos secuenciales 5.1 Introducción: tablas de transición, cronogramas. Hemos visto como en los circuitos combinacionales, las salidas sólo dependen de las entradas en el mismo instante de

Más detalles

UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS 1. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH 1-1. R. ESPINOSA R. y P. FUENTES R.

UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS 1. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH 1-1. R. ESPINOSA R. y P. FUENTES R. UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH - . INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS. ÁLGEBRA DE BOOLE. ÁLGEBRA DE BOOLE El álgebra de Boole

Más detalles

Tipos de sistemas digitales: Sistemas combinacionales: las variables de salida dependen en todo instante de los valores de las variables de entrada.

Tipos de sistemas digitales: Sistemas combinacionales: las variables de salida dependen en todo instante de los valores de las variables de entrada. INTRODUCCIÓN A SISTEMAS DIGITALES Niveles de diseño: Nivel de arquitectura: identifica elementos de mayor nivel (CPU, memoria, periféricos, etc.) Nivel lógico: estructura interna de los componentes definidos

Más detalles

Circuitos secuenciales

Circuitos secuenciales UNIDAD 6 Circuitos secuenciales Introducción a la unidad En los capítulos anteriores hemos manejado los elementos básicos que conforman un sistema digital. Por un lado el manejo binario de la información

Más detalles

1000 + 900 + 90 + 7 = 1997

1000 + 900 + 90 + 7 = 1997 ases Matemáticas I - Pagina 1 de 20 Tema 2: ases Matemáticas I. 2.1.- Números utilizados en los sistemas digitales. 2.1.1 Introducción. El sistema de numeración decimal es familiar a todo el mundo. Este

Más detalles

Alumno: Visita nuestra página web www.institutosanisidro.com

Alumno: Visita nuestra página web www.institutosanisidro.com TECNOLOGÍA Alumno: IES San Isidro. Talavera de la Reina. Visita nuestra página web www.institutosanisidro.com INDICE. Introducción. Señal analógica y digital. 2. Tabla de verdad de un circuito. 3. Función

Más detalles

Circuitos Electrónicos. Septiembre 2005/2006. Problema 1º parcial

Circuitos Electrónicos. Septiembre 2005/2006. Problema 1º parcial Circuitos Electrónicos. Septiembre 2005/2006. Problema 1º parcial Se pretende realizar el circuito lógico interno de una máquina tragaperras de tres ruletas. El sistema completo tiene un esquema como el

Más detalles

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos).

1. Se establecen los conceptos fundamentales (símbolos o términos no definidos). 1. ÁLGEBRA DE BOOLE. El álgebra de Boole se llama así debido a George Boole, quien la desarrolló a mediados del siglo XIX. El álgebra de Boole denominada también álgebra de la lógica, permite prescindir

Más detalles

Introducción al Sistema

Introducción al Sistema Introducción al Sistema La Central de Alarma TECNO 5000 ha sido diseñada para brindarle la mayor flexibilidad y comodidad. Le sugerimos leer atentamente este manual y solicite a su INSTALADOR una precisa

Más detalles

CIRCUITOS SECUENCIALES

CIRCUITOS SECUENCIALES LABORATORIO # 7 Realización: 16-06-2011 CIRCUITOS SECUENCIALES 1. OBJETIVOS Diseñar e implementar circuitos utilizando circuitos multivibradores. Comprender los circuitos el funcionamiento de los circuitos

Más detalles

Central de Alarma y Control de Accesos K7 (K7 V6.0 -Manual V1.0)

Central de Alarma y Control de Accesos K7 (K7 V6.0 -Manual V1.0) Diagrama de conexiones 9 de julio 9 CORDOBA ARGENTINA CP XENE Tel/Fax (0) 0-90 Y ROTATIVAS e-mail ventas@keyinternet.com.ar Importador Distribuidor Fabricante ALARMAS - CCTV - CONTROL DE ACCESOS - AUTOMATIZACION

Más detalles

18. Camino de datos y unidad de control

18. Camino de datos y unidad de control Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 18. Camino de datos y unidad de control Un La versatilidad una característica deseable los Los

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

153 = 1x100 + 5x10 + 3x1

153 = 1x100 + 5x10 + 3x1 ELECTRÓNICA DIGITAL Introducción Hemos visto hasta ahora algunos componentes muy utilizados en los circuitos de electrónica analógica. Esta tecnología se caracteriza porque las señales físicas (temperatura,

Más detalles

Un contador es un circuito secuencial que genera una secuencia ordenada de salidas que se repite en el tiempo. La salida coincide con el estado de

Un contador es un circuito secuencial que genera una secuencia ordenada de salidas que se repite en el tiempo. La salida coincide con el estado de CONTADORES Un contador es un circuito secuencial que genera una secuencia ordenada de salidas que se repite en el tiempo. La salida coincide con el estado de sus biestables. Los contadores son circuitos

Más detalles

Ejercicio 1. Solución.

Ejercicio 1. Solución. Unidad 3. Control y Programación de istemas Automáticos. Problemas. Tema 3. Circuitos Combinacionales. jercicio. l circuito de la figura es un comparador binario de dos números A (A o, A ) y B (B o, B

Más detalles

ELECTRONEUMÁTICA - EJERCICIOS INTUITIVOS BÁSICOS ELECTRONEUMÁTICA - EJERCICIOS INTUITIVOS EJERCICIO NÚMERO 1

ELECTRONEUMÁTICA - EJERCICIOS INTUITIVOS BÁSICOS ELECTRONEUMÁTICA - EJERCICIOS INTUITIVOS EJERCICIO NÚMERO 1 - EJERCICIOS INTUITIVOS BÁSICOS - EJERCICIOS INTUITIVOS EJERCICIO NÚMERO 1 MANDO INDIRECTO A UN CILINDRO DE SIMPLE EFECTO. El vástago de un cilindro de simple efecto ha de salir al ser accionado un pulsador.

Más detalles

SISTEMAS NATURALES.. ARTIFICIALES.. ELÉCTRICOS.. ELECTRÓNICOS ANALÓGICOS DIGITALES COMBINACIONALES SECUENCIALES

SISTEMAS NATURALES.. ARTIFICIALES.. ELÉCTRICOS.. ELECTRÓNICOS ANALÓGICOS DIGITALES COMBINACIONALES SECUENCIALES UNIDAD 3: Circuitos lógicos y digitales Introducción Un Sistema es un conjunto de elementos que guardan una relación entre sí, a su vez un elemento del sistema puede ser otro sistema (subsistema). Los

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

Problema: Barrera de Garaje

Problema: Barrera de Garaje PROBLEMAS RESUELTOS EN LENGUAJE LITERAL ESTRUCTURADO (ST) Problema: Barrera de Garaje Se pretende automatizar el siguiente funcionamiento: Al oprimir el pulsador, la barrera sube. Cuando llega arriba permanecerá

Más detalles

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)

Más detalles

Puertas Lógicas. Contenidos. Objetivos

Puertas Lógicas. Contenidos. Objetivos Contenidos Objetivos En esta quincena aprenderás a: Implementar funciones mediante puertas lógicas. Conocer y manejar la simbología de las puertas lógicas. Construir circuitos lógicos en el programa simulador

Más detalles

Práctica 1. Programación y Simulación de un PLC

Práctica 1. Programación y Simulación de un PLC Automatización Avanzada (37800) Máster en Automática y Robótica Práctica 1. Programación y Simulación de un PLC Francisco Andrés Candelas Herías Grupo de Innovación Educativa en Automática 2011 GITE IEA

Más detalles

TEMPORIZADORES Y CONTADORES

TEMPORIZADORES Y CONTADORES TEMPORIZADORES Y CONTADORES 1 Objetivo El objetivo de esta práctica es ahondar en las técnicas de programación básicas del autómata. Para ello, el alumno deberá implementar en STEP 5 un automatismo que

Más detalles

Temario de Electrónica Digital

Temario de Electrónica Digital Temario de Electrónica Digital TEMA 1. INTRODUCCIÓN A LOS SISTEMAS DIGITALES. Exponer los conceptos básicos de los Fundamentos de los Sistemas Digitales. Asimilar las diferencias básicas entre Sistemas

Más detalles

Módulos basados en circuitos. secuenciales. Introducción. Contenido. Objetivos. Capítulo. secuenciales

Módulos basados en circuitos. secuenciales. Introducción. Contenido. Objetivos. Capítulo. secuenciales Capítulo Módulos basados en circuitos en circuitos Módulos basados Introducción Así como en el Capítulo 5 analizamos módulos basados en puertas, ahora toca referirnos a módulos construidos con biestables

Más detalles

TEMA 3: IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES CON PUERTAS LÓGICAS.

TEMA 3: IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES CON PUERTAS LÓGICAS. TEM 3: IMPLEMENTCIÓN DE CIRCUITOS COMBINCIONLES CON PUERTS LÓGICS. 3.1. Representación de funciones: mapas de Karnaugh de hasta 5 variables. El Mapa de Karnaugh es una representación gráfica de una función

Más detalles

GUIAS ÚNICAS DE LABORATORIO DETECTOR DE MONEDAS AUTOR: ALBERTO CUERVO SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS

GUIAS ÚNICAS DE LABORATORIO DETECTOR DE MONEDAS AUTOR: ALBERTO CUERVO SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS GUIAS ÚNICAS DE LABORATORIO DETECTOR DE MONEDAS AUTOR: ALBERTO CUERVO SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS DETECTOR DE MONEDAS Introducción La presente práctica de

Más detalles

REGISTROS DE DESPLAZAMIENTO

REGISTROS DE DESPLAZAMIENTO REGISTROS DE DESPLAZAMIENTO Es un circuito digital que acepta datos binarios de una fuente de entrada y luego los desplaza, un bit a la vez, a través de una cadena de flip-flops. Este sistema secuencial

Más detalles

TEMA7. SISTEMAS SECUENCIALES

TEMA7. SISTEMAS SECUENCIALES Sistemas Secuenciales 1 TEMA7. SISTEMAS SECUENCIALES Los circuitos lógicos se clasifican en dos tipos: Combinacionales, aquellos cuyas salidas sólo dependen de las entradas actuales. Secuenciales, aquellos

Más detalles

5s/X7/7s. Si uno de los tiempos (t1 o t2) es nulo tiene preferencia la versión simplificada. Sólo se indica el valor distinto de cero.

5s/X7/7s. Si uno de los tiempos (t1 o t2) es nulo tiene preferencia la versión simplificada. Sólo se indica el valor distinto de cero. Condicionamiento de acciones y receptividades Las acciones y las receptividades pueden venir condicionadas, además de por variables externas, por el estado de activación de las etapa, por el tiempo o por

Más detalles

DISPLAYS DE CRISTAL LIQUIDO

DISPLAYS DE CRISTAL LIQUIDO DISPLAYS DE CRISTAL LIQUIDO INDICE MANUAL DE REFERENCIA DEL LCD 1.- INTRODUCCION 2.- CARACTERISTICAS DEL DISPLAY 2.1.- Aspecto físico 2.2.- Alimentación 2.3.- Los caracteres del LCD 2.4.- La memoria del

Más detalles

Tema 11: Sistemas combinacionales

Tema 11: Sistemas combinacionales Tema 11: Sistemas combinacionales Objetivo: Introducción Generador Comprobador de paridad Comparadores Semisumador (HA) Sumador Completo (FA) Expansión de sumadores Sumador paralelo con arrastre serie

Más detalles

Registros y Contadores

Registros y Contadores Registros y Contadores Mario Medina C. mariomedina@udec.cl Registros Grupos de flip-flops con reloj común Almacenamiento de datos Desplazamiento de datos Construcción de contadores simples Como cada FF

Más detalles

Circuitos Digitales CON José Manuel Ruiz Gutiérrez

Circuitos Digitales CON José Manuel Ruiz Gutiérrez Circuitos Digitales CON José Manuel Ruiz Gutiérrez j.m.r.gutierrez@gmail.com PRÁCTICAS DE CIRCUITOS DIGITALES Circuitos digitales básicos 1. Simulación de operadores lógicos básicos. Realizar la simulación

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

Modelo de examen tipo resuelto 1

Modelo de examen tipo resuelto 1 Modelo de examen tipo resuelto. Diseñar un sistema combinacional que tenga cinco entradas y dos salidas y que actúe de la siguiente forma: las cinco entradas (x 4 x 3 x 2 x x 0 ) representan una palabra

Más detalles

Figura 1: Suma binaria

Figura 1: Suma binaria ARITMÉTICA Y CIRCUITOS BINARIOS Los circuitos binarios que pueden implementar las operaciones de la aritmética binaria (suma, resta, multiplicación, división) se realizan con circuitos lógicos combinacionales

Más detalles

Guía de Usuario. Premier 24/48/88/168/640

Guía de Usuario. Premier 24/48/88/168/640 Guía de Usuario Premier 24/48/88/168/640 1. Resumen Introducción A los Usuarios del sistema de alarma se les asigna un código único de Usuario de 4, 5 ó 6 dígitos. Los códigos de usuario son usados para

Más detalles

ANEXO - D LOGICA BINARIA Aplicada a diagramas en escalera y de bloques para la programación de un mini PLC

ANEXO - D LOGICA BINARIA Aplicada a diagramas en escalera y de bloques para la programación de un mini PLC ANEXO - D LOGICA BINARIA Aplicada a diagramas en escalera y de bloques para la programación de un mini PLC La lógica binaria fue desarrollada a principios del siglo XIX por el matemático George Boole para

Más detalles

Control y temporización Comunicación con la CPU Comunicación con el dispositivo externo Almacén temporal de datos Detección de errores

Control y temporización Comunicación con la CPU Comunicación con el dispositivo externo Almacén temporal de datos Detección de errores UNIDAD DE ENTRADA SALIDA Conceptos Unidad de entrada-salida (E/S): Elemento que proporciona un método de comunicación eficaz entre el sistema central y el periférico. Funciones Control y temporización

Más detalles

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a:

Lógica Binaria. Contenidos. Objetivos. Antes de empezar 1.Introducción... pág. 2. En esta quincena aprenderás a: Contenidos Objetivos En esta quincena aprenderás a: Distinguir entre una señal analógica y una digital. Realizar conversiones entre el sistema binario y el decimal. Obtener la tabla de la verdad de un

Más detalles

DISEÑO COMBINACIONAL

DISEÑO COMBINACIONAL DISEÑO COMBINACIONAL Asignatura: DIGITAL I Carrera: Ingeniería Electrónica Facultad de Ciencias Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario Año 2011 DISEÑO LÓGICO RESOLUCIÓN DE PROBLEMAS

Más detalles

INFORMÁTICA. Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial. Curso 2013-2014. v1.0 (05.03.

INFORMÁTICA. Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial. Curso 2013-2014. v1.0 (05.03. INFORMÁTICA Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial Curso 2013-2014 v1.0 (05.03.14) A continuación figuran una serie de ejercicios propuestos, agrupados

Más detalles

Problemas indecidibles

Problemas indecidibles Capítulo 7 Problemas indecidibles 71 Codificación de máquinas de Turing Toda MT se puede codificar como una secuencia finita de ceros y unos En esta sección presentaremos una codificación válida para todas

Más detalles

EJERCICIOS - Electrónica Digital

EJERCICIOS - Electrónica Digital 1- Convierte los siguientes números en base 10 a su correspondiente binario (base 2). a) 19 10 b) 25 10 c) 28 10 2 Convierte los siguientes números en base 2 a su correspondiente en base decimal (base

Más detalles

V 11-050 W V 11-070 W

V 11-050 W V 11-070 W V 11-050 W V 11-070 W ~ 1. CARACTERÍSTICAS Características eléctricas Rango de voltaje de alimentación: 150-265V / 50-60Hz Rango de temperatura de funcionamiento:-7ºc +43ºC, Humedad: 40% 1.1.1. Panel de

Más detalles

Tema 4: Circuitos combinacionales

Tema 4: Circuitos combinacionales Estructura de computadores Tema 4: Circuitos combinacionales Tema 4: Circuitos combinacionales 4.0 Introducción Los circuitos lógicos digitales pueden ser de dos tipos: combinacionales secuenciales. Circuitos

Más detalles

CRUCIGRAMA #1 HORIZONTAL VERTICAL

CRUCIGRAMA #1 HORIZONTAL VERTICAL CRUCIGRAMA #1 HORIZONTAL 2. Controla y procesa todas las operaciones dentro del PLC 6. Patento el PLC en 1974. 8. Son dispositivos eléctricos y/o mecánicos que convierten magnitudes físicas en una señal

Más detalles

ELECTRONICS WORKBENCH

ELECTRONICS WORKBENCH PRÁCTICA 1: INTRODUCCIÓN A LA SIMULACIÓN DE CIRCUITOS ELECTRÓNICOS DIGITALES CON ELECTRONICS WORKBENCH Ingeniería Técnica en Informática de Sistemas. Miguel Martínez Iniesta Juan Antonio Ruiz Palacios

Más detalles

Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali

Universidad Autónoma de Baja California Facultad de Ingeniería Mexicali Sumadores En este documento se describe el funcionamiento del circuito integrado 7483, el cual implementa un sumador binario de 4 bits. Adicionalmente, se muestra la manera de conectarlo con otros dispositivos

Más detalles

Temporizadores y contadores en tiempo real: El módulo Timer0 y el prescaler del PIC

Temporizadores y contadores en tiempo real: El módulo Timer0 y el prescaler del PIC Temporizadores y contadores en tiempo real: El módulo Timer0 y el aler del PIC 1. Introducción...1 2. Estructura del Timer0...1 3. Funcionamiento del Timer0...2 3.1. Entrada de reloj del modulo Timer0...

Más detalles

DISPLAY MAQUINA DE CAFE. 1. Funciones principales del display 2. Pantallas de usuario:

DISPLAY MAQUINA DE CAFE. 1. Funciones principales del display 2. Pantallas de usuario: DISPLAY MAQUINA DE CAFE INDICE 1. Funciones principales del display 2. Pantallas de usuario: 2.1 Principal ( Modo Standby ) 2.2 Temperaturas del sistema 2.3 Contador de cafés 2.4 Regeneración del descalcificador

Más detalles

UNLaM REDES Y SUBREDES DIRECCIONES IP Y CLASES DE REDES:

UNLaM REDES Y SUBREDES DIRECCIONES IP Y CLASES DE REDES: DIRECCIONES IP Y CLASES DE REDES: La dirección IP de un dispositivo, es una dirección de 32 bits escritos en forma de cuatro octetos. Cada posición dentro del octeto representa una potencia de dos diferente.

Más detalles

Curso Práctico. Introducción a los Autómatas Programables FATEK. EJERCICIOS (Nivel Básico)

Curso Práctico. Introducción a los Autómatas Programables FATEK. EJERCICIOS (Nivel Básico) Curso Práctico Introducción a los Autómatas Programables FATEK EJERCICIOS (Nivel Básico) INDICE - Ejercicio 1º Activación directa de una salida por medio de una entrada (Acción directa).... 01 - Ejercicio

Más detalles

!!!!!!!! !!!!! Práctica!4.! Programación!básica!en!C.! ! Grado!en!Ingeniería!!en!Electrónica!y!Automática!Industrial! ! Curso!2015H2016!

!!!!!!!! !!!!! Práctica!4.! Programación!básica!en!C.! ! Grado!en!Ingeniería!!en!Electrónica!y!Automática!Industrial! ! Curso!2015H2016! INFORMÁTICA Práctica4. ProgramaciónbásicaenC. GradoenIngenieríaenElectrónicayAutomáticaIndustrial Curso2015H2016 v2.1(18.09.2015) A continuación figuran una serie de ejercicios propuestos, agrupados por

Más detalles

CIRCUITOS COMBINACIONALES

CIRCUITOS COMBINACIONALES Escuela Universitaria de Ingeniería Técnica Industrial de Bilbao Universidad del País Vasco / Euskal Herriko Unibertsitatea ELECTRONICA INDUSTRIAL CIRCUITOS COMBINACIONALES SANCHEZ MORONTA, M - UGALDE

Más detalles

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN

CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN CAPÍTULO I 1. SISTEMAS DE NUMERACIÓN Un sistema de numeración es el conjunto de símbolos y reglas que se utilizan para la representación de datos numéricos o cantidades. Un sistema de numeración se caracteriza

Más detalles

Tema 8. Circuitos secuenciales de Propósito general: REGISTROS Y CONTADORES

Tema 8. Circuitos secuenciales de Propósito general: REGISTROS Y CONTADORES Registros y ontadores 1 Tema 8. ircuitos secuenciales de Propósito general: REGISTROS Y ONTORES Una colección de dos o más biestables con una entrada común se conoce como un registro. Los registros se

Más detalles

Electrónica Digital. Conceptos Digitales. Dr. Oscar Ruano 2011-2012 1

Electrónica Digital. Conceptos Digitales. Dr. Oscar Ruano 2011-2012 1 Electrónica Digital Conceptos Digitales Dr. Oscar Ruano 2011-2012 1 Magnitudes analógicas y digitales Magnitud Analógica: toma valores continuos: Por ejemplo la temperatura no varía de entre 20ºC y 25ºC

Más detalles

JGCBusing Manual de Usuario v1.0

JGCBusing Manual de Usuario v1.0 JGCBusing Manual de Usuario v1.0 Agosto 2012 Tabla de Contenido 1. Introducción... 3 2. JGCBusing. Herramienta Web... 4 2.1. Descripción... 4 2.2. Creación de una configuración desde cero... 8 2.3. Generación

Más detalles

ARMADO EN SILENCIO (SIN SONIDO DE CONFIRMACIÓN)

ARMADO EN SILENCIO (SIN SONIDO DE CONFIRMACIÓN) GT-4 Su control remoto tiene 4 botones: Botón 1: Botón con la figura Botón 2: Botón con la figura Botón 3: Botón con la figura Botón 4: Botón con figura Esta alarma puede memorizar hasta 4 controles remoto.

Más detalles

Constructor Virtual y Simulador de Circuitos Digitales con Chips TTL

Constructor Virtual y Simulador de Circuitos Digitales con Chips TTL Constructor Virtual y Simulador de Circuitos Digitales con Chips TTL Manual de Usuario (Versión 0.9.7) Ing. Arturo J. Miguel de Priego Paz Soldán www.tourdigital.net Chincha Perú, 24 de mayo de 2011 Este

Más detalles

GUIAS ÚNICAS DE LABORATORIO GENERADOR DE NÚMEROS PRIMOS AUTOR: ALBERTO CUERVO

GUIAS ÚNICAS DE LABORATORIO GENERADOR DE NÚMEROS PRIMOS AUTOR: ALBERTO CUERVO GUIAS ÚNICAS DE LABORATORIO GENERADOR DE NÚMEROS PRIMOS AUTOR: ALBERTO CUERVO SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS GENERADOR DE NÚMEROS PRIMOS. OBJETIVO Un circuito

Más detalles

Contadores. Introducción n a los Sistemas Lógicos y Digitales 2009

Contadores. Introducción n a los Sistemas Lógicos y Digitales 2009 Introducción n a los Sistemas Lógicos y Digitales 29 Sergio Noriega Introducción a los Sistemas Lógicos y Digitales - 29 Contador digital: Es todo circuito o dispositivo que genera una serie de combinaciones

Más detalles

El módulo LCD Ejemplos de funcionamiento

El módulo LCD Ejemplos de funcionamiento SISTEMAS ELECTRÓNICOS Y AUTOMÁTICOS PRACTICAS DE MICROCONTROLADORES PIC PRÁCTICA 7: El módulo LCD El módulo LCD Ejemplos de funcionamiento - 1 - 1. Objetivos: - Conocer el funcionamiento y programación

Más detalles