ENERGÍA EÓLICA Origen Potencial Tecnología Costes Impacto ambiental...

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ENERGÍA EÓLICA. 20.1. Origen...473. 20.2. Potencial...476. 20.3. Tecnología...478. 20.4. Costes...483. 20.5. Impacto ambiental..."

Transcripción

1 20 ENERGÍA EÓLICA Origen Potencial Tecnología Costes Impacto ambiental Situación actual

2 472

3 20. ENERGÍA EÓLICA Origen La energía eólica es la energía cinética del viento. El viento es una consecuencia de la radiación solar. Debido, fundamentalmente, a la redondez de la Tierra se originan diferencias de insolación entre distintos puntos del planeta. En los polos, los rayos solares inciden oblicuamente, por lo que calientan menos la superficie de la Tierra. Los rayos solares inciden perpendicularamente en el ecuador y calientan más la superficie de la Tierra, ya que se reparten sobre una superficie más pequeña que en los polos. Estas diferencias de insolación dan lugar a diferentes zonas térmicas que provocan diferencias de densidad en las masas de aire. En el ecuador, el aire al calentarse se hace más ligero (menos denso) y asciende a las capas altas de la atmósfera dejando tras de si una zona de baja presión; en los polos, el aire es más pesado (más denso) y desciende aumentando la presión. El aire que envuelve a la Tierra, como cualquier gas, se mueve desde las zonas de mayor presión atmosférica (mayor densidad) a las de menor presión; es decir, desde los polos al ecuador por las capas bajas de la atmósfera y del ecuador a los polos por las capas altas siguiendo un ciclo de movimiento de aire en cada hemisferio (figura 20.1). Este aire en movimiento horizontal es el viento. Sin embargo, es necesario aclarar que la circulación global del aire sobre el planeta es mucho más compleja que la descrita, ya que en ella intervienen muchos factores. Entre los factores que intervienen se pueden señalar la rotación de la Tierra sobre su eje, la composición de la Tierra en océanos y continentes (con diferentes calores específicos- indicador de la cantidad de calor que puede almacenar la materia por unidad de masa, Kcal/kg-), el movimiento de translación de la Tierra en torno del Sol, que hace que la intensidad de la radiación solar recibida por las diferentes zonas de la Tierra sea distinta según las estaciones del año, y las perturbaciones atmosféricas. Vientos del Sur V i e n t o s d e l N o r t e Polo Norte Vientos del Norte ECUADOR Vientos del Sur Polo Sur El movimiento de rotación de la Tierra da lugar a la aparición de las fuerzas de Coriolis, las cuales actúan sobre la masa de aire en movimiento desviándola hacia la derecha en el hemisferio norte y hacia la izquierda en el hemisferio sur. Estas fuerzas originan los denominados vientos de poniente (del Oeste) y alisios (del Este). En la figura 20.2 se muestra como el conjunto de factores que influyen sobre la masa de aire (sin tener en cuenta las estaciones y en ausencia de continentes), da lugar a que el ciclo de movimiento de aire en Vientos del Sur l N o r t e V i e n t o s d e Radiación solar Radiación solar Figura Circulación atmosférica general Zona subtropical de altas presiones Zona subpolar de bajas presiones zona Anticiclón polar de ascendencia Vientos del Sudoeste zona de descendencia Vientos del Noreste zona de ascendencia Vientos del Sudeste zona de descendencia zona de ascendencia Anticiclón polar En los polos, los rayos solares inciden oblicuamente, por lo que calientan menos la superficie de la Tierra Radiación solar Los rayos solares inciden perpendicularmente en el ecuador y calientan más la superficie de la Tierra Radiación solar Zona subtropical de altas presiones Aire frío descendente Aire caliente ascendente Figura Efecto de la fuerza de Coriolis en la circulación atmosférica general 473

4 La fuerza de denominada de Coriolis es una fuerza ficticia que debe su nombre al ingeniero y matemático francés Gustave Gaspard Coriolis ( ) Una forma simple de empezar a visualizar como opera la fuerza de desviación es imaginarse un disco que gira respecto de su eje. Si con un rotulador se trata de trazar una línea recta desde el centro del disco a un punto de la periferia, no se consigue; la raya dibujada mientras el disco gira será siempre una curva. Es decir, existen dos movimientos: el de la mano con el rotulador (rectilíneo) y el del disco (circular). Conforme la mano avanza en dirección del borde, los sucesivos puntos por los que va pasando se distancian, cada vez más, de la línea recta que se intento dibujar, a causa del giro del disco. Si una persona estuviese encima del disco, girando con él y no pudiese ver más allá del borde del disco, a dicha persona le parecería que el disco está inmóvil, ya que no podría referir su movimiento a ningún punto fijo. A este viajero que gira con el disco le parecería que una fuerza actuaba sobre el rotulador, desviándolo de su trayectoria. Esa fuerza, ficticia, es la fuerza de Coriolis. En el caso de la Tierra que gira (con coordenadas de referencia, de latitud y longitud, que giran), existe una desviación aparente de los objetos en movimiento hacia la derecha de su línea de movimiento en el hemisferio norte y hacia la izquierda en el hemisferio sur, tal como lo ven los observadores situados en al Tierra. La fuerza de desviación (por unidad de masa) se expresa por: -2ωV sen Φ donde ω es la velocidad de giro de la Tierra=7,29 x 10-5 rad/s; Φ = la latitud y V= la velocidad de la masa de aire. Como sen 0º=0 y sen 90º=1, el efecto desviador es máximo en los polos y es cero en el ecuador. cada hemisferio se descomponga en tres ciclos independientes. Además, la circulación global se ve perturbada por la formación de torbellinos que se generan en las zonas de interrelación de los diferentes ciclos. Los vientos generales que circundan el globo terrestre se llaman macro climáticos. Estos debido a la orografía del terreno y las diferencias de presión varían sus características, lo que origina los vientos llamados micro climáticos o locales. Estos últimos pueden ser clasificados en: vientos inducidos térmicamente, vientos inducidos por la orografía y vientos generales influenciados por los efectos climáticos locales. Entre los vientos inducidos térmicamente pueden señalarse las brisas marinas y las corrientes valle-montaña. Las brisas marinas se originan como consecuencia de los distintos calores específicos, y la diferente velocidad de calentamiento y enfriamiento del mar y la tierra. Durante el día, la tierra se calienta más rápidamente que el mar, haciendo que el viento sople del mar a la tierra (mediodía y tarde). Por la noche y el amanecer el viento sopla hacia el mar, ya que la tierra se enfría más rápidamente que el mar (figura 20.3). Los vientos valle-montaña se producen por un proceso parecido. Unas laderas reciben más insolación que otras, en función de su pendiente y D Aire calido que asciende por convensión C A C D B Aire frío Aire frío B Brisa marina A Brisa de tierra El mar está más frío El mar conserva más el calor La tierra se calienta más rápidamente que el mar La tierra se enfría más rápidamente que el mar (a) (b) Figura Brisa marina (a) mediodía y tarde; (b) noche y amanecer 474

5 Dirección del viento Cerro Flujo de aire Figura Flujo de aire en el caso de un obstáculo montañoso orientación. Estos vientos soplan durante toda la noche desde la montaña al valle y desde el valle a la montaña durante el día. Las brisas son vientos de poca velocidad aunque alcancen en ciertos sitios hasta los 13m/s. Los vientos inducidos por la orografía dependen del obstáculo y su orientación. El aire que se desplaza en la proximidad de la superficie terrestre debe sortear los innumerables obstáculos que encuentra a su paso, cambiando en mayor o menor medida sus características. Si la distribución orográfica es tal que hay dos zonas montañosas próximas (figura 20.4), el flujo de aire se ve obligado a penetrar por un estrecho canal. El teorema de Bernouille establece que la velocidad de un fluido aumenta cuando la sección por montañosas Figura Flujo de aire entre dos zonas la que pasa disminuye. Por tanto, en este caso, como la sección por la que discurre el aire entre las dos montañas es mucho más estrecha que fuera y las líneas de corriente están muy próximas, la velocidad aumenta. Los Pirineos y los Alpes forman una especie de embudo, y cuando los vientos en el extremo del embudo llegan al Mediterráneo, salen a gran velocidad. Por el mismo efecto de Bernouille encima de las montañas el viento aumenta de intensidad (figura 20.5). Inversamente, en un valle el viento disminuye. De forma general, se puede considerar que los factores que influyen en el régimen de vientos en una zona determinada son: Situación geográfica Características climáticas locales. Topografía de la zona. Irregularidades del terreno. 475

6 El viento ha tenido tal especial importancia en la vida cotidiana del hombre en la antigüedad que éste llegó a elevarlo, debido a la falta de conocimientos, a la categoría de Dios. En la Mitología griega el Dios padre de los vientos era Eolo, de ahí el nombre de Energía Eólica, que los tenía encerrados en un zurrón y los sacaba cuando le parecía oportuno, según cuenta Homero en uno de los cantos de su inmortal obra La odisea. Eolo era el intermediario entre Zeus y los pequeños dioses eólicos. Estos estaban divididos en dos grupos, los benefactores y los funestos. Entre los primeros se encontraban el viento del Norte (Bóreas), el del Sur (Austro o Noto), el del Sureste (Euros), y el del Oeste (Zefiros). Dentro de los segundos estaba Tyferus, dios del huracán. Para las civilizaciones eslavas el dios de los vientos era Striborg, para los vikingos este Dios era Thor. Huracán es el corazón del cielo según los Mayas, y Tifón es el dios del mal en el antiguo Egipto. Pero no sólo veían al viento como un dios sino que intentaban que les afectase lo menos posible; en China se orientaban las aberturas de las viviendas en unas direcciones determinadas, aunque desde el punto de vista del confort estuviesen mal orientadas. Aún en 1904 se editaban libros sobre conocimientos populares que también atribuían orígenes divinos al viento. El refranero español recoge diversos dichos sobre el viento en los que se relaciona el viento con acontecimientos atmosférico. El viento que anda por San Juan (24 de junio), todo el año correrá, El sol lleva en verano al viento de la mano, El viento de San Matías (24 de Febrero) dura cuarenta días, Potencial Sólo un 2% de la energía solar que llega a la Tierra se convierte en energía eólica. En teoría, los vientos distribuyen anualmente entre 2,5 y 5x10 5 kwh. Una cantidad enorme de energía, pero solo una parte de la misma puede ser aprovechada, ya que se presenta en forma muy diluida. En la figura 20.6 se muestra la distribución estimada del potencial eólico del mundo. Fuerza del viento Figura Distribución estimada del potencial eólico en el mundo 476

7 La velocidad del viento es un vector, por tanto, viene definida por el módulo, la dirección y el sentido. El módulo indica la intensidad del viento y se suele expresar en m/s, km/h o en nudos (1nudo=0,514m/s). La dirección y el sentido se expresan en grados sexagesimales, es decir, según un círculo graduado en 360º, significando de donde viene el viento. Por ejemplo, si se señala que el viento es del Noreste se está especificando que la dirección del viento se encuentra en la recta que une el Noreste con el Suroeste y que el sentido es de Noreste a Suroeste. Cuando se habla del potencial eólico de una región es necesario especificar la altura sobre el terreno a la que se refiere, ya que el viento varía su velocidad con la altura debido al rozamiento que genera la superficie terrestre. Existen varias expresiones que tratan de reflejar estas variaciones; una de ellas es la conocida como ley potencial. V = V 0 (H/H 0 ) α Donde V y V o son las velocidades del viento a las alturas H y H o y α un exponente que representa una forma de medida del rozamiento superficial encontrado por el viento. Existen estimaciones del parámetro α en función de la naturaleza del terreno por donde discurre el viento. Para un terreno descubierto, un valor típico estimado es 0,14. Para realizar la medida de las velocidades del viento se utilizan aparatos llamados anemómetros. De estos dispositivos existen multitud de tipos y modelos, sin embargo, el más utilizado es el denominado de cazoletas. Para la medida de la dirección se emplean, frecuentemente, dispositivos denominados veletas (figura 20.7). La Organización Meteorológica Mundial (OMM) recomienda que estos dispositivos se sitúen a 10 metros sobre el nivel del suelo. Teóricamente la potencia que existe en una corriente de aire a su paso a través de un área A viene dada por: P = ½ ρav³ donde P es la potencia en W, ρ la densidad del aire en kg/m 3, A la superficie en m 2 y V es la velocidad del viento en m/s. Figura Estación anemométrica Figura Molino persa de eje vertical El primer molino de viento que se conoce con cierto detalle es el molino persa de eje vertical. Este molino se utilizaba para moler grano y fue de uso corriente en la antigua Persia, posiblemente varios siglos antes de nuestra era (figura 20.8) Las máquinas eólicas han experimentado una considerable y larga evolución durante un periodo de más de 2000 años. Durante ese largo periodo histórico pueden señalarse diversas etapas de desarrollo. Desde las primeras máquinas conocidas hasta el siglo XV la evolución es lenta y de escaso desarrollo técnico (figura 20.9) Figura Molino típico del siglo XV 477

8 En el periodo comprendido entre el comienzo del Renacimiento y el comienzo de la Revolución Industrial se multiplican las invenciones que utilizan las ruedas hidráulicas o los molinos de viento como fuerza impulsora (figura 20.10) Figura Molino utilizado al principio de la revolución industrial Desde mediados del siglo XIX hasta mediados del siglo XX se desarrolla la teoría aerodinámica y otras ciencias de carácter técnico, lo que origina que las máquinas eólicas sufran una completa transformación (figura 20.11). A partir de la segunda mitad del siglo XX hasta nuestros días se producen importantes modificaciones de carácter técnico, que se traducen en la utilización de materiales más ligeros y resistentes, y el empleo de sistemas electrónicos de regulación y control. Figura Aerogenerador de mediados del siglo XX Sin embargo, no toda la potencia P anterior puede ser transformada, por los dispositivos tecnológicos existentes, para su utilización en forma de potencia mecánica o eléctrica. Puede demostrarse que, idealmente, la máxima potencia mecánica que se puede extraer de la vena de aire es el 60% de la que transporta la vena de aire cuando incide sobre el dispositivo captador de energía. En realidad la potencia recuperable es menor que la señalada como consecuencia de los rendimientos de los equipos de transformación energética Tecnología La tecnología de la energía eólica está teniendo un vertiginoso desarrollo. En la actualidad más de cuarenta mil turbinas de medio tamaño están en funcionando en el mundo, fundamentalmente en Europa, Estados Unidos y la India. Estas máquinas pueden producir anualmente alrededor de millones de kwh de electricidad a partir de la energía cinética del viento. Una de las primeras máquinas eólicas construida expresamente para producir electricidad (aerogenerador) data del año 1892 y su diseño fue llevado a cabo por el profesor Lacour en Dinamarca. A partir de la segunda mitad del siglo XX las máquinas eólicas no han presentado evoluciones considerables en su diseño; todas ellas están integradas por un conjunto de subsistemas cuyo objetivo es captar la energía cinética del viento y transformarla en energía eléctrica (fundamentalmente) de la forma más óptima posible. De forma general pueden señalarse los siguientes subsistemas componentes: Subsistema de captación Subsistema de transmisión mecánica 478

9 Subsistema de generación eléctrica Subsistema de orientación Subsistema de regulación Subsistema soporte El subsistema de captación es el encargado de transformar la energía cinética del viento en energía mecánica de rotación. Está integrado por el rotor, el cual se compone de las palas y del buje (figura 20.12) Carcasa Árbol principal Palas Freno Árbol secundario Buje Bastidor Generador Multiplicador Orientación Figura Diversos componentes de un aerogenerador En función de la posición del eje de giro del rotor las máquinas eólicas se clasifican en máquinas de eje horizontal y de eje vertical (figura 20.13). Estas últimas, debido a su bajo rendimiento, prácticamente han desaparecido del mercado actual. Figura Aerogeneradores de eje horizontal y de eje vertical Figura Molino multipala 479

10 Dependiendo del número de palas de los rotores estos se clasifican en rotores multipala (o rotores lentos), con un número de palas comprendido entre 6 y 24, y en rotores tipo hélice (o rotores rápidos), que pueden ser tripala (el más utilizado), bipala o monopala. Los rotores multipala giran a baja velocidad y se han destinado tradicionalmente al bombeo de agua (figura 20.14). Los rotores tipo hélice giran a mayores velocidades y presentan mejores rendimientos aerodinámicos que los rotores multipala, por lo que se suelen destinar a la generación de electricidad. m m. 150 VELOCIDAD DE DISEÑO 7,5 m/s 101m m. 50 5m. 8,5m. 13m. 24m kw Figura Potencia de las turbinas eólicas en función del diámetro del rotor Sotavento La potencia mecánica que una turbina eólica es capaz de extraer de la energía cinética del viento depende fundamentalmente del diámetro del circulo barrido por las palas (figura 20.15) y del rendimiento aerodinámico del rotor (que depende de la forma aerodinámica de la pala), ya que el número de palas prácticamente no tiene influencia en el rendimiento cuando se utilizan más de tres palas (especialmente cuando se trata de rotores rápidos) Viento Barlovento Figura Aerogeneradores con rotor a sotavento y rotor a barlovento. En función de la disposición del rotor frente a la velocidad del viento estos pueden clasificarse en rotores de barlovento (los más frecuentes) o de sotavento o autoorientables, cuyas palas presentan una cierta inclinación respecto del plano de giro de tal manera que el rotor al girar describe un cono (figura 20.16). Aunque históricamente se han utilizado una gran variedad de materiales para la fabricación de las palas (telas, maderas, chapas metálicas, aluminio), los materiales más utilizados actualmente son las resinas de poliéster reforzadas con fibras de vidrio, los cuales proporcionan ligereza, resistencia mecánica y una cierta resistencia a la agresión del medio ambiente. El buje es el elemento soporte de las palas y está montado en un extremo del árbol principal de transmisión (figura 20.12). En función de la rigidez de movimiento de la unión de las palas al buje en la dirección perpendicular 480

11 al plano del rotor, los bujes se clasifican en rígidos y basculantes (usados principalmente en rotores bipalas). En el primer grupo las palas se atornillan al buje y este se une rígidamente al árbol principal de transmisión. En el segundo grupo el buje admite pequeños movimientos de pivote con el objeto de equilibrar las cargas aerodinámicas. Dependiendo que el rotor permita que cada pala pueda girar o no respecto a su respectivo eje longitudinal los rotores se clasifican en rotores con palas de paso variable o de paso fijo. Los rotores con palas de paso variable (figura 20.12) permiten regular más adecuadamente la potencia generada por la máquina eólica y es utilizado en prácticamente todos los aerogeneradores de mediana y alta potencia. El subsistema de transmisión mecánica se sitúa entre el subsistema de captación y el subsistema de generación. En la mayoría de los diseños de aerogeneradores la velocidad de giro del subsistema de captación es menor que la velocidad a la que debe girar el generador eléctrico. Por este motivo es necesario incluir una caja multiplicadora de la velocidad y un árbol de transmisión secundario que una dicha caja al generador (figura 20.12) El subsistema de generación eléctrica está constituido básicamente por el aerogenerador (figura 20.12). Este está formado por una máquina eléctrica encargada de transformar la energía mecánica de rotación en energía eléctrica. El generador puede ser de corriente continua (dinamo) o de corriente alterna (alternador). Estos últimos son los únicos que actualmente se utilizan en los aerogeneradores de mediana y alta potencia. El alternador está compuesto de dos partes fundamentales: El rotor o inductor móvil, encargado de generar un campo magnético variable al girar arrastrado por el árbol de transmisión y el estator o inducido fijo, en el que se genera la corriente eléctrica. Las máquinas eléctricas de corriente alterna típicamente utilizadas se clasifican en máquinas síncronas y máquinas asíncronas o de inducción (los más utilizados actualmente). La mayor desventaja de los generadores síncronos es que necesitan de una batería de condensadores conectada a la salida, la cual compense la energía reactiva generada. Los generadores síncronos necesitan que se les excite con una corriente continua, que se puede generar internamente (autoexitación) o con una dinamo auxiliar. El subsistema de orientación es el encargado de detectar la dirección del viento y situar el plano del rotor perpendicular en esa dirección. Prácticamente todas las máquinas eólicas de eje horizontal necesitan de un subsistema de orientación, con excepción de las máquinas que disponen de rotor a sotavento, ya que el propio viento puede orientarlas debido a las fuerzas aerodinámicas que origina la conicidad del rotor. Entre los subsistemas de orientación más utilizados actualmente se encuentran las veletas o colas de orientación, utilizadas en máquinas de pequeña potencia, y los servomotores que detectan la dirección del viento mediante una veleta y orientan a la máquina mediante motores de orientación situados en la base de la góndola (figura 20.12) El subsistema de sustentación está constituido por la góndola y la torre. La góndola está formada por el bastidor, en el que se montan los distintos subsistemas de la máquina eólica, y la carcasa que, diseñada de forma aerodinámica, los protege de los agentes atmosféricos. La torre es el elemento encargado de elevar el rotor de la máquina respecto del nivel del suelo. La altura mínima de la torre está condicionada por el diámetro del rotor del subsistema de captación y la altura máxima por el coste y la dificultad de instalación. Para permitir el giro de la góndola respecto de la torre en las maniobras de orientación de la máquina el bastidor se monta sobre un rodamiento que lo une de forma solidaria a la torre. Aunque las primeras 481

12 torres de sustentación que se utilizaron en los aerogeneradores eran de estructura de celosía actualmente es más frecuente el uso de torres tubulares cilíndricas o troncocónicas de acero (fundamentalmente) u hormigón. Para acceder a la góndola en las máquinas eólicas pequeñas la torre suele disponer de escalera exterior. En los aerogeneradores de mediano y gran tamaño el acceso suele realizarse por el interior de la torre, la cual dispone de escalera y, en algunos casos, de ascensor. La torre se ancla en el suelo mediante una cimentación de hormigón armado cuya dimensión depende de las características del terreno, del tamaño de la máquina eólica y de los esfuerzos que produzca el régimen de vientos de la zona de instalación. El subsistema de control y regulación tiene la misión incrementar la captación de energía cinética del viento, mejorar la potencia eléctrica generada y garantizar un funcionamiento seguro de la máquina. Para ello el subsistema de control supervisa el funcionamiento de la máquina eólica y gestiona las secuencias de arranque, parada, etc., además de controlar al subsistema de orientación, regular la potencia captada del viento y producida por el aerogenerador. La mayoría de las máquinas eólicas modernas disponen de rotor de paso variable, por lo que disponen de dispositivos que permiten girar la pala alrededor de su eje longitudinal con Figura Instalación conectada a la red el propósito de controlar la potencia y velocidad de giro del rotor y frenar aerodinámicamente el subsistema de captación en caso de avería. Asimismo, las máquinas eólicas están equipadas con frenos mecánicos (figura 20.12) con el objetivo de de mantener bloqueado el árbol de transmisión durante la operaciones de puesta en marcha y mantenimiento, además de ayudar al frenado dinámico durante los procesos de parada de emergencia. Las aplicaciones de los aerogeneradores pueden clasificarse en dos grupos: Aerogeneradores conectados a la red eléctrica de distribución general y aerogeneradores aislados, es decir no conectados a la red eléctrica. El primer grupo es el más numeroso y puede a su vez clasificarse en dos grupos: Instalaciones de un único aerogenerador e instalaciones que cuentan con una agrupación de varios aerogeneradores a la cual se le denomina parque eólico (figura 20.17) Figura Instalación aislada Las instalaciones aisladas suelen realizarse en zonas muy alejadas del trazado de la red eléctrica. Normalmente estas instalaciones se dimensionan para satisfacer un determinado consumo, se ubican en la proximidad del lugar de consumo y precisan de sistemas de almacenamiento (baterías, depósitos de agua, etc.) donde guardar la energía eléctrica generada, en el caso de aerogeneradores, o de agua impulsada, en el caso de que la energía generada sea mecánica. En el caso que la instalación aislada deba satisfacer un consumo importante de energía eléctrica y de forma permanente se 482

13 recurre, normalmente, a las instalaciones híbridas eólico-diesel, las cuales constan de aerogeneradores interconectados a grupos diesel (figura 20.18) Costes El coste de cada kilowatio-hora obtenido mediante un sistema eólico depende del coste de la instalación, la cual debe amortizarse a lo largo de la vida; del coste de explotación; y de la energía producida, que depende en gran medida de la velocidad media del viento en el emplazamiento. El coste de la instalación depende del coste de los siguientes elementos: aerogeneradores, obra civil (accesos, cimentaciones, edificaciones), sistema eléctrico (líneas eléctricas, transformadores, sistema de control), e ingeniería y dirección. En los últimos años se ha incrementado de forma apreciable el tamaño de los aerogeneradores lo que ha llevado aparejado la disminución del coste de la unidad de potencia instalada. En el caso de los países de mayor potencia instalada en Europa (Alemania, España y Dinamarca) el coste del kw instalado puede estimarse Figura Distribución de los costes de los entre y euros. En lo que respecta al coste de los distintos componentes que integran un aerogenerador pueden indicarse los porcentajes estimativos reflejados en la figura La inversión necesaria para llevar a cabo una instalación eólica conectada a la red puede estimarse descompuesta en cuatro grandes partidas (figura 20.20). El coste de los aerogeneradores constituye el porcentaje más alto de la inversión. Los costes exfactory de los aerogeneradores se Figura Distribución de las inversiones necesarias sitúan en el rango de los euros/ kw, variando en función de la tecnología y el tamaño de la máquina. Para los parque de potencia media que se instalan en España los costes de explotación pueden estimarse alrededor 3,3 % de la inversión. Estos costes se desglosan en costes por alquiler de terrenos, costes de operación y mantenimiento (personal, repuestos y consumibles), costes de gestión y administración y costes de seguros e impuestos. Los porcentajes estimados de cada uno de estos costes se reflejan en la figura Figura Distribución de los costes de explotación 483

14 Los costes de generación varían entre 4 y 8 céntimos de Euro por KWh producido. Estos costes están ligados al tamaño de la instalación y, fundamentalmente, a las características del viento del emplazamiento Impacto ambiental La incidencia que las instalaciones de aprovechamiento de la energía eólica pueden tener sobre el medio ambiente hay que analizarlos desde dos vertientes. Desde el punto de vista de los beneficios que supone la reducción de la emisión de contaminantes a la atmósfera y por otro desde el punto de vista de la afectación al medio ambiente. Las posibles alteraciones del medio físico que las instalaciones eólicas pueden generar se centran en cuatro apartados: impacto sobre las aves, impacto visual, ruido y erosión. Los estudios que se han realizado llegan a la conclusión que las líneas eléctricas suele presentarse como la causa más importante de accidentes de aves, pero que pueden evitarse utilizando líneas subterráneas. De la experiencia española se concluye que dicho impacto ha sido nulo. El impacto visual es muy subjetivo. Un parque adecuadamente diseñado puede llegar a ser incluso objeto de atracción (figura 20.22) Figura Impacto visual El origen del ruido en los aerogeneradores se debe a factores mecánicos y aerodinámicos. La influencia de dicho impacto depende de la distancia. En 484

15 las poblaciones cercanas a dichas instalaciones es más importante el ruido producido por el propio viento (figura 20.23) Figura Ruido producido por un aerogenerador Los impactos por erosión son generados principalmente por el movimiento de tierras para el trazado de los accesos y en segundo lugar por las excavaciones realizadas para la construcción de las cimentaciones (figura 20.24). Estos impactos pueden minimizarse realizando adecuados trazados de los caminos y llevando a cabo adecuadas medidas correctoras. Entre estas pueden señalarse la revegetación y remodelación de las pendientes y la reposición de la vegetación. Figura Impacto por erosión 485

16 20.6. Situación actual En la actualidad el sector eólico está experimentando, a nivel mundial, unas tasas de crecimiento muy altas, tanto a nivel de potencia instalada como a nivel de desarrollo tecnológico. Las plantas eólicas destinadas a la producción de energía eléctrica se han integrado completamente en la estructura energética de los países con recursos eólicos. A finales de 2001 la potencia mundial de origen eólico superaba los 23GW, con una tasa anual de crecimiento del 30%. La Unión Europea lidera el panorama mundial, ya que supera el 80% del total de potencia instalada. Le siguen a gran distancia América y Asia. Entre los países de la Unión Europea el liderazgo lo ostenta Alemania, con más de MW instalados. Le siguen España y Dinamarca. Estos tres países de la Unión Europea lideran actualmente el panorama eólico mundial, tanto por la potencia instalada como por el número de aerogeneradores que fabrican e introducen en el mercado. Sumando los objetivos de potencia eólica instalada, trazados por las distintas comunidades autónomas españolas, en el año 2010 se alcanzarían 8.974MW. Canarias, con 250MW, se situaría en la posición número 7; compartiendo posición con Asturias, Cantabria, y Murcia. 486

Tiene como fuente el viento, es decir, el aire en movimiento. Lo que se aprovecha de la energía eólica es su energía cinética.

Tiene como fuente el viento, es decir, el aire en movimiento. Lo que se aprovecha de la energía eólica es su energía cinética. Energía eólica Tiene como fuente el viento, es decir, el aire en movimiento. Lo que se aprovecha de la energía eólica es su energía cinética. Desde hace siglos el ser humano ha aprovechado la energía eólica

Más detalles

SESION 2 ENERGÍA EÓLICA. Ing. Gonzalo Guerrón MSc

SESION 2 ENERGÍA EÓLICA. Ing. Gonzalo Guerrón MSc SESION 2 ENERGÍA EÓLICA Ing. Gonzalo Guerrón MSc 16/10/2014 Las maquinas eólicas han experimentado cambios en cuanto a su diseño, estos están integradas por un conjunto de subsistemas cuyo objetivo es

Más detalles

Energía eólica. AEROGENERADORES: Funcionamiento, partes y tipos. 1. Funcionamiento. 2. Partes

Energía eólica. AEROGENERADORES: Funcionamiento, partes y tipos. 1. Funcionamiento. 2. Partes Energía eólica La energía eólica tiene su origen en el viento, es decir, en el aire en movimiento. El viento se puede definir como una corriente de aire resultante de las diferencias de presión en la atmósfera

Más detalles

INAMHI. DIRECCION EJECUTIVA Met. Carlos Naranjo. MARZO - 2013

INAMHI. DIRECCION EJECUTIVA Met. Carlos Naranjo. MARZO - 2013 INAMHI DIRECCION EJECUTIVA Met. Carlos Naranjo. MARZO - 2013 1.- DEFINICION 2.- CIRCULACIÓN GENERAL DE LA ATMÓSFERA 3.- FACTORES QUE INTERVIENEN EN EL VIENTO 4.- REGIONES DEPRESIONARIAS Y ANTICICLONICAS

Más detalles

Física y Tecnología Energética. 18 - Energía Eólica.

Física y Tecnología Energética. 18 - Energía Eólica. Física y Tecnología Energética 18 - Energía Eólica. Energía eólica La atmósfera es una máquina térmica Calor (Sol) Energía cinética (viento) El viento se genera por las diferencias de presión provocadas

Más detalles

HISTORIA DE LOS AE A ROGE G NE N RAD A O D RES

HISTORIA DE LOS AE A ROGE G NE N RAD A O D RES HISTORIA DE LOS AEROGENERADORES Introducción Un molino de viento es una máquina que transforma la energía del viento en energía aprovechable. Para poder realizar dicha transformación, cualquier molino

Más detalles

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

ENERGÍA ELÉCTRICA. Central Eólica

ENERGÍA ELÉCTRICA. Central Eólica ENERGÍA ELÉCTRICA. Central Eólica La energía eólica es la energía obtenida por el viento, es decir, la energía cinética obtenida por las corrientes de aire y transformada en energía eléctrica mediante

Más detalles

Energía eólica. Energía eólica

Energía eólica. Energía eólica Energía eólica I. Introducción. II. Aerogeneradores: Funcionamiento, tipos y constitución. II.1. Funcionamiento II.2. Tipos II.3. Constitución III. Diseño de las instalaciones IV. Aplicaciones V. Ventajas

Más detalles

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA FICHA DE CONSULTA Sumario 1. Glosario 1.1. Siglas 3 1.2. Términos 3 2. Paneles solares 2.1. Qué es un panel solar? 4 2.2. Cómo funciona un panel solar? 6 2 1. Glosario 1.1. Siglas 1.2. Términos W/m² Watts

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Viento. energía.eólica

Viento. energía.eólica 32 33 Viento energía.eólica 34 laenergíaeólica Origen del viento El viento tiene su origen en la energía solar. Las diferencias de temperatura entre las distintas zonas de la Tierra provocan varias densidades

Más detalles

TEMA: Dossier Energía Eólica. FECHA 14 04 08 PROYECTO O TRABAJO Dossier resumen sobre Energía Eólica

TEMA: Dossier Energía Eólica. FECHA 14 04 08 PROYECTO O TRABAJO Dossier resumen sobre Energía Eólica Una instalación de energía eólica busca el aprovechamiento de la energía cinética del viento para transformarlo en energía eléctrica. Se basa en la utilización de aerogeneradores o molinos eólicos que

Más detalles

Energías Renovables. Energía Eólica. Guía Técnica. Fotografía: Ministerio de Educación y Ciencia

Energías Renovables. Energía Eólica. Guía Técnica. Fotografía: Ministerio de Educación y Ciencia Energías Renovables Energía Eólica Guía Técnica Fotografía: Ministerio de Educación y Ciencia INTRODUCCIÓN El objetivo de esta guía técnica es proporcionar una idea del potencial eólico de un emplazamiento

Más detalles

El viento es libre, abundante y gratis.

El viento es libre, abundante y gratis. El viento es libre, abundante y gratis. El viento es un recurso energético abundante e inagotable, que se encuentra bien distribuido por todo el mundo, hace de la energía eólica una fuente de energía segura,

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

LECCIÓN 8. Aerogeneradores INTRODUCCIÓN

LECCIÓN 8. Aerogeneradores INTRODUCCIÓN 54 LECCIÓN 8. Aerogeneradores Competencia. Diseña con su equipo K Nex un aerogenerador, para producir electricidad. Indicador. Elabora un aerogenerador para producir electricidad. INTRODUCCIÓN Gracias

Más detalles

Turbinas de vapor. Introducción

Turbinas de vapor. Introducción Turbinas de vapor Introducción La turbina de vapor es una máquina de fluido en la que la energía de éste pasa al eje de la máquina saliendo el fluido de ésta con menor cantidad de energía. La energía mecánica

Más detalles

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS

ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS ESTUDIO DEL SISTEMA ESTÁTICO DE PROTECCIÓN DE UNA TURBINA A GAS Patricio León Alvarado 1, Eduardo León Castro 2 1 Ingeniero Eléctrico en Potencia 2000 2 Director de Tesis. Postgrado en Ingeniería Eléctrica

Más detalles

P E R F I L D E E M P R E S A

P E R F I L D E E M P R E S A P E R F I L D E E M P R E S A Nombre de la Compañía Sistema Eólico Morcillo S.L Descripción (1 línea) Producción de energía eléctrica con nuestro sistema patentado Dirección Web C/ Jacinto Benavente Nº3

Más detalles

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles.

Las aplicaciones hidráulicas son clasificadas básicamente en : Aplicaciones estacionarias y Aplicaciones móviles. 1. Hidráulica. En los modernos centros de producción y fabricación, se emplean los sistemas hidráulicos, estos producen fuerzas y movimientos mediante fluidos sometidos a presión. La gran cantidad de campos

Más detalles

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE LA TECNOLOGÍA DE LA ENERGÍA SOLAR TÉRMICA Introducción Un sistema de energía solar térmica es aquel que permite

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

LA ENERGÍA MUEVE AL MUNDO

LA ENERGÍA MUEVE AL MUNDO LA ENERGÍA MUEVE AL MUNDO La historia del hombre siempre ha estado condicionada por la energía, pero Qué es la energía? Dónde esta? Empezando por los seres Vivos quienes son capaces de convertir los alimentos

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.4.

Más detalles

PROYECTO TALLER DE LAS AMÉRICAS

PROYECTO TALLER DE LAS AMÉRICAS Hotel y Centro Médico Especializado Fort Lauderdale, Florida PROYECTO TALLER DE LAS AMÉRICAS ARQUITECTURA IV TALLER VIRTUAL CASTILLO, Betzabé DE VICTORIA, Virginia ubicación del terreno vistas a intervenir

Más detalles

Energía eólica. AEROGENERADORES: Funcionamiento, partes y tipos. 1. Funcionamiento. 2. Partes

Energía eólica. AEROGENERADORES: Funcionamiento, partes y tipos. 1. Funcionamiento. 2. Partes Energía eólica La energía eólica tiene su origen en el viento, es decir, en el aire en movimiento. El viento se puede definir como una corriente de aire resultante de las diferencias de presión en la atmósfera

Más detalles

Capítulo 3. Magnetismo

Capítulo 3. Magnetismo Capítulo 3. Magnetismo Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este

Más detalles

INGENIERIA DE LA ENERGIA HIDRAULICA. Mg. ARRF 1

INGENIERIA DE LA ENERGIA HIDRAULICA. Mg. ARRF 1 INGENIERIA DE LA ENERGIA HIDRAULICA Mg. ARRF 1 La disponibilidad de la energía ha sido siempre esencial para la humanidad que cada vez demanda más recursos energéticos para cubrir sus necesidades de consumo

Más detalles

Electrificación en zonas rurales mediante sistemas híbridos

Electrificación en zonas rurales mediante sistemas híbridos Electrificación en zonas rurales mediante sistemas híbridos Julio 2013 Pág. 1 de 6 Antecedentes y situación actual En los últimos años, el crecimiento y desarrollo del sector fotovoltaico ha sufrido un

Más detalles

Los paneles fotovoltaicos se componen de numerosas celdas de silicio, también llamadas células fotovoltaicas, que convierten la luz en electricidad.

Los paneles fotovoltaicos se componen de numerosas celdas de silicio, también llamadas células fotovoltaicas, que convierten la luz en electricidad. El panel solar: sus usos y beneficios Ficha 3 La energía solar es, actualmente, una de las fuentes de energía limpia y renovable más rentable y fiable para satisfacer las demandas energéticas del planeta.

Más detalles

ENERGÍA EÓLICA Dr. Ricardo Guerrero Lemus ENERGÍA EÓLICA. Dr. Ricardo Guerrero Lemus

ENERGÍA EÓLICA Dr. Ricardo Guerrero Lemus ENERGÍA EÓLICA. Dr. Ricardo Guerrero Lemus ENERGÍA EÓLICA Dr. Ricardo Guerrero Lemus 1 La energía eólica en forma de electricidad se obtiene de la conversión de la fuerza del viento en un par (fuerza de giro) actuando sobre las palas de un rotor.

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

Examen de TEORIA DE MAQUINAS Junio 94 Nombre...

Examen de TEORIA DE MAQUINAS Junio 94 Nombre... Examen de TEORIA DE MAQUINAS Junio 94 Nombre... El robot plano de la figura transporta en su extremo una masa puntual de magnitud 5M a velocidad constante horizontal de valor v. Cada brazo del robot tiene

Más detalles

D E S C R I P C I O N

D E S C R I P C I O N SISTEMA DE REFRIGERACIÓN CON CO 2 COMO FLUIDO SECUNDARIO D E S C R I P C I O N OBJETO DE LA INVENCIÓN La presente invención se refiere a un sistema de refrigeración con CO 2 como fluido secundario que

Más detalles

PLAN DE RECUPERACIÓN DE MATERIAS PENDIENTES

PLAN DE RECUPERACIÓN DE MATERIAS PENDIENTES PLAN DE RECUPERACIÓN DE MATERIAS PENDIENTES ACTIVIDADES DE RECUPERACIÓN DE LA ASIGNATURA DE TECNOLOGÍA 3 ESO Los alumnos que tienen pendiente la asignatura de Tecnología de 3º de la ESO encontrándose en

Más detalles

FL 30. Fiabilidad en la red con 30 kw conectados durante 15 años. Potencia nominal: 30 kw Rotor: 13 m Torre celosía: 18 / 27 m

FL 30. Fiabilidad en la red con 30 kw conectados durante 15 años. Potencia nominal: 30 kw Rotor: 13 m Torre celosía: 18 / 27 m FL 30 Fiabilidad en la red con 30 kw conectados durante 15 años Potencia nominal: 30 kw Rotor: 13 m Torre celosía: 18 / 27 m Desde que se utiliza la energía eólica el aerogenerador FL 30 ha demostrado

Más detalles

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 Por Guillermo Martín Díaz Alumno de: 1º Ingeniería Informática Curso 2005/2006 ËQGLFH Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 2 0RWRUHVGH&RUULHQWHFRQWLQXD Son los mas

Más detalles

El motor de reluctancia conmutado - Un motor eléctrico con gran par motor y poco volumen

El motor de reluctancia conmutado - Un motor eléctrico con gran par motor y poco volumen El motor de reluctancia conmutado - Un motor eléctrico con gran par motor y poco volumen J. Wolff, G. Gómez Funcionamiento El principio de funcionamiento del motor de reluctancia conmutado, que en muchas

Más detalles

LA PRODUCCIÓN DE LA ENERGÍA ELÉCTRICA

LA PRODUCCIÓN DE LA ENERGÍA ELÉCTRICA LA PRODUCCIÓN DE LA ENERGÍA ELÉCTRICA 1.- Introducción Cualquiera de las actividades que realizamos a diario precisa del empleo de energía. En otros tiempos solo se podía recurrir al esfuerzo físico de

Más detalles

UNIDAD V Vientos Contenidos Causas generadoras del viento. Caracterización de los vientos: dirección, velocidad e intensidad. Instrumental. Fuerza del gradiente de presión. Fuerza desviadora de Coriolis.

Más detalles

ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA

ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA ESTUDIO DE DIFERENTES FORMAS DE OBTENER ENERGÍA ELÉCTRICA Producción de energía eléctrica La energía eléctrica se produce a través de unos aparatos llamados generadores o alternadores. Un generador consta,

Más detalles

Acondicionadores de aire

Acondicionadores de aire Acondicionadores de aire 1. Tipos de Equipos Existen equipos acondicionadores condensados por aire y condensados por agua. En esta descripción se incluyen únicamente los condensados por aire, dada su fácil

Más detalles

CALENTAMIENTO DE AGUA CON LA AYUDA DE PANELES FOTOVOLTAICOS INVENTO ESLOVACO PATENTADO CALENTADORES DE AGUA HÍBRIDOS LOGITEX CATÁLOGO DE PRODUCTOS

CALENTAMIENTO DE AGUA CON LA AYUDA DE PANELES FOTOVOLTAICOS INVENTO ESLOVACO PATENTADO CALENTADORES DE AGUA HÍBRIDOS LOGITEX CATÁLOGO DE PRODUCTOS CALENTAMIENTO DE AGUA CON LA AYUDA DE PANELES FOTOVOLTAICOS INVENTO ESLOVACO PATENTADO CALENTADORES DE AGUA HÍBRIDOS LOGITEX CATÁLOGO DE PRODUCTOS Los calentadores de agua de marca LOGITEX constituyen

Más detalles

Capítulo I. Fundamentos de utilización de la Energía Eólica.

Capítulo I. Fundamentos de utilización de la Energía Eólica. Capítulo I Fundamentos de utilización de la Energía Eólica. La fuente de energía eólica es el viento. Energía eólica es la energía mecánica que en forma de energía cinética transporta el aire en movimiento.

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 APARATOS DE MEDIDA ANALOGICOS Esencialmente el principio de funcionamiento

Más detalles

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza

Más detalles

MÁSTER EN ENERGÍAS RENOVABLES

MÁSTER EN ENERGÍAS RENOVABLES MÁSTER EN ENERGÍAS RENOVABLES IMPARTIDO POR Fundación Aucal TÍTULO OTORGADO POR Título Propio de la Universidad Francisco de Vitoria MODALIDAD On Line COLABORACIONES Universidad Francisco de Vitoria OBJETIVOS

Más detalles

ENERGIAS ALTERNATIVAS Prof. Carlos Nodar 1

ENERGIAS ALTERNATIVAS Prof. Carlos Nodar 1 ENERGIAS ALTERNATIVAS Prof. Carlos Nodar 1 A través de su historia, el ser humano ha ido creciendo en su dependencia energética. Hoy en día es inimaginable la vida sin provisión de energía. Iluminación,

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

Capítulo 2, descripción de las turbinas de viento y de los parques eólicos offshore. Capítulo 3, presentación de la máquina de inducción.

Capítulo 2, descripción de las turbinas de viento y de los parques eólicos offshore. Capítulo 3, presentación de la máquina de inducción. Autor: Héctor A. López Carballido. Universidad de destino: Chalmers University of Technology Supervisor: Törbjorn Thiringer Coordinador académico: Julio Usaola Cotutor uc3m: Julio Usaola Fecha de lectura:

Más detalles

4. Tipos de servomotores. Clasificación según su topología:

4. Tipos de servomotores. Clasificación según su topología: 4. Tipos de servomotores. Clasificación según su topología: Motor Inducido de Tres fases AC Motor Tipo Brush DC Brushless Servo Motor (AC & DC) Motor Paso a Paso SwitchedReluctance Motors Motor Lineal

Más detalles

Energía Eólica. para alumnos de nivel primario. Ing. Osvaldo Luis Mosconi. Instituto Nacional de Tecnología Industrial

Energía Eólica. para alumnos de nivel primario. Ing. Osvaldo Luis Mosconi. Instituto Nacional de Tecnología Industrial Instituto Nacional de Tecnología Industrial Energía Eólica para alumnos de nivel primario página 27 Ing. Osvaldo Luis Mosconi Energía Eólica para alumnos de nivel primario Comodoro Rivadavia - Chubut /

Más detalles

Qué es PRESS-SYSTEM?

Qué es PRESS-SYSTEM? Qué es PRESS-SYSTEM? Es un sistema novedoso desarrollado e implementado por Efinétika que consigue mejoras sobre el rendimiento de los sistemas de bombeo de fluidos, aportando grandes ahorros energéticos

Más detalles

MÁQUINAS ELÉCTRICAS: MOTORES

MÁQUINAS ELÉCTRICAS: MOTORES MÁQNAS ELÉCTRCAS: MOTORES Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía eléctrica. Según esto podemos clasificar las máquinas eléctricas en tres

Más detalles

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento.

Un motor térmico utiliza la energía almacenada en un combustible y la transforma en movimiento. Las máquinas térmicas -Todos los combustibles, tanto los renovables como los no renovables, proporcionan energía térmica, y esta es susceptible de transformarse en energía mecánica (movimiento) a través

Más detalles

2.1. CONCEPTOS BÁSICOS.

2.1. CONCEPTOS BÁSICOS. Clase 2.1A Pág. 1 de 5 2.1. CONCEPTOS BÁSICOS. 2.1.1. El agua en el terreno. Se considera que el medio físico donde se mueve el agua y se realizan todos los fenómenos relacionados con la hidrología subterránea

Más detalles

Sustainable buildings: renewable energy Edificios sostenibles: energías renovables

Sustainable buildings: renewable energy Edificios sostenibles: energías renovables Sustainable buildings: renewable energy Edificios sostenibles: energías renovables Guía de Integración de las energías renovables en la edificación: Minieólica y Geotermia Carlos Forés Zaragozá 15 Abril

Más detalles

Tema 1.1 La bóveda celeste. Fundamentos geométricos.

Tema 1.1 La bóveda celeste. Fundamentos geométricos. Módulo 1. La bóveda celeste. Astronomía observacional. Tema 1.1 La bóveda celeste. Fundamentos geométricos. Objetivos del tema: En este tema aprenderemos los fundamentos geométricos del movimiento de la

Más detalles

Suministro de Agua I. Obras para la captación de manantiales. Jose Fernando Samayoa R. Ingeniero Civil e Hidrogeólogo

Suministro de Agua I. Obras para la captación de manantiales. Jose Fernando Samayoa R. Ingeniero Civil e Hidrogeólogo Suministro de Agua I Obras para la captación de manantiales Jose Fernando Samayoa R. Ingeniero Civil e Hidrogeólogo Antigua Guatemala, 31 de Julio de 2013 Ciclo hidrológico Cuenca hidrográfica-afloramientos

Más detalles

ESTUDIO DE SEGURIDAD DEL SECTOR COMERCIAL

ESTUDIO DE SEGURIDAD DEL SECTOR COMERCIAL C CÁMARA DE COMERCIO DE COSTA RICA ESTUDIO DE SEGURIDAD DEL SECTOR COMERCIAL MEDICIÓN ANUAL 2012 ESTUDIO DE SEGURIDAD DEL SECTOR COMERCIAL MEDICION ANUAL DEL 2012 LOS COSTOS DE LA INSEGURIDAD DEL SECTOR

Más detalles

Diseño conceptual. Diseño conceptual del rotor principal. Referencia Básica [Lei02] Helicópteros () Diseño Rotor principal 1 / 25

Diseño conceptual. Diseño conceptual del rotor principal. Referencia Básica [Lei02] Helicópteros () Diseño Rotor principal 1 / 25 Diseño conceptual Diseño conceptual del rotor principal Referencia Básica [Lei02] Helicópteros () Diseño Rotor principal 1 / 25 Requisitos del diseño I El diseño de un helicóptero implica un entorno multidisciplinar.

Más detalles

TRANSFORMADORES TRANSFORMADORES

TRANSFORMADORES TRANSFORMADORES Sean dos bobinas N 1 y N 2 acopladas magnéticamente. Si la bobina N 1 se conecta a una tensión alterna sinusoidal v 1 se genera en la bobina N 2 una tensión alterna v 2. Las variaciones de flujo en la

Más detalles

7. Inversión. Concepto y tipos de inversión. La inversión y el sector industrial

7. Inversión. Concepto y tipos de inversión. La inversión y el sector industrial Cuánto invierten las empresas del sector industrial? Qué bienes de inversión adquieren las empresas industriales? Cuáles son las actividades más inversoras? Influye el tamaño de la empresa en las decisiones

Más detalles

INDICE. - Molinos de eje Horizontal - Molinos de eje Vertical

INDICE. - Molinos de eje Horizontal - Molinos de eje Vertical 02 Sin duda la energía eólica es una de las energías renovables más importantes que existen. INDICE DOSSIER INFORMATIVO 1 DEFINICION 2 CÓMO FUNCIONA 3 QUÉ ES NECESARIO PARA INSTALAR ENERGÍA EÓLICA? 4 PRINCIPIO

Más detalles

UNIDAD 6.- NEUMÁTICA.

UNIDAD 6.- NEUMÁTICA. UNIDAD 6.- NEUMÁTICA. 1.-ELEMENTOS DE UN CIRCUITO NEUMÁTICO. El aire comprimido se puede utilizar de dos maneras distintas: Como elemento de mando y control: permitiendo que se abran o cierren determinadas

Más detalles

CONCENTRACION DE LA RADIACION SOLAR

CONCENTRACION DE LA RADIACION SOLAR CONCENTRACION DE LA RADIACION SOLAR Introducción La radiación solar que llega al límite externo de la atmósfera es de 1400 w/m2. Sobre la superficie terrestre, en regiones de baja latitud y alta heliofanía

Más detalles

XV OLIMPIADAS MATEMÁTICAS THALES 2011

XV OLIMPIADAS MATEMÁTICAS THALES 2011 Nombre del equipo: Centro: Localidad: Si Don Quijote con su fiel escudero Sancho Panza viajaran de nuevo por los caminos de asfalto de nuestra geografía, se volvería a repetir la escena de los gigantes:

Más detalles

CONVERSIÓN FOTOVOLTAICA

CONVERSIÓN FOTOVOLTAICA Energía solar Qué se puede obtener con la energía solar? Básicamente, recogiendo de forma adecuada la radiación solar, podemos obtener calor y electricidad. El calor se logra mediante los captadores o

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas.

Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Objetivo: observar el tipo de mantenimiento que se da a instalaciones de gas e instalaciones neumáticas. Son equipos que proveen de energía eléctrica en forma autónoma ante interrupciones prolongadas y

Más detalles

COGENERACIÓN. Santiago Quinchiguango

COGENERACIÓN. Santiago Quinchiguango COGENERACIÓN Santiago Quinchiguango Noviembre de 2014 8.3 Selección del motor térmico. 8.3 Selección del motor térmico. MOTORES TÉRMICOS INTRODUCCIÓN Los motores térmicos son dispositivos que transforman

Más detalles

Básicamente, capturando de forma eficiente la radiación solar, podemos obtener calor

Básicamente, capturando de forma eficiente la radiación solar, podemos obtener calor Qué es la energía solar? La energía solar es una de las fuentes de energía renovable que más desarrollo está experimentando en los últimos años y con mayores expectativas de futuro. Cada año el sol emite

Más detalles

CENTRALES HIDROELECTRICAS

CENTRALES HIDROELECTRICAS CENTRALES HIDROELECTRICAS Las centrales hidroeléctricas son instalaciones que permiten aprovechar la energía potencial gravitatoria del agua que transportan los ríos en energía eléctrica, utilizando turbinas

Más detalles

Pagar sólo lo que consumo

Pagar sólo lo que consumo Pagar sólo lo que consumo Síntesis Perfecta Ahorro Confort Gestión En las miles de instalaciones comunitarias antiguas, donde no se podían incorporar dispositivos de medición, donde el reparto de costes

Más detalles

PLANEAMIENTO DE LAS COMUNICACIONES EN EMERGENCIAS REDES PRIVADAS DISPONIBLES EN EMERGENCIAS TELEFONÍA VÍA SATÉLITE. Índice

PLANEAMIENTO DE LAS COMUNICACIONES EN EMERGENCIAS REDES PRIVADAS DISPONIBLES EN EMERGENCIAS TELEFONÍA VÍA SATÉLITE. Índice Índice 1. REDES PRIVADAS. TELEFONÍA VIA SATÉLITE...2 1.1 SERVICIOS VIA SATELITE... 2 1.1.1 SATELITES GEOESTACIONARIOS... 2 1.1.2 Satelites no Geoestacionarios... 4 1.1.2.1 CARACTERÍSTICAS...4 1.1.2.2 TIPOS.

Más detalles

CONCLUSIONES GENERALES

CONCLUSIONES GENERALES 7 CONCLUSIONES GENERALES CONCLUSIONES. La intención de realizar un trabajo como este, era la de conocer con mayor profundidad, las posibilidades de la vegetación como un instrumento para mejorar la condiciones

Más detalles

P (potencia en watios) = U (tensión eléctrica en voltios) x I (corriente eléctrica en amperios)

P (potencia en watios) = U (tensión eléctrica en voltios) x I (corriente eléctrica en amperios) 1) La placa solar Introducción Una célula solar o célula fotovoltaica es un componente electrónico que, expuesto a la luz, genera una energía eléctrica. Las baterías de células están generalmente agrupadas

Más detalles

EL SISTEMA SOLAR. Los componentes del Sistema Solar

EL SISTEMA SOLAR. Los componentes del Sistema Solar Los componentes del Sistema Solar EL SISTEMA SOLAR El Sistema Solar está formado por el Sol y todos los astros que giran en tomo a él: planetas, satélites (que giran alrededor de los planetas), cometas

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

CONOCE TURBINA. Los combustibles utilizados habitualmente en las centrales térmicas son el carbón, petróleo o gas.

CONOCE TURBINA. Los combustibles utilizados habitualmente en las centrales térmicas son el carbón, petróleo o gas. (PAG. 18) 1. Completa en tu cuaderno la siguiente tabla y calculando la energía consumida por cada uno de estos equipos TIEMPO POTENCIA (kwh) BOMBILLA 2 horas 100 W 0,2 BOMBA HIDRAÚLICA 5 horas 5 kw 25

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios:

Al aplicar las técnicas de ahorro de combustible permite obtener los siguientes beneficios: MANUAL DE CAPACITACIÓN EN CONDUCCIÓN EFICIENTE INTRODUCCIÓN Señor Conductor: Este manual esta dedicado a usted CONDUCTOR PROFESIONAL!, en cuyas capaces y hábiles manos descansa la responsabilidad final

Más detalles

INFORME INSTALACIONES HÍBRIDAS

INFORME INSTALACIONES HÍBRIDAS INFORME INSTALACIONES HÍBRIDAS Instalaciones Híbridas pág. 1 INDICE 1. INTRODUCCION Y CONCEPTOS GENERALES 3. 2. ELEMENTOS DE LAS INSTALACIONES HÍBRIDAS...4. 3. INSTALACIONES HÍBRIDAS HABITUALES...5. 4.

Más detalles

Edificio Cero Emisiones

Edificio Cero Emisiones Edificio Cero Emisiones Eficiencia energética y tecnologías renovables ACCIONA es experta en incorporar a la edificación soluciones que permitan optimizar el ahorro y la eficiencia energética, basadas

Más detalles

RODAMIENTO (también denominado rulemán o cojinete)

RODAMIENTO (también denominado rulemán o cojinete) RODAMIENTO (también denominado rulemán o cojinete) Es un elemento mecánico que reduce la fricción entre un eje y las piezas conectadas a éste, que le sirve de apoyo y facilita su desplazamiento. En busca

Más detalles

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL 8.1. CAMPO MAGNÉTICO CREADO POR UN ELEMENTO DE CORRIENTE Una carga eléctrica en movimiento crea, en el espacio que la rodea, un campo magnético.

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

LA RADIACION SOLAR CAPITULO 1

LA RADIACION SOLAR CAPITULO 1 CAPITULO 1 LA RADIACION SOLAR ESPECTRO LUMINOSO La luz, sea ésta de origen solar, o generada por un foco incandescente o fluorescente, está formada por un conjunto de radiaciones electromagnéticas de muy

Más detalles

PREGUNTAS FRECUENTES

PREGUNTAS FRECUENTES PREGUNTAS FRECUENTES ÍNDICE Qué son los Repartidores de costes de calefacción? Montaje y funcionamiento de los repartidores Base de datos de radiadores existentes. Precio de los Repartidores de Costes

Más detalles

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR Máquinas Eléctricas Las máquinas eléctricas son convertidores electromecánicos capaces de transformar energía desde un sistema eléctrico a un sistema mecánico o viceversa Flujo de energía como MOTOR Sistema

Más detalles

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Por Mitsuaki Tada Traducido por ENTESIS technology Este artículo describe la combinación de

Más detalles

EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS

EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS EXPERIMENTO 1: Electrostática EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS Objetivos Obtener cargas de distinto signo mediante varios métodos y sus características Uso del electroscopio como detector

Más detalles

8. Concentración en la industria

8. Concentración en la industria 8. Concentración en la industria Cuál es el grado de concentración de la industria española? Qué actividades destacan por su mayor o menor concentración? Se han producido cambios significativos en el periodo

Más detalles

Ficha Técnica. Categoría. Contenido del Pack. Sinopsis. Energías Renovables. - 2 Manual Teórico - 1 CDROM - 1 Cuaderno de Ejercicios

Ficha Técnica. Categoría. Contenido del Pack. Sinopsis. Energías Renovables. - 2 Manual Teórico - 1 CDROM - 1 Cuaderno de Ejercicios Ficha Técnica Categoría Energías Renovables Contenido del Pack - 2 Manual Teórico - 1 CDROM - 1 Cuaderno de Ejercicios Sinopsis La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir

Más detalles

[ NOTA TÉCNICA ] multiplexado) los cálculos teóricos de dichas presiones realizadas por el módulo del ESP (Control de estabilidad lateral).

[ NOTA TÉCNICA ] multiplexado) los cálculos teóricos de dichas presiones realizadas por el módulo del ESP (Control de estabilidad lateral). [ 41 [ NOTA TÉCNICA ] 38 ] Los sistemas de seguridad se han ido desarrollando a lo largo de los años para brindar a los ocupantes del vehículo el resguardo necesario. La tecnología fue evolucionando, y

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS

BANDA CURVA. [Escriba su dirección] [Escriba su número de teléfono] [Escriba su dirección de correo electrónico] INTRODUCCIÓN TOLERANCIAS ANDA HÖKEN ANDAS CURVA MODULARES ANDA CURVA INTRODUCCIÓN TOLERANCIAS DISEÑO DEL MÓDULO DISEÑO DEL PIÑÓN DISEÑO DE PALETA EMPUJADORA DISEÑO DE TAPÓN CONTENEDOR DE VARILLA INDICACIONES PARA EL MONTAJE CARACTERISTICAS

Más detalles

Vegetación sobre asfalto

Vegetación sobre asfalto Vegetación sobre asfalto El cambio climático El cambio climático se ha desencadenado por el veloz crecimiento de las concentraciones de gases de efecto invernadero, como son el Dióxido de Carbono (CO2)

Más detalles

ENERGIAS RENOVABLES EN GUATEMALA

ENERGIAS RENOVABLES EN GUATEMALA Ministerio de y Minas ENERGIAS RENOVABLES EN GUATEMALA PUNTOS ESPECIAL: DE INTERÉS EN Guatemala se encuentra en una posición estratégica. Existe potencial disponible en recursos hídricos, geotérmicos,

Más detalles