CAMPEONATO DEL MUNDO DE MOTOCROSS FEMENINO KIARA YA ES TRICAMPEONA!

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CAMPEONATO DEL MUNDO DE MOTOCROSS FEMENINO KIARA YA ES TRICAMPEONA!"

Transcripción

1 02 MOTORSPORT KIARA NOVEDADES DEL DEPORTE DE LAS DOS RUEDAS NÚMERO CAMPEONATO DEL MUNDO DE MOTOCROSS FEMENINO KIARA YA ES TRICAMPEONA! ALBIE WILKIE MOTO RSII 06

2 02 KIARA YA ES TRICAMPEONA! Kiara Fotaesi cosiguió su tercer Campeoato cosecutivo del Mudo de Motocross de la FIM e la categoría femeia el pasado mes de julio. La mujer más rápida e el mudo de Motocross tiee ta sólo 20 años y vive e Potetaro, Italia. Kiara cotestó varias pregutas a Dulop: Felicidades otra vez, cómo ha sido esta temporada? Ha sido muy difícil. Etrar e la última roda co sólo ua vetaja de cuatro putos sigificaba que teía que darlo todo. No había estado e ua situació similar e los dos títulos ateriores. Co ua caída, probablemete habría fializado quita o sexta a diferecia del año pasado que habría perdido ua de las dos posicioes. No ha sido como correr el año pasado. Este es tu tercer título: e qué se diferecia de los otros dos? Los dos últimos títulos los gaé co ua carrera todavía por delate. Ha sido difícil después de la primera roda y ha sido todos altibajos. No ha sido mi mejor año, pero hemos etreado bie y hemos visto que ha fucioado. Estuve etreado duro ates de la última carrera mateiédome fuerte metalmete,

3 además hemos teido ua moto puesta a puto e todo mometo. Lo coseguí co la primera moto y vi que lo podía coseguir. Fue icluso mejor gaar el campeoato de esa maera. Si gaas todo el tiempo, o apredes. Al superar los problemas, cosigues más experiecia y este año he progresado mucho de esta maera. Cuál es tu próximo reto? He firmado por u año más e el Campeoato del Mudo de Motocross Femeio. Quiero gaar el campeoato de uevo el año que viee. Este es el primer título mudial gaado co los eumáticos Dulop de ueva geeració, cuál es tu opiió? Estoy muy coteta co Dulop. Especialmete el pasado fi de semaa, ha estado pedietes de mí e todas las sesioes y ha cambiado lo ecesario para volver a coseguir que yo fuera la mejor del mudo de uevo. Gaamos por ua combiació de factores. Los eumáticos del año pasado ya era bueos. Este año so mejores (co los últimos eumáticos MX32 y MX52) co más agarre e las curvas cuado aceleras. Quiero dar las gracias a todos e Dulop; el equipo estuvo todo el tiempo e su lugar para ser los mejores. Tambié a mi equipo, Yamaha, Moster Eergy y todos mis patrociadores. 03

4 TEA DE M M DE BUT D OTO LM E RS L UN A T EV DO EM EN DE PO TS RES RAD DEJ IST A D A H EN EL UEL CIA CA LA (EW MP EN C) EON EL ATO Los El e gaa el quipo dores Los Bol d ha fu del C de equip Or y cio ampe Os cas che os de tras fi ado e oato l x r i to da slebe Camp aliza trema del M r la c u e arre, dod oato la ca dame do de rre ra d e e d t ura l Su el Mu ra e e bie Resi te z s las uki E do de el exig e su tecia och dur e R prim de t es a oh ora ce R istec e eve era 2013 t sd e d acig ia y la to de empo mati ura Tea rad ee C S o u ció. m dom pa Su zuka. a de su alto pos ió pers vue ició el a por t ah lo c e ño pas ora o ado se u la cat d cua ego ma irig e rí rto te ié al c lug a rei do ircu ar e a. se i líde to ale r e má 04

5 CAMPEONATO HONDA 150 El britáico Albie Wilkie es el uevo vecedor del campeoato europeo Hoda 150. Albie, de 14 años, ha gaado cuatro de las diez carreras y o ha termiado por debajo del cuarto puesto durate toda la temporada. Compitió toda la temporada por el título co el filadés Jere Haavisto, cosiguiedo el título co solo dos putos de diferecia. 05

6 Los pilotos e el Campeoato del Mudo de Moto2 está haciedo ua demostració del rago operativo de sus eumáticos e 2014 tomado decisioes similares e cada roda, e comparació co la temporada pasada, cuado los seis primeros e el campeoato solo eligiero los mismos eumáticos ocho veces del total de 17 carreras. Esta temporada hemos visto mucha meos variedad y los seis mejores pilotos solo ha cambiado de opció pocas veces hasta ahora. Clito Howe, Director de Operacioes de Dulop, del Gra Premio de Motociclismo, explica por qué: El año pasado estábamos e ua posició e la que uestro objetivo era teer dos opcioes relativamete iguales para que los pilotos pudiera elegir. Nuestro desarrollo ha sido cotiuo y os hemos cetrado e la ampliació de la vetaa de operació de uestros eumáticos. Esto ha sigificado que los eumáticos que llevamos al circuito ahora so mucho más versátiles que icluso hace solo u par de años y se adapta más a las codicioes. Ua vez que el piloto tiee experiecia y se siete cómodo co los eumáticos, esto sigifica que puede cetrarse e hacer ajustes e la moto e lugar de cambiar de La filosofía de carrera de Dulop se basa e el desarrollo costate y la retroalimetació proporcioada por los mejores pilotos del mudo co el fi de mejorar la gama de productos e geeral. Esto a su vez icluye la gama de eumáticos deportivos dispoibles a ivel comercial que usa sus clietes de todo el mudo. Los eumáticos KR 106/108 y D212GP PRO so similares a los eumáticos de Moto2 e térmios de perfil, compuesto y diseño. Las pricipales diferecias so que se ecesita compuestos especiales para alguos e las pistas más complicadas que figura e el caledario de MotoGP, como Phillip Islad, o co temperaturas muy altas. Los cualificados igeieros de eumáticos de Dulop ha gaado décadas de experiecia e las carreras e todo el mudo trabajado co pilotos e igeieros del equipo y realizado pruebas a lo largo de la temporada y fuera de temporada para desarrollar y mejorar la gama de productos, desde los eumáticos de Moto2 hasta los eumáticos de la gama estádar. Por lo tato, los pilotos puede teer cofiaza e que los eumáticos que elija será adecuados para las codicioes y la fialidad que desee. 06 eumáticos; hay meos variables si se ajusta al eumático que sabe que fucioa para ellos. Los eumáticos para 2014 e geeral so más duros que sus homólogos de A los pilotos o les suele gustar los eumáticos más duros porque piesa que tiee meos agarre y, por lo tato, so más letos que sus homólogos más blados. E el circuito de Sachserig se disputó co el eumático duro especial de última geeració y la carrera fue más rápida por siete segudos que e el año 2013 e la que se usaro los compuestos más blados.

7 MX52 07 Dulop tambié recomieda el RoadSmart II como repuesto del Equipamieto de Orige e los modelos Hoda CBR 650, Hoda CB650F y Hoda VFR800 de Delatero / Tamaño Ídice L/S TT/TL Código SAP Trasero DEL. 120/70 ZR 17 (58W) TL TRA. 180/55 ZR 17 (73W) TL El eumático RoadSmart II presetado e 2011, referecia e la gama de eumáticos sport tourig de Dulop, se ha hecho merecedor del recoocimieto de periodistas y usuarios por su amplio abaico de prestacioes. U factor clave de su éxito so las tecologías empleadas que mejora la estabilidad y el redimieto de ua amplia gama de potetes y pesadas motos, que abarca desde roadsters a grades modelos de trail: El RoadSmart II de Dulop adapta sus dimesioes a la ueva BMW R 1200 GS Delatero / Tamaño Ídice L/S TT/TL Código SAP Trasero DEL. 120/70 R 19 60V TL TRA. 170/60 R 17 72V TL Para Yamaha Vmax 1700 Delatero / Tamaño Ídice L/S TT/TL Código SAP Trasero DEL. 120/70 R 18 (59V) TL TRA. 200/50 R 18 (76V) TL

www.derechoynegocios.net Edición # 53 issn : 2075-6631 Lic. Luis Barahona

www.derechoynegocios.net Edición # 53 issn : 2075-6631 Lic. Luis Barahona Edició # 53 EL SALVADOR iss : 2075-6631 Lic. Luis Barahoa Destacado abogado acioal y regioal e el área del derecho tributario. Co más de 20 años de recorrido profesioal. Socio de la firma Arias & Muñoz.

Más detalles

Guía de servicio al cliente VAIO-Link

Guía de servicio al cliente VAIO-Link Guía de servicio al cliete VAIO-Lik "Tratamos cada problema de cada cliete co cuidado, ateció y respecto y queremos que todos uestros clietes se sieta bie sobre la experiecia que tiee co VAIO-Lik." Guía

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL?

QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Rev. 12/26/12 DATOS Por qué? Qué? QUÉ HACE CALIFORNIA CREDIT UNION CON SU INFORMACIÓN PERSONAL? Las istitucioes fiacieras elige la maera e que comparte su iformació persoal. La ley federal otorga a los

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

MAN HydroDrive. Más tracción. Más flexibilidad. Más seguridad.

MAN HydroDrive. Más tracción. Más flexibilidad. Más seguridad. MN ydrorive. Más tracció. Más flexibilidad. Más seguridad. U milagro de tracció eficiete. Más tracció co gra capacidad de carga. Meor cosumo de combustible y mayor carga útil que e u vehículo co tracció

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS E vez de estimar el valor de u parámetro, a veces se debe decidir si ua afirmació relativa a u parámetro es verdadera o falsa. Vale decir, probar ua hipótesis relativa a u parámetro.

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

Terapias para la depresión resistente a tratamiento. Revisión de las investigaciones

Terapias para la depresión resistente a tratamiento. Revisión de las investigaciones Terapias para la depresió resistete a tratamieto Revisió de las ivestigacioes Es apropiada si: Es esta iformació apropiada para mí o para la persoa a quie cuido? U médico u otro profesioal de salud le

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera LAS FRACCIONES - Las fraccioes como parte de u todo - Nuestros amigos prueba su máquia del tiempo. Egipto les espera Despegamos! E la evolució del pesamieto humao, 000 años a. C., los egipcios comieza

Más detalles

Una de las herramientas más utilizadas por los analistas técnicos es la llamada media móvil.

Una de las herramientas más utilizadas por los analistas técnicos es la llamada media móvil. Medias Móviles Ua de las herramietas más utilizadas por los aalistas técicos es la llamada media móvil. La media móvil de u istrumeto fiaciero es simplemete el promedio de u úmero, predetermiado, de valores

Más detalles

Tratamiento para la apnea del sueño. Revisión de la investigación para adultos

Tratamiento para la apnea del sueño. Revisión de la investigación para adultos Tratamieto para la apea del sueño Revisió de la ivestigació para adultos Es apropiada si: U médico le dijo que tiee "apea obstructiva del sueño (OSA por su sigla e iglés) de grado leve, moderata o grave.

Más detalles

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite 1. LUBRICACIÓN 1.1 Fialidad de la Lubricació La fialidad pricipal de la lubricació es reducir la fricció y el desgaste e el iterior de los rodamietos que podría causar fallos prematuros. Los efectos de

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

Grandparents. Cuestiones legales en el cuidado de sus nietos

Grandparents. Cuestiones legales en el cuidado de sus nietos Gradparets Raisig Gradchildre Cuestioes legales e el cuidado de sus ietos Como abuelo o abuela criado a sus ietos, quizás uca imagió estar ivolucrado co el sistema legal. Pero si sus ietos vive co usted

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

La Enfermedad de los Riñones

La Enfermedad de los Riñones La Efermedad de los Riñoes Qué sigifica para mí? Programa de Educació Nacioal sobre la Efermedad de los Riñoes La efermedad de los riñoes: Datos básicos Le ha iformado que tiee la efermedad de los riñoes.

Más detalles

Ley de los números grandes

Ley de los números grandes Capítulo 2 Ley de los úmeros grades 2.. La ley débil de los úmeros grades Los juegos de azar, basa su sistema de gaacias, fudametalmete e la estabilidad a largo plazo garatizada por las leyes de la probabilidad.

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

La volatilidad implícita

La volatilidad implícita La volatilidad implícita Los mercados de opcioes ha evolucioado bastate desde los años setetas, época e la que ue publicada la órmula de Black Scholes (BS). Dicha órmula quedó ta arraigada e la mete de

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE FORMACIÓN DE LOS DIRECTIVOS SINDICALES. EVALUACIÓN DOCENTE DE CARÁCTER DIAGNÓSTICO FORMATIVA (ECDF) 2016 Este maual

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

El triple reto. entrevista. piloto MotoGP en Repsol Honda

El triple reto. entrevista. piloto MotoGP en Repsol Honda dani pedrosa entrevista El triple reto piloto MotoGP en Repsol Honda Ni Valentino Rossi, ni Casey Stoner, ni Jorge Lorenzo. A Dani Pedrosa (Castellar del Vallés, Barcelona; 1985) sólo le dan respeto esas

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

Un revolucionario nuevo microscopio estéreo

Un revolucionario nuevo microscopio estéreo U revolucioario uevo microscopio estéreo El diseño ergoómico o es ua característica agradable de teer, sio ua característica esecial para el cofort y productividad del operador. U revolucioario uevo microscopio

Más detalles

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS

Por: Lic. Eleazar J. García. República Bolivariana de Venezuela Tinaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Por: Lic. Eleazar J. García. República Bolivariaa de Veezuela Tiaco.- Estado Cojedes. INTEGRALES INDEFINIDAS Usted está familiarizado co alguas operacioes iversas. La adició y la sustracció so operacioes

Más detalles

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9.

Cuadro II.1 Valores absolutos de peso (kg) de niños y niñas < 5 años de Costa Rica, 1966. pc3. pc25 5.3 5.6 5.7 6.1 7.2 5.5 7.6 7.8 8.4 6.4 7.4 9. II. CRECIMIENTO FÍSICO EN CENTROAMÉRICA Y REPÚBLICA DOMINICANA: MEDIDAS ABSOLUTAS PESO Y TALLA, POR EDAD Y SEXO Y COMPARACIÓN CON EL PATRÓN CRECIMIENTO LA OMS (2005) A. Por países 1. Costa Rica E los cuadros

Más detalles

Articulación de los sectores de salud, protección y educación en la atención a la primera infancia *

Articulación de los sectores de salud, protección y educación en la atención a la primera infancia * Foro Mudial de Grupos de trabajo por la Primera Ifacia Sociedad Civil.-Estado Cali, Colombia 1 al 7 de oviembre de 2009. Articulació de los sectores de salud, protecció y educació e la ateció a la primera

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

1. Cómo elijo un plan médico que esté a mi alcance?

1. Cómo elijo un plan médico que esté a mi alcance? Iformació esecial sobre el seguro médico Cómo escoger u pla médico Al elegir u pla médico, recuerde que debe pesar e más que la prima (catidad mesual que pagará por el pla) para saber si está a su alcace.

Más detalles

Dossier de Franquicia. #SomosFisios

Dossier de Franquicia. #SomosFisios Dossier de Fraquicia #SomosFisios ÍNDICE Quiées Somos El modelo de egocio La Fraquicia fisio360 La cetral fisio360 Asociarse a fisio360 Pla de Empresa y proyecto persoalizado Llave e mao 3 4 6 8 9 La filosofía

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) -1-1 1 Sea las matrices A =

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

Midiendo el Desempeño

Midiendo el Desempeño Midiedo el Desempeño Prof. Mariela J. Curiel H. Midiedo el Desempeño Qué variables se desea medir Cuáles so las herramietas dispoibles Qué tecicas se utiliza para calcular los parámetros de etrada de u

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

Ablación con radiofrecuencia para tratar la fibrilación auricular. Guía para adultos

Ablación con radiofrecuencia para tratar la fibrilación auricular. Guía para adultos Ablació co radiofrecuecia para tratar la fibrilació auricular Guía para adultos Hechos resumidos La fibrilació auricular (A-fib, como se cooce e iglés) puede tratarse de varias formas. U tipo de tratamieto

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Conclusiones y recomendaciones a la estrategia de comunicación para el mejoramiento de la calidad educativa de la primera infancia

Conclusiones y recomendaciones a la estrategia de comunicación para el mejoramiento de la calidad educativa de la primera infancia Foro Mudial de Grupos de trabajo por la Primera Ifacia Sociedad Civil.-Estado Cali, Colombia 1 al 7 de oviembre de 2009. 3. Movilizació social y resposabilidad de los medios de comuicació co la Primera

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

ANEXO 2 INTERES COMPUESTO

ANEXO 2 INTERES COMPUESTO ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

Los sistemas operativos en red

Los sistemas operativos en red 1 Los sistemas operativos e red Objetivos del capítulo Coocer lo que es u sistema operativo de red. Ver los dos grupos e que se divide los sistemas oeprativos e red. Distiguir los compoetes de la arquitectura

Más detalles

midiendo la eficacia de la comunicación

midiendo la eficacia de la comunicación 20 OCTUBRE 2014 TEMA DE PORTADA TRACKING IOPE DE TNS: 20 años midiedo la eficacia de la comuicació David Castillo Associate Director e TNS Historia del Trackig IOPE Desde su acimieto e los años 90, tres

Más detalles

Práctica 6: Vectores y Matrices (I)

Práctica 6: Vectores y Matrices (I) Foamets d Iformàtica 1r curs d Egiyeria Idustrial Práctica 6: Vectores y Matrices (I) Objetivos de la práctica El objetivo de las prácticas 6 y 7 es itroducir las estructuras de datos vector y matriz e

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

PASOS PARA CONTROLAR LA DIABETES DE POR VIDA

PASOS PARA CONTROLAR LA DIABETES DE POR VIDA 4 PASOS PARA CONTROLAR LA DIABETES DE POR VIDA 1 1 Ídice Itroducció... 1 Paso 1: Apreda sobre la diabetes... 3 Paso 2: Cuide bie los factores clave de la diabetes... 6 Paso 3: Cotrole su diabetes... 8

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

COJINETES (RODAMIENTOS)

COJINETES (RODAMIENTOS) COJINETES (RODAMIENTOS) Teoría y aplicacioes Proyectos de Igeiería Mecáica Ig. José Carlos López Areales Primeros rodamietos Fricció Es la resistecia que hay etre dos objetos al mometo de mover uo sobre

Más detalles

Global Venture Clasificadora de Riesgo

Global Venture Clasificadora de Riesgo 2 Global Veture Clasificadora de Riesgo L a clasificació de riesgo tiee como propósito pricipal el que los iversioistas y las istitucioes/empresas cuete co ua herramieta que les permita determiar los riesgos

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal.

BIOESTADISTICA (55-10536) Estudios de prevalencia (transversales) 1) Características del diseño en un estudio de prevalencia, o transversal. Departameto de Estadística Uiversidad Carlos III de Madrid BIOESTADISTICA (55-10536) Estudios de prevalecia (trasversales) CONCEPTOS CLAVE 1) Características del diseño e u estudio de prevalecia, o trasversal

Más detalles