rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos."

Transcripción

1 PRÁCTICA INTEGRACIÓN Práctcas Matlab Práctca : Integracón Objetvos o Calcular ntegrales defndas de forma aproxmada, utlzando sumas de Remann. o o o Profundzar en la comprensón del concepto de ntegracón. Manejar los recursos de Matlab para el cálculo de prmtvas y para el cálculo aproxmado y exacto de ntegrales defndas. Dbujar regones del plano, como ayuda para el planteamento de ntegrales. Comandos de Matlab nt Calcula de manera smbólca la ntegral de la funcón f syms x nt(x^/(x^6-8)) rsums Aproxma la ntegral de f medante sumas de Remann y realza una representacón gráfca de los rectángulos. syms x rsums exp(-x^) quad Utlza el método de cuadratura adaptatva de Smpson para calcular la ntegral numérca. quad( funcon,a,b) Utlza como toleranca.e-6 quad( funcon,a,b,tol) aproxma la tnegral de la funcón entre a y b tomando como toleranca tol f=nlne('exp(x.^)'); quad(f,0,)

2 PÁGINA MATLAB: INTEGRACIÓN trapz(x,y) Utlza la regla trapezodal para calcular la ntegral de una funcón trapz(x,y) aproxma el valor de la ntegral de Y con respecto a X. X=0:0.00:; Y=exp(X.^); trapz(x,y) Ejerccos resueltos Cálculo de prmtvas de una funcón Calcular: (a) senaxcos (b) coslog xdx (c) e x dx bx dx Solucón (a) Códgo Matlab syms a b x f=sn(a*x)*cos(b*x); ntegral=dff(f,x); pretty(ntegral) Nota: La ntegral es un proceso dfícl y puede suceder que Matlab no encuentre la prmtva de una funcón. En estos casos devuelve un mensaje del tpo Explct ntegral could not be found como es el caso de la ntegral del apartado (b). Defncón de ntegral defnda: Sumas de Remann TEORÍA.- S f es crecente en ab,, las sumas superor e nferor de Remann para una partcón regular son, respectvamente: n b a b a S f, Pn f a n n n ba ba s f, Pn f a( ) n n S f fuera decrecente las sumas son justo las contraras.

3 MATLAB: INTEGRACIÓN PÁGINA 3 (a) Consderar la funcón ntervalo [0, ]. f x e x. Dbujar su gráfca en el (b) Calcular la expresón de la suma de Remann superor resultado de dvdr el ntervalo [0,] en 0 subntervalos guales. Escrbr después el códgo matlab para obtener su valor. (c) Dbujar los rectángulos cuyo área se corresponde con la suma de Remann del apartado anteror. Crear para ello una funcón externa que depa de la funcón, los extremos del ntervalo y el número de rectángulos. (d) Aproxmar el valor de la ntegral x e dx medante la suma superor de Remann obtenda dvdo el ntervalo 0, en 0 subntervalos guales. 0 Solucón (a) Comandos Matlab x=0:.05:; y=exp(-x.^); plot(x,y,'r','lnewdth',) hold on area(x,y) (b) La suma de Remann será Comandos matlab x x 0 e dx f( c ) x e 0 0 c %De forma smbólca syms n S=symsum((/0)*exp(-(n-)^/00),n,,0); Suma=double(S); %De forma numérca m=:0; am=(/0)*exp(-(m-).^/00); S=sum(am) 0 (c) Para no complcar el códgo se consderará que la funcón f ( x ) es postva en el ntervalo [a, b]. El sguente códgo se nclurá en un fchero de nombre dbujorectangulos.m

4 PÁGINA 4 MATLAB: INTEGRACIÓN functon dbujorectangulos(f,a,b,n) dx=(b-a)/n; for =:n c=a+(-)*dx; h=subs(f,c); %Crea un rectángulo con un vértce en el punto (c,o) de %ancho dx y de alto h f h>0 rectangle('poston',[c 0 dx h],'facecolor',[ ]) hold on ezplot(f,a,b) Para ejecutar esta funcón se escrbrá en la ventana de comandos dbujorectangulos('exp(-x^)',0,,0) (d) Códgo matlab functon area=areaaprox(f,a,b,n) dx=(b-a)/n; area=0; for =:n c=a+(-)*dx; h=subs(f,c); area=area+dx*h; Para ejecutar esta funcón se escrbrá en la ventana de comandos valor=areaaprox('exp(-x^)',0,,0) Área entre dos curvas como límte de sumas de Remann 3 (a) Consderar el área entre las gráfcas de y x, y x en el ntervalo,. Utlzar rectángulos vertcales para aproxmar el área y realzar la representacón de dchos rectángulos junto con las gráfcas de las dos funcones.

5 MATLAB: INTEGRACIÓN PÁGINA 5 (c) Aproxma medante rectángulos vertcales el área entre las dos curvas cuando se consdera el ntervalo, Solucón (a) El área del rectángulo en el ésmo subntervalo de x, x, será,, es decr en el ntervalo

6 PÁGINA 6 MATLAB: INTEGRACIÓN A f x f x x superor nferor es decr, A f x g x x Nota: Por smplcdad en el códgo se consderará que la gráfca de f está por encma de la de g en el ntervalo [a,b] y se deberá tener en cuenta a la hora de llamar a la funcón. Para una versón más completa se puede descargar el fchero areas.m. functon area=areaaproxmada(f,g,a,b,n) dx=(b-a)/n; area=0; hold on for =:n c=a+(-)*dx; h=subs(f,c); h=subs(g,c); h=h-h; area=area+dx*h; %Crea un rectángulo con un vértce en el punto (c,0) de %ancho dx y de alto h f h>0 rectangle('poston',[c 0 dx h],'facecolor',[ ]) xx=a:0.0:b; y=subs(f,xx); y=subs(g,xx); plot(xx,y,'r','lnewdth',3) plot(xx,y,'b','lnewdth',3) Para llamar a la funcón se utlzará areaaproxmada('-x^','x^',0,/sqrt(),40); (b) Podría obtenerse el valor peddo tecleando en la ventana de comandos: areaaproxmada('-x^','x^',0,/sqrt(),3)+areaaproxmada('x^','- x^',/sqrt(),,9) Ejerccos propuestos Repetr el ejercco propuesto tomando a) como altura de cada rectángulo el valor de f ( x) en el extremo derecho de cada uno de ellos. b) tomando como altura de cada rectángulo el valor de f ( x ) en el punto medo de cada uno de ellos.

7 MATLAB: INTEGRACIÓN PÁGINA 7 Utlza rectángulos horzontales para aproxmar el área entre las curvas x y, x y en el nterval [0,]. En este caso el área del rectángulo en el ésmo subntervalo, es decr en y, y, será A f y f y y derecha zquerda

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

PRÁCTICA 3. Programación de ficheros M

PRÁCTICA 3. Programación de ficheros M PRÁCTICA 3. Programacón de fcheros M Perodo de realzacón: Semanas 3 y 4 del curso Fecha límte de entrega: 5 de marzo de 0 Se pde subr al Moodle un únco fchero apelldo_p3.pdf con la solucón de los sguentes

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES OBJETIVOS ESPECÍFICOS 1) Identfcar y manejar el materal básco de laboratoro. ) Preparar

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS Procedmento de Calbracón Metrología PROCEDIMIENTO DI-00 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede descargarse gratutamente

Más detalles

7ª SESIÓN: Medidas de concentración

7ª SESIÓN: Medidas de concentración Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1

INGENIERÍA DE TELECOMUNICACIÓN BLOQUE 1 INGENIERÍA DE TELECOMUNICACIÓN BLOQUE En el Aula Vrtual se encuentra dsponble: Materal nteractvo con teoría y ejerccos resueltos. Para acceder a ello deberá pulsar sobre los sguentes enlaces una vez dentro

Más detalles

Integrales Trigonométricas (II) Potencias Trigonométricas (I)

Integrales Trigonométricas (II) Potencias Trigonométricas (I) Integrales Trgonométrcas (II) Potencas Trgonométrcas (I) He decdo que el título de este documento sea Integrales Trgonométrcas II, por que las ntegrales que veremos en esta seccón tendrán funcones trgonométrcas,

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

Química Computacional

Química Computacional Manual de práctcas para el curso de Andrés Cedllo Departamento de Químca Unversdad Autónoma Metropoltana Iztapalapa Otoño 004 Copyrght 004 Número de regstro 03-004-0907095900-0 Unversdad Autónoma Metropoltana

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales

16.21 Técnicas de diseño y análisis estructural. Primavera 2003 Unidad 8 Principio de desplazamientos virtuales 16.21 Técncas de dseño y análss estructural Prmavera 2003 Undad 8 Prncpo de desplazamentos vrtuales Prncpo de desplazamentos vrtuales Tengamos en cuenta un cuerpo en equlbro. Sabemos que el campo de esfuerzo

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemátcas Fnanceras Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Profundzar en los fundamentos del cálculo fnancero, necesaros

Más detalles

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos: UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

MÉTODO DEL CENTRO DE GRAVEDAD

MÉTODO DEL CENTRO DE GRAVEDAD DEFINICIÓN MÉTODO DEL CENTRO DE GRVEDD Es un moelo matemátco que se utlza para la localzacón e plantas e fabrcacón o almacenes e strbucón respecto a unos puntos ya establecos e la empresa, ese one se proucen

Más detalles

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías:

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías: II.5. Regstro de mágenes médcas El regstro es la determnacón de una transformacón geométrca de los puntos en una vsta de un objeto con los puntos correspondentes en otra vsta del msmo objeto o en otro

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

Fugacidad. Mezcla de gases ideales

Fugacidad. Mezcla de gases ideales Termodnámca del equlbro Fugacdad. Mezcla de gases deales rofesor: Alí Gabrel Lara 1. Fugacdad 1.1. Fugacdad para gases Antes de abarcar el caso de mezclas de gases, debemos conocer como podemos relaconar

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS

ANÁLISIS EXPLORATORIO DE DATOS ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de

Más detalles

Métodos Nodales Híbridos en la Solución de las Ecuaciones de Difusión en Geometría XY

Métodos Nodales Híbridos en la Solución de las Ecuaciones de Difusión en Geometría XY Energía Nuclear y Segurdad Radológca: Nuevos Retos y Perspectvas XIV Congreso Anual de la SNM/XXI Reunón Anual de la SMSR Guadalajara, Jalsco, Méxco, - de Septembre, (, Memoras en CDROM Métodos Nodales

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA ELECTRICA

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA ELECTRICA UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA ELECTRICA INCORPORACION DE LOS CONJUNTOS DIFUSOS PARA MODELAR INCERTIDUMBRES EN LOS SISTEMAS ELECTRICOS DE POTENCIA

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1

NÚMEROS COMPLEJOS. y sabemos que no podemos calcular raíces de números negativos en R. Para resolver este problema introduciremos el valor i = 1 NÚMEROS COMPLEJOS 1. Qué es un número complejo? Defncones. La ecuacón x + 1 = 0 no tene solucón en el campo real puesto que s ntentamos resolverla tendremos que x = ± 1 y sabemos que no podemos calcular

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

Programación entera, el método del árbol de cubos, su algoritmo paralelo y sus aplicaciones

Programación entera, el método del árbol de cubos, su algoritmo paralelo y sus aplicaciones Programacón entera, el método del árbol de cubos, su algortmo paralelo y sus aplcacones Dr. José Crspín Zavala Díaz, Dr. Vladmr Khachaturov 2 Facultad de Contabldad, Admnstracón e Informátca, jc_zavala2002@yahoo.com

Más detalles

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1

i=1 Demuestre que cumple los axiomas de norma. Calcule el límite Verifiquemos cada uno de los axiomas de la definición de norma: i=1 CAPÍTULO 3 EJERCICIOS RESUELTOS: CONCEPTOS BÁSICOS DE ÁLGEBRA LINEAL Ejerccos resueltos 1 1. La norma p (tambén llamada l p ) en R n se defne como ( ) 1/p x p = x p. Demuestre que cumple los axomas de

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp

Análisis de Weibull. StatFolio de Muestra: Weibull analysis.sgp Análss de Webull Resumen El procedmento del Análss de Webull está dseñado para ajustar una dstrbucón de Webull a un conjunto de n observacones. Es comúnmente usado para analzar datos representando tempos

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

4 Contraste de hipótesis en el modelo de regresión múltiple

4 Contraste de hipótesis en el modelo de regresión múltiple 4 Contraste de hpótess en el modelo de regresón múltple Ezequel Urel Unversdad de Valenca Versón: 9-13 4.1 El contraste de hpótess: una panorámca 1 4.1.1 Formulacón de la hpótess nula y de la hpótess alternatva

Más detalles

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011

Departamento de Señales, Sistemas y Radicomunicaciones Comunicaciones Digitales, junio 2011 Departamento de Señales, Sstemas y Radcomuncacones Comuncacones Dgtales, juno 011 Responder los problemas en hojas ndependentes. No se permte el uso de calculadora. Problema 1 6 p.) En este ejercco se

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Un Sistema de Recuperación de Información Estructurada

Un Sistema de Recuperación de Información Estructurada Un Sstema de Recuperacón de Informacón Estructurada Jesús Vegas Pablo de la Fuente Dpto. de Informátca, Unversdad de Valladold Campus Mguel Delbes, 47011 Valladold, España {jvegas,pfuente}@nfor.uva.es

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es 4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Laser Distancer LD 420. Instrucciones

Laser Distancer LD 420. Instrucciones Laser Dstancer LD 40 es Instruccones Índce Confguracón del nstrumento- - - - - - - - - - Introduccón - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Informacón general- - - - - - - - - - -

Más detalles

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro

Números complejos. Actividades. Problemas propuestos. Matemáticas 1 Bachillerato? Solucionario del Libro Matemátcas Bachllerato? Soluconaro del Lbro Actvdades Dado el número complejo se pde: qué valor ha de tener x para que x? Calcula el opuesto de su conjugado Calcula el conjugado de su opuesto x x x El

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Dasometría / Celedonio L

Dasometría / Celedonio L EJERCICIO Nº 6 Se ha realzado el nventaro forestal de una asa de Pnus pnaster no resnado, por uestreo estadístco, dseñado edante la toa de datos en parcelas rectangulares de 0 x 5 ts. El dáetro íno nventarable

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

MÉTODOS NUMÉRICOS EN LOS LENGUAJES MATLAB Y MICROSOFT VISUAL C#.NET

MÉTODOS NUMÉRICOS EN LOS LENGUAJES MATLAB Y MICROSOFT VISUAL C#.NET MÉTODOS NUMÉRICOS EN LOS LENGUAJES MATLAB Y MICROSOFT VISUAL C#.NET Fausto Meneses Becerra MÉTODOS NUMÉRICOS EN LOS LENGUAJES MATLAB Y MICROSOFT VISUAL C#.NET. MÉTODOS NUMÉRICOS EN LOS LENGUAJES MATLAB

Más detalles

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE BOLETÍN OFICIAL DE CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE SECRETARÍA GENERAL Correccón errores al anunco publcado en el Boletín Ofcal Cantabra número 72 17 abrl 2015, aprobacón la Orn ECD/48/2015,

Más detalles

PRÁCTICAS DE FÍSICA I

PRÁCTICAS DE FÍSICA I GRADOS E IGEIERÍA DE TECOLOGÍAS IDUSTRIALES E IGEIERÍA QUÍMICA CURSO 04-05 PRÁCTICAS DE FÍSICA I. Estátca y dnámca: prncpo de Arquímedes y ley de Stokes.. Leyes de la dnámca: ª ley de ewton. 3. Osclacones

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departamento Admnstratvo Naconal de Estadístca Dreccón de Censos Demografía METODOLOGIA ESTIMACIONES Y PROYECCIONES DE POBLACIÓN, POR ÁREA, SEXO Y EDAD PARA LOS DOMINIOS DE LA GRAN ENCUESTA INTEGRADA DE

Más detalles

MATERIAL Y MÉTODOS. Se utilizó el listado de códigos que Caminal estableció para España, a los cuales se

MATERIAL Y MÉTODOS. Se utilizó el listado de códigos que Caminal estableció para España, a los cuales se MATERIAL Y MÉTODOS Fuentes de nformacón Los datos de hosptalzacón se obtenen del Conjunto Mínmo de Datos de Egresos Hosptalaros del Seguro Públco de Salud Costarrcense (SPSC) y las proyeccones de poblacón

Más detalles

UNA APROXIMACIÓN A LA ESPECIALIZACIÓN Y COMPETITIVIDAD DEL COMERCIO EXTERIOR EN CASTILLA-LA MANCHA.

UNA APROXIMACIÓN A LA ESPECIALIZACIÓN Y COMPETITIVIDAD DEL COMERCIO EXTERIOR EN CASTILLA-LA MANCHA. UNA APROIMACIÓN A LA ESPECIALIZACIÓN Y COMPETITIVIDAD DEL COMERCIO ETERIOR EN CASTILLA-LA MANCHA. Irene Robóo Lestón Departamento de Economía y Empresa Unversdad de Castlla-La Mancha e-mal: roboo@uclm.es

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA FORMULACIÓN DE UN PROGRAMA BÁSICO DE NORMALIZACIÓN PARA APLICACIONES DE ENERGÍAS ALTERNATIVAS Y DIFUSIÓN Documento ANC-0603-10-01 ANTEPROYECTO DE NORMA AEROGENERADORES

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa. Expermento 13 Versón para el alumno Dspacón de energía mecáa Objetvo general El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Objetvos partculares

Más detalles