ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES"

Transcripción

1 ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca

2 INTRODUCCION Para todo profesoal de las Cecas Naturales es mportate comparar medas muestrales. Dos procedmetos: Límtes de cofaza Prueba de hpótess t Porque o se realza test de hpótess t para comparar todos los pares posbles de medas? Dos problemas º a medda que el úmero de comparacoes aumeta, aumeta la probabldad de cometer errores de tpo I, rechazar la hpótess ula. º por lo geeral cotamos co muy pocas observacoes e cada muestra estadístca como para teer ua buea estmacó de la varaza poblacoal.

3 ANOVA SIMPLE DE UNA VÍA PARA UN MODELO II O MODELO DE EFECTOS ALEATORIOS Ejemplo Supuestos - Las dferecas ambetales afecta los veles de acdez-alcaldad de las aguas de lluva. - El ph del agua de lluva es ua propedad que camba. Expermeto Total de las estacoes meteorológcas del país que teía relevado datos de ph de agua de lluva e 006 (m). Estacoes meteorológcas seleccoadas para el expermeto (k=4)

4 Datos del ph del agua de lluva de 4 localdades argetas co dsttas característcas clmátcas M M M3 M4 Maro Volcáco Desértco () () (3) 5,6 5, 6, 6, 5,9 5,3 6,0 5,6 3 5,8 5,6 5,9 6, 4 6, 5,7 6, 5 6, 6,3 6 6,3 6,0 Localdad Replca Mesopotámco (4)

5 La deomacó más correte para ANOVA es x la varable depedete o respuesta (el ph) la varable depedete o factor de varacó tee al meos 3 categorías o codcoes e las cuales se toma los datos a comparar (las dsttas estacoes meteorológcas elegdas aleatoramete para relevar datos) k categorías de la varable depedete (4, cada ua de la estacoes meteorológcas) repetcoes o réplcas (catdad de datos tomados e cada estacó meteorológca) N úmero total de datos (9)

6 . EL MODELO Hpótess ula Hpótess alterartva

7 Se deoma modelo leal para la observacó dode: x j ( ) j xj ( ) es la j-ésmo dato del -ésmo factor j xj a: es la meda geeral de los datos o el puto de equlbro es el efecto del -ésmo factor es ua varable aleatora ormal, depedetemete dstrbuda co esperaza 0 y varaza es gual a la varaza poblacoal 0 ;

8 El ANOVA teta ecotrar s exste más varacó Etre muestras dferetes o Detro de ua msma muestra. H0: las muestras so tomadas de la msma poblacó ormalmete dstrbuda (o de poblacoes détcas). H: las muestras so tomadas de dferetes poblacoes auque todas tee la msma varaza. S las muestras so tomadas e forma aleatora de ua poblacó comú ( la hpótess ula), la varacó etre las muestras es aproxmadamete la msma que la varacó detro de las muestras y que ambas refleje la varacó de la poblacó. S las muestras so tomadas de dferetes poblacoes (la hpótess alteratva), la varacó etre las muestras es el reflejo de la varacó de la poblacó de la cual es extraída. Varacoes etre muestras, muestra la dfereca etre las poblacoes.

9 Cómo estmar la varaza poblacoal comú S llamamos Recordemos xj SC ( x X ) CM SC gl? suma de las observacoes de cada muestra X promedo de la -ésma muestra X promedo de todos los datos o Gra meda Cada desvacó de ua observacó a la gra meda, se puede descompoer e dos térmos: la desvacó de cada dato a la meda grupal, más la desvacó de la meda de cada grupo a la gra meda. ( xj X ) ( X X ) ( xj X )

10 Cómo estmar la varaza poblacoal comú? Calculado ua varaza poderada a partr de las varazas muestrales de las dsttas poblacoes. Esto es calculado el Cuadrado Medo (CM) CM Detro o CM Error. k SCDetro CMDetro ; gldetro k SCDetro x j X ; gldetro ( j ) N k Calculado ua varaza poderada a partr de las varazas etre las medas muestrales de las dsttas poblacoes y la gra meda esto es el CM Etre: k SCEtre CMEtre ; SCEtre ( X X ) gletre ; gletre k També se puede calcular el CM Total: SCTotal CMTotal ; gltotal SCTotal k j ( x X ) j ; gltotal N

11 E ANOVA se cumple las sguetes relacoes: SCTotal = SCEtre + SCDetro GLTotal = GLEtre + GLDetro CMTotal CMEtre +CMDetro

12 El CMDetro es u estmador sesgado de la varaza poblacoal. Las medas poblacoales tee todas la msma varaza, etoces las varazas muestrales estma al msmo parámetro poblacoal, y el promedo poderado de estas varazas es u bue estmador de esta varaza poblacoal. El CMEtre, Hpótess Nula del ANOVA es certa, estma a la varaza poblacoal Solo cuado las so guales, ya que la compoete de la varaza total producda por los tratametos se aula y etoces CMEtre es. S la Hpótess ula o es verdadera el CMEtre estma a la más ua catdad que represeta ua medda de la magtud de los efectos de los factores. La relacó etre las varazas calculadas, CMEtre y CMDetro, permte comparar medas poblacoales. Co esto resolvemos la paradoja de cómo a partr de u aálss de varazas es posble comparar medas.

13 3. PROCEDIMIENTO PARA EL CALCULO Recordemos SC = ( x X ) = x / x - K SCTotal = j K (x j - X ) = j x j C Factor de correccó de la meda: C = ( K j x j ) N K SCEtre = K ( X - X ) = ( x j ) / - C SCDetro = K ( (x j - X ) ) = SCTotal SCEtre j GLTotal = N- GLEtre = k- GLDetro = GLtotal GLEtre CMTotal = SCTotal / GLTotal; CMEtre = SCEtre/GLEtre; CMDetro = SCDetro/GLDetro

14 Hptess de ANOVA H 0 : = = = k ; H a: j para al meos u par de (, j) o, ENTRE= DENTRO Prueba estadístca Comparar el CMEtre co el CMDetro. Las dos varazas mde e forma depedete la varaza de la dstrbucó de medas muestrales. Que probabldad hay que estos valores estme la msma varaza poblacoal? Respuesta F es el cocete etre varazas. La hpótess ula se rechazará cuado CMEtre CMDetro > F(k-;N-k; ) o, ENTRE> DENTRO F co = (k -) y = (N -k) grados de lbertad (Los valores crítcos de F se ecuetra e tablas) Se realza ua prueba a ua cola ya que se trata de detectar la varabldad que teda a aumetar la varaza Etre medas.

15 A mayor dfereca etre las medas observadas de los tratametos, mayor es la evdeca que dca ua dfereca etre las medas poblacoales correspodetes. Aalzado la relacó expresada e la SCEtre, se puede ver que a medda que las medas se aleja ua de otras, las desvacoes aumetará e valor absoluto y la SCEtre aumetará e magtud. Por cosguete a mayor valor de SCEtre mayor peso de la evdeca e rechazar la hpótess ula.

16 TABLA RESUMEN DE ANOVA para el caso de u expermeto aleatorzado que cotee k medas de tratametos Fuete de varacó Etre los tratametos Detro de los tratametos Suma de Cuadrados gl Cuadrado Medo K ( j x j ) / - C SCTotal SCEtre k- N-k SCEtre GLEtre SCDetro GLDetro f calculado CME CMD Total K j x j - C N- K Para C = ( j Xj ) N

17 Localdad Replca ( Maro () Volcáco () Desértco (3) Mesopotamco (4) Totales 5,6 5, 6, 6, 5,9 5,3 6,0 5,6 3 5,8 5,6 5,9 6, 4 6, 5,7 6, 5 6, 6,3 6 6,3 6, x 3,5 6,0 36, 36,3,0 xj x j ( x j x 5,9 5,3 6,0 6, 3,3 ) 55,3 56,0 30,4 37,7 3436,4 ) j 38, 85,3 8,4 9,6 66,4 38,3 85,5 8,6 9,9 66,3

18 Factor de correccó: C = ( Xj ) N K j C = (3,5+6,0+36,+36,3) / 9 = (,0) / 9 =544,0 / 9 = 660, K SCTotal = j x j C SCT = 66,3 660,3 =,05 K SCEtre= ( j x j ) / - C SCE = 66,4 660,3 =, SCDetro = SCT SCE SCD =,0, = 0,84 gl T = N ; gle = K ; gld = glt gle = (N-K) gl T = 9 = 8 ; gl E = 4 = 3 ; gl D = 9 4 = 5 CME = SCE / gl E CME =, / 3 = 0,40 CMD = SCD / gl D CMD = 0,84 / 5 = 0,056 f = CME / CMD f = 0,40 / 0,056 = 7,63 Valor Crítco de tabla: F (K-; N-K; α ) F (3; 5; 0,05) = 3,87

19 Ho: las 4 medas poblacoal del ph del agua de lluva de las dferetes estacoes meteorológcas so guales H : la meda del ph del agua de lluva de al meos ua de las dferetes estacoes meteorológcas es dferete Hpótess Nula: µ = µ = µ 3 = µ 4 ; ó σ ENTRE = σ DENTRO Hpótess Alteratva: al meos ua meda dferete; ó σ ENTRE > σ DENTRO Resgo de error de tpo I: α = 0,05 Tabla resume de ANOVA Fuete de Suma de varacó cuadrados Etre las localdades, Detro de las localdades 0,84 gl 3 5 Cuadrado Medo 0,40 0,056 f 7,63 Total,0 8 f = 0,40 / 0,056 = 7,63 F (3; 5; 0,05) = 3,87 Regó crítca: f >F (3; 5; 0,0) Como f> F crtco de tabla, rechazo la Hpótess ula. Por lo tato puedo afrmar, co u error del 5%, que el ph del agua de lluva es ua propedad que toma valores dferetes segú se trate del lugar.

20 4. SUPUESTOS del ANOVA º Se ha tomado ua muestra aleatora smple de cada ua de los dstrbucoes. º Las dstrbucoes so ormales. 3º Las dstrbucoes tee todas détca varaza. Dscrepacas moderadas co el cumplmeto de los supuestos del ANOVA (aleatoredad del muestreo, ormaldad e las dstrbucoes y homogeedad de varazas) práctcamete o afecta las propedades de la prueba. S embargo, s las dferecas so mportates se debe recurrr a otra estratega de aálss.

21 5. COMPARACIONES MÚLTIPLES. PRUEBA DE TUKEY Para todos los pares posbles de comparacoes etre medas. A es la meda más grade a comparar y B la más pequeña. Ho: µ A = µ B Ha: µ A µ B Estadístco de prueba q c X A SE q c se aproxma a ua dstrbucó de q(k; N-k; ), k: úmero e categorías del factor gld: grados de lbertad del CMDetro Tabla Rago Total Studetzado X B Tamaños de muestra guales SE La hpótess ula se rechaza cuado q c > q(k; N-k; ) CMDetro Tamaños de muestra dferetes SE CMDetro a b a=tamaño de la muestra A, b=tamaño de la muestra B Dferecas sgfcatvas Dferecas altamete sgfcatvas q c > q(k; N-k; :0,05) q c > q(k; N-k; :0,0)

22 Se rechazó la hpótess ula de ANOVA e el ejemplo del ph del agua de lluva e las cuatro estacoes meteorológcas etre que ambetes el ph del agua de lluva es dferete?. Datos Localdad Maro Volcáco Desértco Mesopotamco () () (3) (4) x 3,5 6,0 36, 36,3 Cuadrado Medo Detro = 0,056. Para cada par posble de comparacoes cotrastar las sguetes hpótess: Ho: µ A = µ B ; Ha: µ A µ B. Calcular las dferecas de medas comezado por las medas mayores A B 3. Calcular SE CMDetro a b 0,056 0,056 SE 0,0966 SE 0, ,056 0,056 SE 0,38 SE 0, Buscar valores crítcos Tabla Rago Total Studetzado q. q (4; 5; 0,05) =4,08 y q (4; 5; 0,0) =5,45 5. Armar la tabla, tomar la decsó estadístca e terpretar los resultados X X

23 Comparacó (A vs. B) Dferecas X A X B 4 vs. 3 36,3-36,=0, 0,0966,035 4,08 4 vs. 36,3-3,5=,8 0,080 8,5 4,08 4 vs. 36,3-6,0=0,3 0,38 7,5 4,08 3 vs. 36,-3,5=,7 0,080 7,58 4,08 3 vs. 36,-6,0=0, 0,38 70,7 4,08 vs. 3,5-6,0=7,5 0,78 58,68 4,08 SE q c q (4; 5; 0,05) Coclusó Aceptar Ho: el ph del agua de lluva de las estacoes meteorológcas 4 y 3 es gual. Rechazar Ho: el ph del agua de lluva de las estacoes meteorológcas 4 y es gual. Rechazar Ho: el ph del agua de lluva de las estacoes meteorológcas 4 y es gual. Rechazar Ho: el ph del agua de lluva de las estacoes meteorológcas 3 y es gual. Rechazar Ho: el ph del agua de lluva de las estacoes meteorológcas 3 y es gual. Rechazar Ho: el ph del agua de lluva de las estacoes meteorológcas y es gual. Se puede afrmar, co u error de 5%, que el ph del agua de lluva de las estacoes meteorológcas 3 y 4, correspodetes a ambetes de clma desértco y mesopotámco, so guales etre s y dferetes al de las estacoes meteorológcas y (ambete marítmo y volcáco respectvamete). Además el ph del agua de lluva de las estacoes meteorológcas y, marítmo y volcáco, so dferetes etre sí.

24 6. PRUEBAS DE HOMOGENEIDAD DE VARIANZAS: a. Bartlett Objetvo Probar la homogeedad de las varazas etre mas de muestras. Requermetos Se puede utlzar co tamaño de muestra,, dferetes. Se recomeda > 3, preferetemete co > 5. Es muy sesble a alejametos del supuesto de ormaldad. Hpótess Ho : k Ha : j para al meos u par de (, j) Estadístco de prueba ( N k)l( S p 3( k ) ) k k Prueba de hpótess k / <, La hpótess ula se acepta ( )l( s N k ) k : Número de muestras : Tamaño de la -ésma muestra s : Varaza estmada para la -ésma poblacó N = k Decsó estadístca S p N k ( ) s Cuado se acepta la hpótess ula, se puede afrmar que todas las poblacoes de dode se obtuvero las muestras, tee la msma varaza, co ua cofaza α.

25 Ejemplo PRUEBA DE HOMOGENEIDAD DE VARIANZAS. PRUEBA DE BARTLETT (MUESTRAS DE TAMAÑO DIFERENTE) Ejemplo del ph del agua de lluva e las cuatro estacoes meteorológcas se preseta alguos datos que faclta los cálculos. Marítmo Volcáco Desértco Mesopotámco Totales () () (3) (4) / 0,500 0,3333 0,667 0,667 0,967 S 0,500 0,500 0,00 0,400 0,9600 S 0,0630 0,0630 0,0480 0,0580 0,30 l S -,7730 -,7730-3,080 -,8540 -,480 ( -)l S -8,39-5,546-5,4-4,7-43,750 ( -)S 0,89 0,6 0,4 0,9 0,8450 Ho Ha : k : j 0,05 / 0,05 4;0,05 para al meos u par de (, j) 9,35 S p N k ( ) s S 0,8450 0,0563 l S 8765 p p, 9 4 ( N k)l( S p 3( k ) ) k k ( )l( s ) N k (9 4) (,8765) ( 43,75) 0,967 3(4 ) 9 4 0,80,0944 0,69 Decsó estadístca: 0,69<9,35 ( < k, / ). Se acepta la hpótess ula, las varazas so guales.

26 6. PRUEBAS DE HOMOGENEIDAD DE VARIANZAS: b. Fmax de Hartley Objetvo Probar la homogeedad de las varazas etre mas de muestras. Requermetos Se puede utlzar solamete co tamaño de muestra,, guales. Supoe dstrbucoes ormales. Se ecesta ua tabla especal co los valores crítcos de Fmax. Hpótess Ho : k Ha : j para al meos u par de (, j) Estadístco de prueba F max( s ) max m( s ) =,..., k, co k gual al úmero de muestras, max( s la varaza mayor de las k muestras ) la varaza meor de las k muestras m( s ) Prueba de hpótess La hpótess ula se acepta F max < F MAX(k, -, α/) : k, umero de muestras : -, umero de datos meos Decsó estadístca Cuado se acepta la hpótess ula, se puede afrmar que todas las poblacoes de dode se obtuvero las muestras, tee la msma varaza, co ua cofaza α.

27 GRACIAS

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. (crstacabrera@apsa.cl) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, robso.lucero@moptt.gov.cl

Más detalles

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras.

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras. Capítulo : Comparacó de varo tratameto o grupo Mucha preguta de vetgacó e educacó, pcología, egoco, dutra ceca aturale tee que ver co la comparacó de varo grupo o tratameto. Ya etudamo como comparar dfereca

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3

Diseños muestrales en Inventarios Forestales Introducción... 1 Distribución de las unidades muestrales.... 3 Dseños muestrales e Ivetaros Forestales Itroduccó... Dstrbucó de las udades muestrales.... 3 Dstrbucó Aleatora... 3 Dstrbucó stemátca... 4 Dstrbucó de las UM e trasectos... 5 Estmadores para udades muestrales

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

Introducción a la simulación de sistemas discretos

Introducción a la simulación de sistemas discretos Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS

REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DERECHOS RESERVADOS REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD RAFAEL URDANETA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DETERMINACIÓN MEDIANTE EL ANÁLISIS REGRESIONAL DE LOS MODELOS MATEMATICOS POLINÓMICOS

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO RESOLUCIÓN OENO 0/005 GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO LA ASAMBLEA GENERAL, Vsto el artículo, párrafo

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1 63 ITRODUCCIÓ AL AÁLISIS DE ECUESTAS COMPLEJAS MARCELA PIZARRO BRIOES ISTITUTO ACIOAL DE ESTADÍSTICA (IE CHILE Para presetarse e el Taller Regoal del MECOVI: La Práctca del Muestreo para el Dseño de las

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Santiago de la Fuente Fernández. Análisis de variables categóricas

Santiago de la Fuente Fernández. Análisis de variables categóricas Satago de la Fuete Ferádez Aálss de varables categórcas Satago de la Fuete Ferádez Aálss de varables categórcas VARIABLES CUALITATIVAS Aálss de varables categórcas Las varables cualtatvas so aquellas cuyos

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

EXPRESIÓN DE INCERTIDUMBRE EN LA CALIBRACIÓN DE EQUIPOS DE MEDICIÓN DE ENERGÍA ELÉCTRICA

EXPRESIÓN DE INCERTIDUMBRE EN LA CALIBRACIÓN DE EQUIPOS DE MEDICIÓN DE ENERGÍA ELÉCTRICA Ig. Álvaro Zpaqrá Traa Ig. Gerardo Porras Reda Laboratoro de Poteca y Eergía Spertedeca de Idstra y Comerco 0. INTRODUCCIÓN Cado se expresa el resltado de medcó e a magtd, es coveete y a veces oblgatoro,

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

MÉTODOS ESTADÍSTICOS Y ECONOMÉTRICOS EN LA EMPRESA Y PARA FINANZAS

MÉTODOS ESTADÍSTICOS Y ECONOMÉTRICOS EN LA EMPRESA Y PARA FINANZAS MÉTODOS ESTADÍSTICOS ECONOMÉTRICOS EN LA EMPRESA PARA FINANZAS José Atoo Ordaz Saz María del Carme Melgar Hraldo Carme María Rbo Castaño Departameto de Ecoomía, Métodos Cattatvos e Hstora Ecoómca Uversdad

Más detalles

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión

REGRESIÓN NO LINEAL. Índice. 1. Cuándo existe regresión? Y = f X (figura 1d y 1e); es decir, los puntos del diagrama de dispersión REGREIÓN NO LINEAL Ídce. CUÁNDO EXITE REGREIÓN?.... TIPO DE REGREIÓN... 3. REPREENTATIVIDAD DE LA CURVA DE REGREIÓN... 3 3.. Poder explcatvo del modelo... 3 3.. Poder explcatvo frete a poder predctvo...

Más detalles

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS Beatrz Marró Uversdad Nacoal del Sur, beatrz.marro@us.edu.ar Resume: El objetvo de este trabajo es geeralzar

Más detalles

Juegos finitos n-personales como juegos de negociación

Juegos finitos n-personales como juegos de negociación Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. vrubales@us.es Resume Los uegos -persoales ftos

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

MÉTODOS ESTADÍSTICOS Y ECONOMÉTRICOS EN LA EMPRESA Y PARA FINANZAS

MÉTODOS ESTADÍSTICOS Y ECONOMÉTRICOS EN LA EMPRESA Y PARA FINANZAS MÉTODOS ESTADÍSTICOS Y ECONOMÉTRICOS EN LA EMPRESA Y PARA FINANZAS José Atoo Ordaz Saz María del Carme Melgar Hraldo Carme María Rbo Castaño Departameto de Ecoomía, Métodos Cattatvos e Hstora Ecoómca Uversdad

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! Isttuto Tecológco de Apzaco Departameto de Cecas Báscas INSTITUTO

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS

ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS 5 ESTIMADORES DE VARIANZA EN REGRESIÓN NO PARAMÉTRICA BASADOS EN SUCESIÓN DE DIFERENCIAS María C. Paz Sabogal Profesor Auxlar. Uversdad del Valle, Escuela de Igeería Idustral Estadístca, Cal. karo.paz@gmal.com

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano

Valoración de opciones de compra y venta del quintal de café en el mercado ecuatoriano Valoracó de opcoes de compra y veta del qutal de café e el mercado ecuatorao Adrá Morocho Pérez, Ferado Sadoya Sachez Igeero e Estadístca Iformátca 003 Drector de Tess, Matemátco, Escuela Poltécca Nacoal,

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Bolsa Nacional de Valores, S.A. San José, Costa Rica

Bolsa Nacional de Valores, S.A. San José, Costa Rica SELECCIÓN DE CARTERAS DE INVERSIÓN (TEORÍA DEL PORTAFOLIO) RODRIGO MATARRITA VENEGAS * Bolsa Nacoal de Valores, S.A. Sa José, Costa Rca By ow t s evdet that MPT (moder Portfolo Theory), the theory frst

Más detalles

MS Word Editor de Ecuaciones

MS Word Editor de Ecuaciones MS Word Edtor de Ecuacoes H L. Mata El Edtor de ecuacoes de Mcrosoft Word permte crear ecuacoes complejas seleccoado símbolos de ua barra de herrametas y escrbedo varables y úmeros. medda que se crea ua

Más detalles

Regresión Simple. Resumen. Ejemplo de StatFolio: simple reg.sgp

Regresión Simple. Resumen. Ejemplo de StatFolio: simple reg.sgp STATGRAPHICS Rev. 4/5/7 Regresó Smple Resume El procedmeto de Regresó Smple está dseñado para costrur u modelo estadístco que descrba el mpacto de u solo factor cuattatvo X sobre ua varable depedete Y.

Más detalles

GENERACION DE NUMEROS ALEATORIOS

GENERACION DE NUMEROS ALEATORIOS GENERACION DE NUMEROS ALEATORIOS U paso clave e smulacó es teer rutas que geere varables aleatoras co dstrbucoes especfcas: epoecal, ormal, etc. Esto es hecho e dos fases. La prmera cosste e geerar ua

Más detalles

FUNCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA DISCRETA

FUNCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA DISCRETA VARIABLE ALEATORIA Se llama varable aleatora a toda fucó defda e el espaco muestral de u epermeto aleatoro que asoca a cada elemeto del espaco u úmero real X : E R El cocepto de varable aleatora surge

Más detalles

Conceptos y ejemplos básicos de Programación Dinámica

Conceptos y ejemplos básicos de Programación Dinámica Coceptos y eemplos báscos de Programacó Dámca Wlso Julá Rodríguez Roas ularodrguez@hotmal.com Trabao de Grado para Optar por el Título de Matemátco Drector: Pervys Regfo Regfo Igeero Uversdad Nacoal de

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

Técnicas básicas de calidad

Técnicas básicas de calidad Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos

Más detalles

UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*)

UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*) UNIVERSIDAD NACIONAL DE SALTA Facultad de Cecas Ecoómcas, Jurídcas y Socales Isttuto de Ivestgacoes Ecoómcas Reuó de Dscusó Nº 7 Fecha: /06/003 Hs.: 6 UNA NOTA SOBRE ECONOMETRÍA ESPACIAL (*) Eusebo Cleto

Más detalles

Credit scoring models: what, how, when and for what purposes

Credit scoring models: what, how, when and for what purposes MPRA Much Persoal RePEc Archve Credt scorg models: what, how, whe ad for what purposes Guterrez Grault, Matas Alfredo Baco Cetral de la Repúblca Argeta October 007 Ole at http://mpra.ub.u-mueche.de/6377/

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

INTRODUCCION A LA GEOESTADISTICA

INTRODUCCION A LA GEOESTADISTICA INTRODUION A LA GEOESTADISTIA 7 3' W MAR ARIBE Boca de la Barra 3 larí 8 6 4 Grade R Sevlla 8 6 R Aracataca 45' N 4 R Fudaco Teoría y Aplcacó UNIVERSIDAD NAIONAL DE OLOMBIA Sede Bogotá Facultad de ecas

Más detalles

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización.

Resumen. Abstract. Palabras Claves: Algoritmos genéticos, cartera de acciones, optimización. Optmzacó de ua cartera de versoes utlzado algortmos geétcos María Graca Leó, Nelso Ruz, Ig. Fabrco Echeverría Isttuto de Cecas Matemátcas ICM Escuela Superor Poltécca del Ltoral Vía Permetral Km 30.5,

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

Manual de Estadística

Manual de Estadística Maual de Estadístca Pag Maual de Estadístca Davd Ruz Muñoz Edtado por eumed et 004 ISBN: 84-688-653-7 Maual de Estadístca Pag ÍNDICE Capítulo I: Capítulo II: Capítulo III: Capítulo IV: Capítulo V: Capítulo

Más detalles

Suficiencia de Capital y Riesgo de Crédito en Carteras de Préstamos Bancarios

Suficiencia de Capital y Riesgo de Crédito en Carteras de Préstamos Bancarios Sufceca de Captal y Resgo de Crédto e Carteras de Préstamos Bacaros U modelo de mpago que relacoa la sufceca de captal co el resgo de crédto, mde el resgo de cocetracó, y determa límtes dvduales para los

Más detalles

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS UNIVERIDAD de VALLADOLID ECUELA de INGENIERÍA INDUTRIALE INGENIERO TÉCNICO INDUTRIAL, EPECIALIDAD EN MECÁNICA PROYECTO FIN DE CARRERA ANÁLII ETADÍTICO DEL CONTROL DE CALIDAD EN LA EMPREA Autor: Galca Adrés,

Más detalles

COMENTARIOS Y ANÁLISIS DEL FACTOR DE PRODUCTIVIDAD PROPUESTO POR OSIPTEL PARA EL PLAN DE REGULACIÓN POR PRECIOS TOPE 2004 2007

COMENTARIOS Y ANÁLISIS DEL FACTOR DE PRODUCTIVIDAD PROPUESTO POR OSIPTEL PARA EL PLAN DE REGULACIÓN POR PRECIOS TOPE 2004 2007 OMNTARIOS Y ANÁLISIS DL FATOR D PRODUTIVIDAD PROPUSTO POR OSIPTL PARA L PLAN D RGULAIÓN POR PRIOS TOP 2004 2007 APLIAIÓN D LA VARIABL M por Davd. M. Sappgto RSUMN JUTIVO ste forme preseta ua evaluacó de

Más detalles

Contraste de Hipótesis

Contraste de Hipótesis Cotraste de Hpótess 1. Se quere comprobar s ua muestra de tamaño 0 co meda 10 procede de ua poblacó N(14,3) co el vel de sgfcacó 0,05..- E ua propagada se auca que uas determadas plas proporcoa más horas

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Aálss Estadístco d Datos Clmátcos Rgrsó lal smpl (Wlks, cap. 6.) Vo Storch ad Zwrs (Cap. 8) 05 Rgrsó La rgrsó, gral, s utlza habtualmt para stmar modlos paramétrcos d la rlacó tr varabls ua scala cotua,

Más detalles

Análisis Estadístico de Mediciones de la Velocidad del Viento Utilizando la Técnica de Valores Desviados

Análisis Estadístico de Mediciones de la Velocidad del Viento Utilizando la Técnica de Valores Desviados Smposo de Metrología 008 Satago de Querétaro, Méxco, al 4 de Octubre Aálss Estadístco de Medcoes de la Velocdad del Veto Utlzado la Técca de Valores Desvados E. Cadeas, a W. Rvera b a Uversdad Mchoacaa

Más detalles

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS

INGENIERÍA INDUSTRIAL DISEÑO EXPERIMENTAL LEOPOLDO VIVEROS ROSAS INGENIERÍA INDUTRIAL A meudo, e la práctca, se requere resolver prolemas que clue cojutos de varales, cuado se sae que este algua relacó herete etre ellas, esa relacó se puede ecotrar a partr de la formacó

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

3 Regresión lineal múltiple: estimación y propiedades

3 Regresión lineal múltiple: estimación y propiedades 3 Regresó leal múltple: estmacó y propedades Ezequel Urel Uversdad de Valeca Versó 09-013 3.1 El modelo de regresó leal múltple 1 3.1.1 Modelo de regresó poblacoal y fucó de regresó poblacoal 3.1. Fucó

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

Análisis de correlación y regresión

Análisis de correlación y regresión Capítulo Aálss de correlacó regresó 3 Seccoes Itroduccó 3. Correlacó leal. 3. Regresó leal. 3.3 Regresó o leal fucoes trísecamete leales. 3.4 Regresó multleal. Atecedetes Itervalos de cofaza Prueas de

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles