Factores no controlables

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Factores no controlables"

Transcripción

1 Acepto la Ho y ιj μ α ι β j ε ιj Dr. Alfredo Matos Ch. Universidad Peruana Unión Factores Controles Entradas PROCESO FUNCION ACTIVIDAD Salidas Factores no controlables 2 1

2 Se entiende por diseños experimentales a la distribución de los tratamientos en unidades experimentales de acuerdo a las restricciones al azar con el propósito de disminuir el error experimental. El objetivo de los diseños experimentales es manejar con facilidad la variabilidad existente entre las unidades experimentales. 3 Montgomery (1991) señala que un experimento diseñado es una prueba o una serie de pruebas en las cuales se inducen cambios deliberados en las variables de entrada de un proceso, de manera que sea posible observar e identificar las causas de estos cambios en las respuestas. Wayne (1985) menciona que, cuando se diseñan los experimentos con el análisis en mente, el investigador puede, antes de conducir el experimento, identificar esas fuentes de variación que considere importantes y elegir un diseño que le permita medir la extensión de la contribución de esas fuentes a la variación total. 4 2

3 La asociación causa efecto puede establecerse claramente, esto depende del diseño experimental usado. En el diseño experimental (modelo I), el investigador está interesado en establecer la relación causa efecto con mayor precisión. En el diseño no experimental (modelo II), las variables se estudian según como éstas se presentan en forma natural. 5 Los estudios experimentales se caracterizan por la introducción y manipulación del factor causal o de riesgo para la determinación posterior del efecto. El analisis de variancia (ANVA) tiene tantas fuentes de variación asi como niveles de control existentes. 6 3

4 Análisis de la varianza y covarianza Un factor o V.I. ANOVA simple (grupos independientes) ANOVA simple (grupos relacionados) ANOVA simple con un factor de bloqueo ANOVA simple con medidas repetidas correlación y ANOVA Dos o más factores O V.I. ANOVA Factorial (diseños completos) Dos factores Tres factores o más Dos factores Dos fact. + medidas rep. Dos fact. + una VC por empar. Dos fact. + una var. bloqueo ANOVA en diseño incompletos Diseños en cuadrado latino. Diseños jerárquicos Diseños en cuadrado grecolatino. Análisis de la varianza y covarianza Prueba para contrastar los supuestos subyacentes a los modelos de análisis de varianza Normalidad Homogeneidad Independencia Contrastes posteriores a ANOVA ANCOVA Prueba <chi> cuadrado Prueba de Kolmogorov Smirnov Prueba de Shapiro y Wilk Prueba de Barlett Prueba de Cochran Prueba de hartley Correlación serial de separación I Prueba de Rachas. Prueba de TUKEY, DUNCAN Prueba de SCHEFFE Prueba de FISHER Una V.I. + una covariable Una V.I. + dos covariables Dos V.I. + covariables (una o más) 8 4

5 N (0,1) x % Z 95% 99% 9 TÉCNICAS MULTIVARIADAS DEPENDENCIA INTERDEPENDENCIA Regresión múltiple Modelaje de ecuaciones estructurales Análisis discriminante Análisis conjunto Análisis de correlación canónica Análisis multivariado de variancia Análisis factorial Análisis de agrupamientos Análisis de componentes principales Escalonamiento multidimensional Análisis de correspondencia 10 5

6 DISEÑO COMPLETAMENTE ALEATORIO (D.C.A.) Es el más simple de todos los diseños, los tratamientos se distribuyen completamente al azar en todas las unidades experimentales, no existe ninguna limitación en la randomización. Este diseño es útil para usar en investigación, en laboratorios para demostración de técnicas y métodos, para estudio con plantas en invernaderos, para grupos en animales, también para el estudio en grupos humanos. La condición principal para el empleo de este diseño es que las unidades experimentales deberán ser lo más homogéneas en lo posible. 11 Ejemplo: Lugar A Lugar B Lugar C Lugar D

7 Tabla. Análisis de variancia Fuente de Variación g.l. S.C. C.M. F c Entre muestras (Tratamiento) k-1 SCtr CM tr. F c CM tr. CM err. Dentro de muestras (Error) k(n-1) SCerr CM err TOTAL kn-1 SCT Y ij E i i j 13 Ho: ó 0 A B C Ha: ó 0 A B C Nivel de Significación : 0.05 y Criterio : Rechazo la Ho si ( K 1) y K ( n 1) A A F c F B B C C Acepto la Ho Rechazo la Ho F c CM tr CM err 14 7

8 15 DISEÑO DE BLOQUES ALEATORIOS La estimación de la variación aleatoria (Error experimental) a menudo puede reducirse, esto es, librarse de la variabilidad debida a causas extrañas, dividiendo las observaciones de cada clasificación en Bloque. Esto se logra cuando fuentes conocidas de variabilidad (es decir variables extrañas) se mantienen fijas dentro de cada bloque, pero varían de bloque en bloque. Y ij i j ij 16 8

9 Bloques B 1 B Tratamiento 1: Y 11 Y Tratamiento 2: Y 21 Y Tratamiento i: Y i1 Y i2.... Tratamiento a: Ya 1 Y a2.... Medias.... B j. Y 1j Y 2j Y ij Y aj B b Y 1b Y 2b Y ib Y ab Medias Y 17 Analisis de variancia F.de V. g.l. S. C. C.M Fc Tratamientos a-1 SCtr CMtr. F tr. Bloques b-1 SCbl CMbl F bl Error (a-1)(b-1) SCerr CMerr Total ab-1 SCT 18 9

10 Factor 2 Tratamientos 19/07/2011 Tratamientos: Bloques: H H o a : : H H o a : : Criterio Tratamiento: Rechazo la H o. Si F Tr > F c Bloques: Rechazo la Ho. Si FTr > Fc Acepto la Ho Rechazo la Ho 19 MODELO CUADRADO LATINO Factor 1 A B C B C A C A B Y ij(k)l = + i + j + k + l + ij(k)l 20 10

11 Factor 2 Tratamientos 19/07/2011 CUADRADO GRECO LATINO Factor 1 A B C D B C D A C D A B D A B C 21 Diseños Factoriales En este tipo de diseños, cada ensayo o replica completa del experimento se investigan todas las combinaciones posibles de los niveles de los factores. Si el factor A tiene a niveles y el factor B tiene b niveles, cada replica contiene todas las ab combinaciones de los tratamientos. Se denomina efecto de un factor al cambio producido por el cambio en los niveles del factor. Si el factor es de interés primario será denominado efecto principal 22 11

12 2 Factores 2 Niveles factores niveles % de sal Temperatura 3 10 Los arreglos de los ensayos pueden ser de la siguiente forma: ensayo Temperatura % de sal viscosidad total media real Codif. real Codif total Fuente de variación Grados de libertad Análisis de varianza Suma de cuadrados Cuadrado medio Fc Efectos principales A B a 1 b - 1 SCA SCB CMA = SCA/(a-1) CMB=SCB/(b-1) CMA/CMErr CMB/CMErr Interacción (a 1)(b-1) SCAB CMAB = SCAB/(a-1)(b-1) CMC/CMErr Repetición r-1 SCRep CMRep=SCRep/(r-1) CMrep/CMerr Error (ab-1)(r-1) SCErr CMErr = SCErr/(ab-1)(r-1) Total abr - 1 SCT 24 12

13 3 2 Factores Niveles ensayo Temp. % de sal Picado (mm) Result Los arreglos de los ensayos pueden ser de la siguiente forma: factores niveles % de sal Temperatura 3 10 Picado (mm) total Factores Niveles Con puntos centrales, pueden ser de la siguiente forma: factores niveles Temperatura ( 0 C) Presión (psig) Concentración (g/l)

14 Los diseños experimentales utilizados con mayor frecuencia son los de los bloques aleatorios simples con arreglos factoriales. Los factores pueden ser cuantitativos o cualitativos, en los niveles que corresponden. Cada factor puede tener los factores necesarios para el análisis. Ecuación para dos factores y ij i j ( ) ij l ijl 27 Marca Tensión Rep.1 Rep.2 Rep.3 Estándar Baja Estándar Media Estándar alta Grande Media Grande Baja Grande Alta

15 Ecuación para tres factores y ijkl i j k ( ) ij ( ) ik ( ) jk ( ) ijk l ijkl Ejemplo 13.8 (Miller 1992, p.462) Una prueba de mercado se realizó para evaluar la posición en el anaquel, el color de la etiqueta y el tamaño del envase del alimento enlatado. Factores niveles Posición de anaquel Baja Intermedia Alta Color de etiqueta Roja Verde Tamaño de paquete (onza) posición en color de la tamaño del Ventas (dólares) anaquel etiqueta paquete (onza) día 1 día 2 día 3 baja roja baja roja baja roja baja roja baja verde baja verde baja verde baja verde intermedia roja intermedia roja intermedia roja intermedia roja intermedia verde intermedia verde intermedia verde intermedia verde alta roja alta roja alta roja alta roja alta verde alta verde alta verde alta verde

16 Fuente de variación Efectos principales A B C Interacción AB AC BC Grados de libertad a 1 b 1 c - 1 (a 1)(b-1) (a - 1)(c-1) (b -1)(c -1) Suma de cuadrados Cuadrado medio Fc SCA SCB SCC SC(AB) SC(AC) SC(BC) CMA = SCA/(a-1) CMB=SCB/(b-1) CMC=SCC/(c 1) CM(AB) = SCAB/(a-1)(b-1) CM(AC) = SC(AB)/(a-1)(C-1) CM(BC)=SC(BC)/(b -1)(c -1) CMA/CMErr CMB/CMErr CMC/CMErr CM(AB)/CMErr CM(AC)/CMErr CM(BC)/CMErr ABC (a 1)(b-1) )(c -1) SC(ABC) CM(ABC)=SC(ABC)/ (a-1)(b -1)(c -1) CM(ABC)/CMErr Repetición r-1 SCRep CMRep=SCRep/(r-1) CMrep/CMerr Error (abc-1)(r-1) SCErr CMErr = SCErr/(abc-1)(r-1) Total abcr - 1 SCT Fitted Surface; Variable: y 2 factors, 1 Blocks, 11 Runs; MS Pure Error=1. DV: y Concentración (%) Velocidad (rpm)

Diseño Estadístico de Experimentos

Diseño Estadístico de Experimentos Capítulo 3 Diseño Estadístico de Experimentos Una prueba o serie de pruebas en las cuales se introducen cambios deliberados en las variables de entrada que forman el proceso, de manera que sea posible

Más detalles

ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ

ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ Presentado a: MARIA ESTELA SEVERICHE CORPORACION UNIVERSITARIA

Más detalles

Nombre de la asignatura: Diseño de Experimentos Ambientales

Nombre de la asignatura: Diseño de Experimentos Ambientales Nombre de la asignatura: Diseño de Experimentos Ambientales Créditos: 2-2-4 Aportación al perfil Toda actividad encaminada a aportar acervo a toda ciencia y saber humano, sea bajo el enfoque experimental

Más detalles

Tema 7: Modelos de diseños de experimentos

Tema 7: Modelos de diseños de experimentos Tema 7: Modelos de diseños de experimentos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Modelos de diseños de experimentos Curso

Más detalles

ESQUEMA GENERAL DISEÑOS DE MEDIDAS REPETIDAS

ESQUEMA GENERAL DISEÑOS DE MEDIDAS REPETIDAS TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño de medidas parcialmente repetidas DISEÑOS DE MEDIDAS REPETIDAS Definición

Más detalles

Diseños factoriales con tres factores

Diseños factoriales con tres factores Capítulo 6 Diseños factoriales con tres factores SupongamosquehayanivelesparaelfactorA,bnivelesdelfactorBycnivelespara el factor C y que cada réplica del experimento contiene todas las posibles combinaciones

Más detalles

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA. NOTAS DE DISEÑOS EXPERIMENTALES

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA. NOTAS DE DISEÑOS EXPERIMENTALES UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA. NOTAS DE DISEÑOS EXPERIMENTALES José C. Segura Correa. Profesor investigador Titular Mérida Yucatán, enero de 2000. PROLOGO.

Más detalles

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS

Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

EXPERIMENTOS FACTORIALES En esta unidad se estudian los experimentos factoriales. Aquí hay varios tratamientos en cada una de varias categorías y

EXPERIMENTOS FACTORIALES En esta unidad se estudian los experimentos factoriales. Aquí hay varios tratamientos en cada una de varias categorías y EXPERIMENTOS FACTORIALES En esta unidad se estudian los experimentos factoriales. Aquí hay varios tratamientos en cada una de varias categorías y definen un marco de tratamientos. Esta elección de diseño

Más detalles

Diseños experimentales e investigación científica (Experimental designs and scientific research)

Diseños experimentales e investigación científica (Experimental designs and scientific research) InnOvaciOnes de NegOciOs 4(): 83 330, 007 007 UANL, Impreso en México (ISSN 665-967) Diseños experimentales e investigación científica (Experimental designs and scientific research) Badii, M.H, J. Castillo,

Más detalles

UNIVERSIDAD NACIONAL AGRARIA Escuela de Post-Grado. Estadistica Aplicada a la FORESTERIA II INDICE DE TEMAS

UNIVERSIDAD NACIONAL AGRARIA Escuela de Post-Grado. Estadistica Aplicada a la FORESTERIA II INDICE DE TEMAS UNIVERSIDAD NACIONAL AGRARIA Escuela de Post-Grado Estadistica Aplicada a la FORESTERIA II 2007 INDICE DE TEMAS Metodos Generales: 1. Principios basicos del diseño experimental 2. Tipos de experimentos

Más detalles

DISEÑO DE EXPERIMENTOS EN METROLOGÍA

DISEÑO DE EXPERIMENTOS EN METROLOGÍA DISEÑO DE EXPERIMENTOS EN METROLOGÍA Román de la Vara Salazar Centro de Investigación en Matemáticas Callejón de Jalisco, S/N, La Valenciana, Guanajuato, Gto. Tel. (473)737155, Fax: (473) 735749, Email:

Más detalles

EXPERIMENTACIÓN. Eduardo Jiménez Marqués

EXPERIMENTACIÓN. Eduardo Jiménez Marqués EXPERIMENTACIÓN Eduardo Jiménez Marqués 1 CONTENIDO: 1. Experimentación...3 1.1 Concepto...3 1. Definición...4 1.3 Dificultad...4 1.4 Ventaja...5 1.5 Planificación...5 1.6 Aplicaciones...5 1.7 Metodología...6

Más detalles

ANÁLISIS DE LA VARIANZA PARTE SEGUNDA

ANÁLISIS DE LA VARIANZA PARTE SEGUNDA ANÁLISIS DE LA VARIANZA PARTE SEGUNDA Septiembre de 2012 Índice general 1. INTRODUCCIÓN............................... 1 2. FUNDAMENTOS DEL DISEÑO EN BLOQUES ALEATORIZADOS 1 3. EJEMPLO DE DISEÑO EN BLOQUES

Más detalles

DISEÑO DE BLOQUES COMPLETOS AL AZAR : DBCA

DISEÑO DE BLOQUES COMPLETOS AL AZAR : DBCA DISEÑO DE BLOQUES COMPLETOS AL AZAR : DBCA Conocido como diseño de doble vía, se aplica cuando el material es heterogéneo. las unidades experimentales homogéneas se agrupan formando grupos homogéneos llamados

Más detalles

Capítulo IV Diseños de cuadrados latinos y diseños afines

Capítulo IV Diseños de cuadrados latinos y diseños afines Capítulo IV Diseños de cuadrados latinos y diseños afines Estos diseños clásicos son una extensión lógica y natural del diseño en bloques completos al azar y poseen una serie de características muy similares,

Más detalles

Sobre el capitulo 5, se puede encontrar los tratamientos estadísticos más completos en los

Sobre el capitulo 5, se puede encontrar los tratamientos estadísticos más completos en los Capitulo 5. Superficies de Respuesta Sobre el capitulo 5, se puede encontrar los tratamientos estadísticos más completos en los libros de Cornell (1990), Myers y Montgomery (1995) y en artículos de G.E.P.

Más detalles

Análisis de la Varianza de un Factor

Análisis de la Varianza de un Factor Práctica de Estadística con Statgraphics Análisis de la Varianza de un Factor Fundamentos teóricos El Análisis de la Varianza con un Factor es una técnica estadística de contraste de hipótesis, cuyo propósito

Más detalles

Diseños factoriales con dos factores

Diseños factoriales con dos factores Capítulo 6 Diseños factoriales con dos factores Enprimerlugarvamosaestudiarlosdiseñosmássimples,esdeciraquellosenlos queintervienensólodosfactores.supongamosquehayanivelesparaelfactoraybniveles del factor

Más detalles

Elementos de Diseño de Experimentos

Elementos de Diseño de Experimentos Elementos de Diseño de Experimentos Elementos de Diseño de Experimentos Porfirio Gutiérrez González Lizbeth Díaz Caldera María de Jesús Guzmán Sánchez Autores: Porfirio Gutiérrez González Lizbeth Díaz

Más detalles

ANÁLISIS DE ENCUESTAS

ANÁLISIS DE ENCUESTAS ANÁLISIS DE ENCUESTAS TÉCNICAS MULTIVARIANTES 1. Introducción 2. Clasificación de las técnicas 3. Etapas de análisis 4. Supuestos básicos 5. Valores perdidos y anómalos introducción Definición. i ió -

Más detalles

Material de la asignatura Psicología Experimental Manuel Miguel Ramos Álvarez

Material de la asignatura Psicología Experimental Manuel Miguel Ramos Álvarez Tema 6. Variantes analíticas 1 UNIVERSIDAD DE JAÉN Material de la asignatura Psicología Experimental TEMA 6.. VARIIACIIONES ANALÍÍTIICAS PARA LOS PRIINCIIPALES DIISEÑOS DE IINVESTIIGACIIÓN ÍNDICE TEMÁTICO

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

6. DISEÑOS FACTORIALES 2 K NO REPLICADOS

6. DISEÑOS FACTORIALES 2 K NO REPLICADOS 6. DISEÑOS FACTORIALES 2 K NO REPLICADOS 6.1 INTRODUCCION El aumentar el numero de factores en un diseño 2 k crece rápidamente el numero de tratamientos y por tanto el numero de corridas experimentales.

Más detalles

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA ESPECIALIZACIÓN EN NUTRICIÓN ANIMAL SOSTENIBLE Nombre del Curso: DISEÑO EXPERIMENTAL AVANZADO

Más detalles

Llobell, J. P., Pérez, J. F. G., & Navarro, M. D. F. (1996). El diseño y la investigación

Llobell, J. P., Pérez, J. F. G., & Navarro, M. D. F. (1996). El diseño y la investigación Llobell, J. P., Pérez, J. F. G., & Navarro, M. D. F. (1996). El diseño y la investigación experimental en psicología [Design of experimental research in psychology] (2nd ed.). Valencia, Spain: Cristóbal

Más detalles

Diseños en bloques aleatorizados

Diseños en bloques aleatorizados Capítulo 5 Diseños en bloques aleatorizados 5.1. ntroducción En las situaciones que hemos estudiado en el Capítulo 1 hemos supuesto que existe bastante homogéneidad entre las unidades experimentales, así,

Más detalles

Experimentos Factoriales Febrero 2010 Apuntes de la Cátedra de Estadística INDICE

Experimentos Factoriales Febrero 2010 Apuntes de la Cátedra de Estadística INDICE Serie Didáctica Nro. 1 Facultad de Ciencias Forestales UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO C Á T E D R A D E ESTADÍSTICA O. F. ANÁLISIS DE LA VARIANCIA EN EXPERIMENTOS FACTORIALES Cátedra de Estadística

Más detalles

Tema IV. EL ANOVA de un factor

Tema IV. EL ANOVA de un factor 4.1. La estrategia del Análisis de varianza: - Los test t múltiples (múltiples tratamientos); corrección a posteriori - La mejora del ANOVA: necesidad de análisis a posteriori C Test t A versus B A versus

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

Uso de la Metodología Seis Sigma para mejorar el consumo de combustible en un vehiculo

Uso de la Metodología Seis Sigma para mejorar el consumo de combustible en un vehiculo CAPÍTULO 5. FASE DE MEJORA Definir Medir Analizar Mejorar Controlar 5.1 Introducción En la fase de Análisis se identificaron las causas de variación. En esta fase se utilizará el diseño de experimentos

Más detalles

I. INTRODUCCION II. METODOLOGIA DE ESTUDIO. 2. 1 Generalidades

I. INTRODUCCION II. METODOLOGIA DE ESTUDIO. 2. 1 Generalidades M e t o d o l o g í a e s t a d í s t i c a p a r a e l e s t u d i o y e v a l u a c i ó n d e a s p e c t o s t é c n i c o s e n l a c o n s t r u c c i ó n Pág. 21-33 Hernán de Solminihac T. Profesor

Más detalles

IX.- ANÁLISIS DE VARIANZA

IX.- ANÁLISIS DE VARIANZA IX- ANÁLISIS DE VARIANZA Las técnicas de Diseño Experimental basadas en la estadística son particularmente útiles en el mundo de la Ingeniería en lo que corresponde a la mejora del rendimiento de los procesos

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

Diseños en cuadrados latinos

Diseños en cuadrados latinos Capítulo 7 Diseños en cuadrados latinos 7.1. Introducción En el modelo en bloques aleatorizados, que estudiamos en el capítulo anterior, considerábamos un factor principal y un factor de control o variable

Más detalles

Análisis de la Varianza (ANOVA) de un factor y test a posteriori.

Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Ejercicios Temas 8 y 9 (Resuelto) 1. Problema 5 Se quiere estudiar el efecto de distintas dosis de un medicamento para combatir a los parásitos

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 2011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 7] Diseños con más de dos grupos independientes. Análisis de varianza con dos factores completamente aleatorizados 1 Índice 7.1 Introducción...

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA ESPECIALIZACIÓN EN NUTRICIÓN ANIMAL SOSTENIBLE Nombre del Curso: DISEÑO EXPERIMENTAL AVANZADO

Más detalles

DISEÑOS MULTIFACTORIALES CON RESTRICCIONES DE ALEATORIZACIÓN. Diseños en bloques completos aleatorizados con dos tratamientos

DISEÑOS MULTIFACTORIALES CON RESTRICCIONES DE ALEATORIZACIÓN. Diseños en bloques completos aleatorizados con dos tratamientos DISEÑOS MULTIFACTORIALES CON RESTRICCIONES DE ALEATORIZACIÓN Los diseños en bloques utilizan una restricción en la aleatorización. Los cuadrados latinos utilizan dos restricciones en la aleatorización.

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

Alejandra Siqueiros Tarazón

Alejandra Siqueiros Tarazón UNIVERSIDAD DE SONORA MIS HIJOS `MI GRANDEZA DIVISIÓN DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICAS Aplicación de la Metodología de Superficies de Respuesta para el Mejoramiento de la Calidad

Más detalles

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. DISEÑO DE EXPERIMENTOS 1.- INTRODUCCIÓN Este documento trata de dar una visión muy simplificada de la utilidad y la utilización del Diseño de Experimentos. En él se explican los conceptos clave de esta

Más detalles

Facultad de Ciencias Forestales

Facultad de Ciencias Forestales Serie Didactica Nro. 5 Facultad de Ciencias Forestales UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO CÁTEDRA DE ESTADÍSTICA O. F. CONCEPTOS BASICOS SOBRE ANALISIS DE LA VARIANCIA Y DISEÑO EXPERIMENTAL EQUIPO

Más detalles

Diseños Experimentales AEF-1016 3-2-5

Diseños Experimentales AEF-1016 3-2-5 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Diseños Experimentales Carreras: Ingeniería en Innovación Agrícola Sustentable e Ingeniería en Agronomía Clave de la asignatura: SATCA 1 AEF-1016 3-2-5

Más detalles

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor Capítulo 14 Análisis de varianza de un factor: El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,

Más detalles

320514 - APTM - Análisis de Procesos Textiles y de Mercados

320514 - APTM - Análisis de Procesos Textiles y de Mercados Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 320 - EET - Escuela de Ingeniería de Terrassa 714 - ETP - Departamento de Ingeniería Textil y Papelera MÁSTER UNIVERSITARIO

Más detalles

10. DISEÑOS EXPERIMENTALES

10. DISEÑOS EXPERIMENTALES 10. DISEÑOS EXPERIMENTALES Dr. Edgar Acuña http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ Diseños Experimentales de Clasificación Simple En un diseño experimental

Más detalles

Práctica de Diseños Factoriales a dos niveles

Práctica de Diseños Factoriales a dos niveles Práctica de Diseños Factoriales a dos niveles Fichero de datos: antenas.sfx El tratamiento de un diseño factorial a dos niveles con Statgraphics tiene dos fases: 1. Diseñar el experimento: seleccionar

Más detalles

Diseños en cuadrados greco-latinos

Diseños en cuadrados greco-latinos Capítulo 8 Diseños en cuadrados greco-latinos 8.1. Introducción El modelo en cuadrado greco-latino se puede considerar como una extensión del cuadrado latino en el que se incluye una tercera variable de

Más detalles

Metodología de la Investigación. Dr. Cristian Rusu cristian.rusu@ucv.cl

Metodología de la Investigación. Dr. Cristian Rusu cristian.rusu@ucv.cl Metodología de la Investigación Dr. Cristian Rusu cristian.rusu@ucv.cl 6. Diseños de investigación 6.1. Diseños experimentales 6.1.1. Diseños preexperimentales 6.1.2. Diseños experimentales verdaderos

Más detalles

Centro guatemalteco de investigación y capacitación de la caña de azúcar. -CENGICAÑA-

Centro guatemalteco de investigación y capacitación de la caña de azúcar. -CENGICAÑA- Centro guatemalteco de investigación y capacitación de la caña de azúcar. -- Joel Morales, José Luis Quemé y Mario Melgar. Primera Edición Santa Lucia Cotz. Agosto 2009. InfoStat Contenido Aspectos generales

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

1 Introducción al SPSS

1 Introducción al SPSS Breve guión para las prácticas con SPSS 1 Introducción al SPSS El programa SPSS está organizado en dos bloques: el editor de datos y el visor de resultados. En la barra de menú (arriba de la pantalla)

Más detalles

ESTUDIO DE LA INFLUENCIA DEL SUERO DE LECHE FERMENTADO EN LA ELABORACIÓN DE JABÓN LÍQUIDO CON ph ÁCIDO

ESTUDIO DE LA INFLUENCIA DEL SUERO DE LECHE FERMENTADO EN LA ELABORACIÓN DE JABÓN LÍQUIDO CON ph ÁCIDO ESTUDIO DE LA INFLUENCIA DEL SUERO DE LECHE FERMENTADO EN LA ELABORACIÓN DE JABÓN LÍQUIDO CON ph ÁCIDO Autores: Cristina Daniela Proaño Tamayo Danny Gustavo Armas Andrade Ibarra-Ecuador PRODUCCIÓN NECESIDAD

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE 1. Introducción 2. Etapas 3. Caso práctico Análisis de dependencias introducción varias relaciones una relación 1 variable dependiente > 1 variable dependiente

Más detalles

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar

Más detalles

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística 1 TAMAÑO DEL EFECTO 2 TAMAÑO DEL EFECTO vel tamaño del efecto es el nombre dado a una familia de índices que miden la magnitud

Más detalles

PRUEBAS NO PARAMÉTRICAS

PRUEBAS NO PARAMÉTRICAS PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la

Más detalles

SPSS: ANOVA de un Factor

SPSS: ANOVA de un Factor SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de

Más detalles

aplicado al Experiencia La gestión de un servicio y, por ende, la

aplicado al Experiencia La gestión de un servicio y, por ende, la EN PORTADA 6 Sigma aplicado al Experiencia En este artículo vamos a dar una visión más particular sobre la aplicabilidad de 6 Sigma al sector Servicios. Existe abundante literatura al respecto, pero sobre

Más detalles

PRINCIPIOS DE INVESTIGACIÓN CIENTÍFICA

PRINCIPIOS DE INVESTIGACIÓN CIENTÍFICA PRINCIPIOS DE INVESTIGACIÓN CIENTÍFICA Precisión: definición precisa del objeto de estudio, traducir los resultados a números. Replicación: repetir investigaciones de otros Objetividad: tomar medidas y

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

Diseño completamente al azar. Diseño de experimentos p. 1/111

Diseño completamente al azar. Diseño de experimentos p. 1/111 Diseño completamente al azar Diseño de experimentos p. 1/111 Ejemplo Suponga que tenemos 4 dietas diferentes que queremos comparar. Las dietas están etiquetadas A,B,C y D. Estamos interesados en estudiar

Más detalles

CAPÍTULO 10 DISEÑOS EXPERIMENTALES

CAPÍTULO 10 DISEÑOS EXPERIMENTALES CAPÍTULO 10 DISEÑOS EXPERIMENTALES 10.1 Diseños Experimentales de Clasificación Simple En un diseño experimental de clasificación simple, se trata de comparar varios grupos generalmente llamados Métodos

Más detalles

chiapas.academiajournals.com 1946-5351 ONLINE, 1948-2353 CD ROM

chiapas.academiajournals.com 1946-5351 ONLINE, 1948-2353 CD ROM Aplicación de herramientas para el desarrollo de una metodología para el análisis de la variación de pesos en máquinas envasadoras en la empresa Campo Fresco MC. Joel Everardo Valtierra Olivares 1, Dr.

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

4. MÉTODOS DE CLASIFICACIÓN

4. MÉTODOS DE CLASIFICACIÓN 4. MÉTODOS DE CLASIFICACIÓN Una forma de sintetizar la información contenida en una tabla multidimensional (por ejemplo una tabla léxica agregada), es mediante la conformación y caracterización de grupos.

Más detalles

Diseños de Investigación 40 conceptos que debes conocer

Diseños de Investigación 40 conceptos que debes conocer Diseños de Investigación 40 conceptos que debes conocer 1. El método científico: Se puede realizar desde dos enfoques distintos, hipotético deductivo y analítico inductivo. Con frecuencia los dos ocurren

Más detalles

Experto en Psicología: Métodos de Investigación

Experto en Psicología: Métodos de Investigación Experto en Psicología: Métodos de Investigación Titulación certificada por EUROINNOVA BUSINESS SCHOOL Experto en Psicología: Métodos de Investigación Experto en Psicología: Métodos de Investigación Duración:

Más detalles

Las tres razones principales para realizar Experimento Factorial son:

Las tres razones principales para realizar Experimento Factorial son: 54 V.- EXPERIMENTOS FACTORIALES. Los experimentos factoriales son aquellos en los que se prueban varios niveles de dos o más factores. El número de tratamientos es el resultado de combinar los diferentes

Más detalles

EL ANÁLISIS DE LA VARIANZA (ANOVA) 1. Comparación de múltiples poblaciones

EL ANÁLISIS DE LA VARIANZA (ANOVA) 1. Comparación de múltiples poblaciones EL ANÁLISIS DE LA VARIANZA (ANOVA) 1. Comparación de múltiples poblaciones Ricard Boqué, Alicia Maroto Grupo de Quimiometría y Cualimetría. Universitat Rovira i Virgili. Pl. Imperial Tàrraco, 1. 43005Tarragona

Más detalles

Introducción al análisis de la varianza (ANOVA)

Introducción al análisis de la varianza (ANOVA) Introducción al análisis de la varianza (ANOVA) Albert Sorribas Departament de Ciències Mèdiques Bàsiques Universitat de Lleida albert.sorribas@cmb.udl.cat última versión: 6 de febrero de 2014 Índice 1.

Más detalles

METODOS ESTADISTICOS PARA ANALISIS BIVARIADO

METODOS ESTADISTICOS PARA ANALISIS BIVARIADO CAPITULO 5 METODOS ESTADISTICOS PARA ANALISIS BIVARIADO El análisis bivariado permite examinar si existe relación (asociación) entre dos variables. Las variables pueden ser ambas numéricas, una numérica

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Parte II DISEÑO METODOLÓGICO DE LA INVESTIGACIÓN. Tema 5 TÉCNICAS CUANTITATIVAS DE RECOGIDA DE INFORMACIÓN

Parte II DISEÑO METODOLÓGICO DE LA INVESTIGACIÓN. Tema 5 TÉCNICAS CUANTITATIVAS DE RECOGIDA DE INFORMACIÓN Parte II DISEÑO METODOLÓGICO DE LA INVESTIGACIÓN Tema 5 TÉCNICAS CUANTITATIVAS DE RECOGIDA DE INFORMACIÓN Tema 5. TÉCNICAS CUANTITATIVAS DE RECOGIDA DE INFORMACIÓN 5.1. La encuesta: naturaleza y tipología

Más detalles

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.. Estimación y predicción por intervalo en regresión lineal

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

Son las dispersiones diferentes?

Son las dispersiones diferentes? ESTADÍSTICA BÁSICA II Prueba de significancia 2: F-test Análisis de Varianza (ANOVA) Identificación de valores anómalos (outliers) - Cochran y Grubbs test Taller 3 Leonardo Merino Science Department Swedish

Más detalles

Introducción al Diseño de Experimentos

Introducción al Diseño de Experimentos Introducción al Diseño de Experimentos Introducción Los modelos de diseño de experimentos son modelos estadísticos clásicos cuyo objetivo es averiguar si unos determinados factores influyen en una variable

Más detalles

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS Badler, Clara E. Alsina, Sara M. 1 Puigsubirá, Cristina B. 1 Vitelleschi, María S. 1 Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE) TRATAMIENTO DE BASES DE DATOS

Más detalles

PRINCIPIOS DEL DISEÑO EXPERIMENTAL

PRINCIPIOS DEL DISEÑO EXPERIMENTAL PRINCIPIOS DEL DISEÑO EXPERIMENTAL Para el no ilustrado en la teoría, un estadístico es una persona que trabaja con la aplicación de métodos estadísticos; para los estadísticos, un estadístico es una función

Más detalles

Programa de Formació Continuada Societat Catalana de Cirurgia. Análisis Multivariante. Introducción. Tema 21 Joan J Sancho

Programa de Formació Continuada Societat Catalana de Cirurgia. Análisis Multivariante. Introducción. Tema 21 Joan J Sancho Programa de Formació Continuada Societat Catalana de Cirurgia Análisis Multivariante Introducción Tema 21 Joan J Sancho Qué es? Son todas aquellas técnicas estadísticas que simultáneamente analizan múltiples

Más detalles

DISEÑO DE EXPERIMENTOS (PARTE I) CURSO DE APLICACIÓN DE LOS MÉTODOS ESTADÍSTICOS A LA CALIDAD MÓDULO 9

DISEÑO DE EXPERIMENTOS (PARTE I) CURSO DE APLICACIÓN DE LOS MÉTODOS ESTADÍSTICOS A LA CALIDAD MÓDULO 9 Módulo 6 CURSO DE APLICACIÓN DE LOS MÉTODOS ESTADÍSTICOS A LA CALIDAD APUNTES DE CLASE Profesor: Arturo Ruiz-Falcó Rojas Madrid, Mayo 2009 MÓDULO 9 DISEÑO DE EXPERIMENTOS 2 K Pág. Módulo 6.. Apuntes ÍNDICE.

Más detalles

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se

Más detalles

RESULTADOS Y DISCUSION. Los datos para la variable número de hojas por planta. Se recolectaron en 4 puntos al azar

RESULTADOS Y DISCUSION. Los datos para la variable número de hojas por planta. Se recolectaron en 4 puntos al azar IX. RESULTADOS Y DISCUSION 9.1. Número de hojas por planta Los datos para la variable número de hojas por planta. Se recolectaron en 4 puntos al azar por parcela en la parcela útil, muestreando 3 plantas

Más detalles

Prácticas y problemas de diseño de experimentos.

Prácticas y problemas de diseño de experimentos. Capítulo 1 Prácticas y problemas de diseño de experimentos. 1.1. Problemas de diseño de experimentos con ordenador. Problema 3.1. Datos apareados. El Ministerio de Trabajo desea saber si un plan de seguridad

Más detalles

www.atalayadecristo.org

www.atalayadecristo.org Marzo 2016 Ing. Rubén Darío Estrella, MBA Cavaliere dell ordine al Merito della Repubblica Italiana (2003) Ingeniero de Sistemas (UNIBE 1993), Administrador (PUCMM 2000), Matemático (PUCMM 2007), Teólogo

Más detalles

ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos)

ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos) ESTADÍSTICA BÁSICA en LABORATORIOS (Físico - Químicos) (Aplicaciones de Microsoft Excel ) Curso a distancia (EDICIÓN Junio 2012) ASECAL, S.L. MADRID-ESPAÑA RONDA DE TOLEDO, 8, LOCAL 1º- 28005 MADRID. Teléfono:

Más detalles

Diseño completamente aleatorizado: análisis de la varianza con un solo factor.

Diseño completamente aleatorizado: análisis de la varianza con un solo factor. Tema 4 Diseño de experimentos Introducción. Qué es el diseño experimental? Diseño completamente aleatorizado: análisis de la varianza con un solo factor. Diseño en bloques aleatorizados. Diseño factorial

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 26 - Junio - 2.8 Primera Parte - Test Nota : En la realización de este examen sólo esta permitido utilizar calculadoras que, a lo sumo, tengan funciones

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN Titulación: INGENIERO TÉCNICO INDUSTRIAL MECÁNICO Título del proyecto: PROYECTO DE MEJORA: TRATAMIENTO DE DATOS Iñaki Veintemilla

Más detalles

INDICE (606 páginas)

INDICE (606 páginas) 1 INDICE (606 páginas) Agradecimientos Prefacio Dedicatoria Sobre el autor Introducción Significado de Seis-Sigma Estructura organizacional de Seis-Sigma Definición de Problema Selección de un proyecto

Más detalles

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación Pág. N. 1 Índice general Metodología de la investigación científica Conocimiento y Ciencia 1. Origen del Conocimiento 1.1 Sujeto cognoscente 1.2 Objeto del conocimiento 1.3 El conocimiento 2. Principales

Más detalles

T. 5 Inferencia estadística acerca de la relación entre variables

T. 5 Inferencia estadística acerca de la relación entre variables T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas

Más detalles

MANUAL DE SAS PARA PRINCIPIANTES

MANUAL DE SAS PARA PRINCIPIANTES MANUAL DE SAS PARA PRINCIPIANTES José C. Segura Correa Prologo. Desde sus orígenes a la fecha el paquete estadístico Statistical Analysys System (SAS) ha evolucionado convirtiéndose en un paquete versátil

Más detalles

Doctorado en Ingeniería Facultades de Cs. Agropecuarias; Cs. de la Alimentación e Ingeniería

Doctorado en Ingeniería Facultades de Cs. Agropecuarias; Cs. de la Alimentación e Ingeniería Carrera: Doctorado en Ingeniería Doctorado en Ingeniería Facultades de Cs. Agropecuarias; Cs. de la Alimentación e Ingeniería Curso de Posgrado: Estadística y Diseño de Experimentos Carga Horaria 1 : 90

Más detalles

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema.

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema. 37 CAPITULO METODOLOGIA DE SUPERFICIES DE RESPUESTA En este capítulo hablaremos de qué es la Metodología de Superficies de Respuesta, su representación gráfica, el procedimiento a seguir hasta encontrar

Más detalles