Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez"

Transcripción

1 Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Índice MAATTEERRIIAALL XVII DEESSCCRRIIPPCCIIÓÓNN CCOONN ANNÁÁLLIISSIISS DIISSCCRRIIMIINNAANNTTEE 1. Conceptos fundamentales del análisis Discriminante Planteamiento computacional del análisis Discriminante El Análisis Discriminante en profundidad Secuencia de investigación en el Análisis Discriminante

2 Curso de Análisis de investigaciones con programas Informáticos 2 1. Conceptos fundamentales del análisis Discriminante Objetivo: la predicción pero en el sentido de clasificación en grupos de los cuales se conoce el criterio de clasificación de antemano. Luego, al revés que MANOVA, se pretende la predicción de una variable categórica (la que hubiera sido la var.ind. en ANOVA) a partir de una seria de predictores (serían las var.dep. en ANOVA). Lógica estadística. El interés se centra en combinar linealmente las variables predictoras para predecir el grupo. Entonces si la predicción del grupo es significativa estamos afirmando lo mismo que si concluimos que los grupos son diferentes entre sí. De esta forma, podríamos clasificar en grupos diferentes a partir del conocimiento de los predictores. Conclusión: técnicas orientadas al estudio de variables en cuanto a su capacidad de clasificación, de diagnóstico más que por su significación estadística. En el gráfico siguiente se puede apreciar el poder separador del análisis discriminante respecto de la suma simple. a) Función discriminante 1 (Y) vs función discriminante 2 (X) b) Suma simple de las 4 escalas para cada sujeto c ) Función discriminante 1 (Y) para cada sujeto(x) d) Función discriminante 2 (Y) para cada sujeto (X) Variantes (o etapas): o Aproximación predictiva. El objetivo es encontrar una regla para realizar la clasificación lo más correctamente posible es decir mediante las funciones de clasificación lineal. o Aproximación descriptiva. Determinar el peso relativo que los diferentes predictores puedan tener para separar unos grupos de otros, contribución de cada uno a la predicción del grupo, lo que viene dado por las funciones discriminantes lineales. 2

3 Curso de Análisis de investigaciones con programas Informáticos 3 2. Planteamiento computacional del análisis Discriminante Funciones Discriminantes Lineales que relacionan las soluciones o funciones discriminantes con los predictores. o Y = β + β x + β x + + β x Puntuac. discrim. suj. i funcion j ij 0 1 i,1 2 i,2 p i,p Peso Puntuac.suj. v. predictora cada v. predictora p var. predictoras Estas puntuaciones que se obtienen permiten una diferenciación máxima de los grupos. Funciones Clasificación Lineales que relacionan las clasificaciones para cada uno de los grupos (j) con los predictores y teniendo en cuenta que se asigna el sujeto (i) al grupo en cuya función ha obtenido mayor valor. Y j = β 0j + β 1j x 1 + β 2j x β pj x p; suj i Max( Y j ) Puntuac. clasifica. Peso Grupo j v. predictora Grupo j Puntuac.suj. cada v. predictora p var. predictoras o Estas puntuaciones permiten una predicción óptima por cada grupo individualmente. 3

4 Curso de Análisis de investigaciones con programas Informáticos 4 3. El Análisis Discriminante en profundidad 1. El éxito de la predicción depende de las variables predictoras seleccionadas. La elección inicial de variables debe realizarse en función de un marco teórico o conceptual, y/o pragmático (qué variables pueden medirse realmente, qué costo tiene medir cada variable, etc.). 2. Planificación y estructuración del diseño: a. Resolver adecuadamente cuestiones estructurales (ver capítulo de Diseño y de Experimentos con ANOVA en Ramos, Catena y Trujillo, 2004). i. Optimizar la variable a manipular: cómo se la va a manipular (de forma directa o indirecta) y cuántos niveles va a tener. ii. Optimizar las variables a medir: qué variables se van a medir, cómo se las medirá y que su sensibilidad a los cambios de la variable manipulada sean máximos. b. Sobre variables extrañas: qué variables podrían afectar a la investigación y deben ser controladas. c. Decidir adecuadamente qué tamaño van a tener los grupos. d. Es importante tener presente que los diseños no equilibrados (número desigual de sujetos por grupo) requieren consideraciones analíticas especiales. e. Seleccionar la muestra de sujetos intentando que sean proporcionales a la población. 3. Se realiza la investigación y se obtienen los datos. 4. Se realiza el Análisis Discriminante Descriptivo. Se busca combinar linealmente las variables predictoras para predecir el grupo. a. Decidir si es pertinente el AD. Mediante un MANOVA se decide sobre la significación estadística de la variable grupos en el Variado formado por todas las variables predictoras. Si es significativo entonces es viable el AD. b. Obtención de las funciones discriminantes lineales. i. Con más de dos variables puede haber diversas soluciones: Nº funciones= min{(grupos-1),predictores}. ii. En general se establece el patrón de discriminaciones diferencial de las distintas funciones teniendo presente que las primeras soluciones son más poderosas que las posteriores. iii. El número de funciones debe ser el mínimo posible, serán ortogonales y maximizando la separación de los grupos. iv. El objetivo último es obtener los pesos de cada variable preferentemente de manera estandarizada para evitar problemas de escala: coeficientes discriminantes canónicos estandarizados. v. Determinar si las funciones discriminan significativamente entre los grupos. Mediante análisis exploratorio (ver figura de arriba). Con ANOVA entre grupos para cada función discriminante, tanto ómnibus como de contrastes ortogonales (i.e. Regla Helmert). Con Lambda de Wilks. Simplemente las funciones significativas son las que se retienen en la solución final. c. Evaluación de la importancia de cada variable en cada función discriminante. Evaluar la significación estadística de las distintas variables de cara a la discriminación, de manera que el modelo se simplificará prescindiendo de aquéllas variables que no hagan una aportación significativa. Analizar -> Modelo Lineal General -> Multivariante -> Dependientes: E1, E2, E3, E4 -> Factores fijos: Grupo -> Aceptar (análisis). Analizar -> Clasificar -> Discriminante -> Variable de agrupación: Grupo -> Definir rango -> Mínimo: 1; Máximo: 3 -> Continuar -> Independientes: E1,, E4 Estadísticos -> Coeficientes de la función: No tipificados -> Continuar -> Guardar: Puntuaciones discriminantes Continuar Clasificar: Graficos de grupos separados, gráficos de grupos combinados -> Continuar -> Aceptar (análisis) Añadir al fichero de datos una columna que etiqueta los casos (de 1 hasta 15) Graficos -> Dispersión -> Simple -> Definir: EjeY: Puntuaciones discriminantes 1, Ejes: Casos, Establecer marcas por: Grupo -> Continuar -> Aceptar -> Hacer lo mismo con las otras funciones discriminantes generadas en la hoja de datos 4

5 Curso de Análisis de investigaciones con programas Informáticos 5 i. Examinando las cargas canónicas o matriz de estructura (correlación entre una variable predictora y la función discriminante). Se incluyen las variables con cargas mayores a 0.33 (pero es arbitrario). ii. Repetir el análisis básico suprimiendo selectivamente variables. Comparamos el cambio en la lambda de Wilks obtenido con las variables que se han mantenido en el análisis con respecto al obtenido con todas las variables. La variable eliminada no hacía una aportación relevante si el cambio en lambda no es importante, (i.e. las funciones discriminantes siguen siendo semejantes), y se elimina. iii. Análisis discriminante por etapas (stpewise). 1º se trata a cada variable como si fuese la única predictora. La primera que entra en la función discriminante es la de mayor F-entrar y menor valor del estadístico (mayor poder de discriminación diferencial) asociado, siempre que lo disminuya respecto al paso precedente. Se procede de esta manera pero teniendo en cuenta que ya hay variables en la ecuación. Así llegar a una que quedaría fuera (valor F muy pequeño y un valor del estadístico que no cambia) o incluirlas a todas. Estadísticos para determinar la inclusión de las variables. Lambda de Wilks, Reducción en la varianza no explicada, la distancia de Mahalanobis y la V de Rao (la traza de Hotelling-Lawley). Mejor quedarse con las variables que son consistentes en la mayoría de los 4 tipos de cálculo. 5. Se realiza el Análisis Discriminante Predictivo. a. Obtención de los coeficientes de clasificación lineal. También como combinaciones lineales de las variables predictoras pero: i. Se calcula una función de clasificación por cada grupo. ii. Para cada sujeto se calcula la función correspondiente a cada uno de los grupos. iii. El sujeto es asignado al grupo en el que tenga mayor función de clasificación. iv. La clasificación puede hacerse sólo con las variables seleccionadas tras el análisis discriminante descriptivo. v. Si los grupos son desiguales se debe añadir un término en la ecuación del tipo logarítmico, que corrige tal desequilibrio. b. Evaluar la bondad de ajuste de la clasificación sobre los casos originales, y en caso de cometer errores qué patrón siguen? i. Mediante prueba Chi-Cuadrado. A partir de los coeficientes precedentes se clasifica en los grupos a los sujetos cuya pertenencia a grupo es conocida y se evalúa el ajuste entre el Grupo Original y el Pronosticado mediante una tabla de Contingencia y la correspondiente prueba Chi-Cuadrado para la significación. c. Realizar el diagnóstico de nuevos casos, es decir cómo combinar la información proporcionada por las variables para acertar lo máximo posible en la clasificación de nuevos individuos. 6. Interpretación de la solución obtenida. La estimación última viene dada por los coeficientes de los dos tipos de funciones, discriminantes y de clasificación, en términos estandarizados. A partir de estos se extraerán conclusiones sobre la pertinencia de las variables predictoras y sobre la precisión del sistema diagnóstico a la hora de clasificar nuevos casos. 7. La solución del análisis discriminante puede ser contrastada, validada, con respecto a un criterio interno. a. Por Validación cruzada. Con una lógica similar al análisis de cluster. Se hacen las estimaciones excluyendo algunos casos y éstas se Analizar -> Modelo Lineal General -> Multivariante -> Dependientes: Puntuaciones dicrim 1, Puntuaciones Discrim 2-> Factores fijos: Grupo -> Cotrastes: GRUPO(Helmert) -> Continuar ->Aceptar (análisis). Analizar -> Clasificar -> Discriminante -> Variable de agrupación: Grupo -> Definir rango -> Mínimo: 1; Máximo: 3 -> Continuar -> Independientes: E1,, E4 Usar método de inclusión por pasos -> Método -> Lambda de Wilks -> Resumen de los pasos -> Continuar -> Aceptar (análisis) Hacer lo mismo con los otros métodos incluidos en el programa Estadísticos -> Coeficientes de la función: De Fisher Guardar -> Grupo de pertenencia pronosticado -> Continuar -> Analizar -> Estadísticos descriptivos -> Tablas de contingencia -> Filas: Grupo, Columnas: Predicho -> Estadísticos -> Chi-cuadrado - > Continuar -> Aceptar (análisis) -> Clasificar... -> Clasificación dejando uno fuera -> Continuar -> 5

6 Curso de Análisis de investigaciones con programas Informáticos 6 emplean para clasificar a otra muestra de individuos para los que se conoce su pertenencia al grupo. b. Método de la navaja (jackknifed classification), en la que los coeficientes son calculados excluyendo uno por uno a todos los sujetos de la muestra. Cada sujeto tiene un conjunto de coeficientes que se basan en los n-1 sujetos restantes. c. El método navaja reduce el sesgo clasificatorio de la anterior pero si se producen discrepancias entre ambas, es preferible la de validación cruzada. 6

7 Curso de Análisis de investigaciones con programas Informáticos 7 4. Secuencia de investigación en el Análisis Discriminante 1) Problema de investigación Clasificación vs. descripción a partir de predictores a) Contextualizar problema en un dominio b) Diferencias multivar. Entre grupos c) Qué funciones discriminan d) Clasificar y diagnosticar individuos en grupos 2) Diseño de investigación a) Variable Grupos, calidad y nº de niveles, manipulac. directa b) Cuestiones de medida sobre las Variables predictoras, su nº y calidad c) Control factores extraños d) Sobre Tamaños muestrales Grupos y representatividad población e) Tamaño muestral total 3) Evaluación de supuestos y limitaciones Se cumplen? Sí N a) Hay diferencias significativas entre los Grupos como para discriminarlos (MANOVA) b) Linealidad y multicolinealidad c) Problemas muestras desequilibradas d) Normalidad multivariada e) Homogeneidad Varianzas-Covarianzas f) Puntos extremos y/o Atrición Estrategias paliativas tipo transformación de los datos o eliminac. casos completos o matrices covar. grupos separados Alternativa Análisis Cluster 4) Funciones Discriminantes Lineales a) Tipo estimación: método simultáneo o por etapas b) Qué método introducción var. se empleará en el caso por etapas c) Mejor pesos estandarizados 5) Interpretación Funciones Discrim. Comprender cómo se produce la separación entre los grupos a) Variables que se retienen b) Importancia relat. Cada var. c) Cuántas funciones se interpretarán. d) Buscar convergencia entre distintos algoritmos (i.e. Lambda, Rao, etc.) [8) Comunicación resultados] Informe de investigación tipo APA 7) Interpretación Resultados 6) Funciones Clasificación Lineal a) Coeficientes funciones b) Clasificar a los individuos c) Computar tablas de contingencia d) Decidir sobre la bondad del ajuste de predicción mediante pruebas tipo Chi 2. a) Se resuelve el problema? b) Otras investigaciones derivadas c) Importancia teórica resultados d) Validación cruzada de las clasificaciones 7

8 Curso de Análisis de investigaciones con programas Informáticos 8 Volver Principio 8

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE 1. Introducción 2. Etapas 3. Caso práctico Análisis de dependencias introducción varias relaciones una relación 1 variable dependiente > 1 variable dependiente

Más detalles

ANÁLISIS DE ENCUESTAS

ANÁLISIS DE ENCUESTAS ANÁLISIS DE ENCUESTAS TÉCNICAS MULTIVARIANTES 1. Introducción 2. Clasificación de las técnicas 3. Etapas de análisis 4. Supuestos básicos 5. Valores perdidos y anómalos introducción Definición. i ió -

Más detalles

Una validación de la interpretación no causal del análisis factorial

Una validación de la interpretación no causal del análisis factorial Una validación de la interpretación no causal del análisis factorial José Antonio Pérez-Gil y Rafael Moreno Rodríguez Es muy frecuente asumir que los factores comunes obtenidos en el Análisis Factorial

Más detalles

Material de la asignatura Psicología Experimental Manuel Miguel Ramos Álvarez

Material de la asignatura Psicología Experimental Manuel Miguel Ramos Álvarez Tema 6. Variantes analíticas 1 UNIVERSIDAD DE JAÉN Material de la asignatura Psicología Experimental TEMA 6.. VARIIACIIONES ANALÍÍTIICAS PARA LOS PRIINCIIPALES DIISEÑOS DE IINVESTIIGACIIÓN ÍNDICE TEMÁTICO

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

1 Ejemplo de análisis descriptivo de un conjunto de datos

1 Ejemplo de análisis descriptivo de un conjunto de datos 1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos

Más detalles

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 rafael.dearce@uam.es El objeto de las tablas de contingencia es extraer información de cruce entre dos

Más detalles

Cómo obtener un Modelo de Regresión Logística Binaria con SPSS

Cómo obtener un Modelo de Regresión Logística Binaria con SPSS Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo obtener un Modelo de Regresión Logística Binaria con SPSS Vanesa Berlanga-Silvente y Ruth Vilà-Baños Fecha de presentación:

Más detalles

LA TÉCNICA DE ÁNALISIS DISCRIMINANTE: UNA APLICACIÓN PARA EL ÁREA BANCARIA 1

LA TÉCNICA DE ÁNALISIS DISCRIMINANTE: UNA APLICACIÓN PARA EL ÁREA BANCARIA 1 BANCO CENTRAL DE COSTA RICA DIVISIÓN ECONÓMICA DEPARTAMENTO DE INVESTIGACIONES ECONÓMICAS DIE-NT-03-98 AGOSTO, 998 LA TÉCNICA DE ÁNALISIS DISCRIMINANTE: UNA APLICACIÓN PARA EL ÁREA BANCARIA Evelyn Muñoz

Más detalles

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS Badler, Clara E. Alsina, Sara M. 1 Puigsubirá, Cristina B. 1 Vitelleschi, María S. 1 Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE) TRATAMIENTO DE BASES DE DATOS

Más detalles

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS 1 MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS Medidas de tendencia central Menú Analizar: Los comandos del menú Analizar (Estadística) ejecutan los procesamientos estadísticos. Sus comandos están

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

Capítulo 20. Análisis factorial: El procedimiento Análisis factorial. Introducción

Capítulo 20. Análisis factorial: El procedimiento Análisis factorial. Introducción Capítulo 20 Análisis factorial: El procedimiento Análisis factorial Introducción El análisis factorial es una técnica de reducción de datos que sirve para encontrar grupos homogéneos de variables a partir

Más detalles

Análisis de componentes principales

Análisis de componentes principales Capítulo 2 Análisis de componentes principales 2.1. INTRODUCCIÓN El Análisis de componentes principales trata de describir las características principales de un conjunto de datos multivariantes, en los

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA Eva Medina Moral (Febrero 2002) EXPRESIÓN DEL MODELO BASICO DE REGRESIÓN LINEAL La expresión formal del modelo

Más detalles

Santiago de la Fuente Fernández. Análisis Discriminante

Santiago de la Fuente Fernández. Análisis Discriminante Santiago de la Fuente Fernández Análisis Discriminante Santiago de la Fuente Fernández Análisis Discriminante ANÁLISIS DISCRIMINANTE Análisis Discriminante El Análisis Discriminante es una técnica estadística

Más detalles

Estimación de parámetros, validación de modelos y análisis de sensibilidad

Estimación de parámetros, validación de modelos y análisis de sensibilidad Tema 6 Estimación de parámetros, validación de modelos y análisis de sensibilidad 6.1 Calibración Una vez que se ha identificado el modelo y se ha programado, necesitamos aplicarlo al problema concreto

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

METODOLOGÍA DE EVALUACIÓN DE

METODOLOGÍA DE EVALUACIÓN DE METODOLOGÍA DE EVALUACIÓN DE DESEMPEÑO ENERGÉTICO PARA UN EDIFICIO HABILITADO COMO OFICINA Y/O BANCO Dirección de Economía Sectorial Coordinación General de Crecimiento Verde Instituto Nacional de Ecología

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 2011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 7] Diseños con más de dos grupos independientes. Análisis de varianza con dos factores completamente aleatorizados 1 Índice 7.1 Introducción...

Más detalles

REGRESIÓN LINEAL MÚLTIPLE

REGRESIÓN LINEAL MÚLTIPLE REGRESIÓN LINEAL MÚLTIPLE.- Planteamiento general....- Métodos para la selección de variables... 5 3.- Correlaciones parciales y semiparciales... 8 4.- Multicolinealidad en las variables explicativas...

Más detalles

EL DISEÑO FACTORIAL COMPLETO 2 k

EL DISEÑO FACTORIAL COMPLETO 2 k EL DISEÑO FACTORIAL COMPLETO 2 k Joan Ferré Grupo de Quimiometría y Cualimetría Departamento de Química Analítica y Química Orgánica Universidad Rovira i Virgili (Tarragona) INTRODUCCIÓN En el primer artículo

Más detalles

T. 5 Inferencia estadística acerca de la relación entre variables

T. 5 Inferencia estadística acerca de la relación entre variables T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

Regresión lineal múltiple

Regresión lineal múltiple . egresión lineal múltiple egresión lineal múltiple. Introducción. En el tema anterior estudiamos la correlación entre dos variables y las predicciones que pueden hacerse de una de ellas a partir del conocimiento

Más detalles

Las 7 Herramientas Fundamentales de la Calidad

Las 7 Herramientas Fundamentales de la Calidad Las 7 Herramientas Fundamentales de la Calidad Se utilizarán los métodos estadísticos elementales, dado que está dirigido a todos los funcionarios, desde la alta dirección hasta los operarios de base (Ej:

Más detalles

320514 - APTM - Análisis de Procesos Textiles y de Mercados

320514 - APTM - Análisis de Procesos Textiles y de Mercados Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 320 - EET - Escuela de Ingeniería de Terrassa 714 - ETP - Departamento de Ingeniería Textil y Papelera MÁSTER UNIVERSITARIO

Más detalles

APLICACIÓN DEL ANÁLISIS DISCRIMINANTE A UN CONJUNTO DE DATOS VINÍCOLAS MEDIANTE EL PAQUETE ESTADÍSTICO SPSS v10

APLICACIÓN DEL ANÁLISIS DISCRIMINANTE A UN CONJUNTO DE DATOS VINÍCOLAS MEDIANTE EL PAQUETE ESTADÍSTICO SPSS v10 APLICACIÓN DEL ANÁLISIS DISCRIMINANTE A UN CONJUNTO DE DATOS VINÍCOLAS MEDIANTE EL PAQUETE ESTADÍSTICO SPSS v10 1 Maylí Z. Pozo Díaz, 2 Gonzalo I. Carrasco O. 1 Universidad de Panamá, Facultad de Ciencias

Más detalles

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación Pág. N. 1 Índice general Metodología de la investigación científica Conocimiento y Ciencia 1. Origen del Conocimiento 1.1 Sujeto cognoscente 1.2 Objeto del conocimiento 1.3 El conocimiento 2. Principales

Más detalles

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor Capítulo 14 Análisis de varianza de un factor: El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

Capítulo 12. Análisis de variables categóricas: El procedimiento Tablas de contingencia. Tablas de contingencia

Capítulo 12. Análisis de variables categóricas: El procedimiento Tablas de contingencia. Tablas de contingencia Capítulo 12 Análisis de variables categóricas: El procedimiento Tablas de contingencia En las ciencias sociales, de la salud y del comportamiento es muy frecuente encontrarse con variables categóricas.

Más detalles

1 Introducción al SPSS

1 Introducción al SPSS Breve guión para las prácticas con SPSS 1 Introducción al SPSS El programa SPSS está organizado en dos bloques: el editor de datos y el visor de resultados. En la barra de menú (arriba de la pantalla)

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL

BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL BREVE APUNTE SOBRE EL PROBLEMA DE LA MULTICOLINEALIDAD EN EL MODELO BÁSICO DE REGRESIÓN LINEAL Ramón Mahía Febrero 013 Prof. Ramón Mahía ramon.mahia@uam.es Qué se entiende por Multicolinealidad en el marco

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0])

Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0]) Regresión logística Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0]) Se trata de calcular la probabilidad en la que una

Más detalles

Programa de Formació Continuada Societat Catalana de Cirurgia. Análisis Multivariante. Introducción. Tema 21 Joan J Sancho

Programa de Formació Continuada Societat Catalana de Cirurgia. Análisis Multivariante. Introducción. Tema 21 Joan J Sancho Programa de Formació Continuada Societat Catalana de Cirurgia Análisis Multivariante Introducción Tema 21 Joan J Sancho Qué es? Son todas aquellas técnicas estadísticas que simultáneamente analizan múltiples

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS

UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS I. INTRODUCCIÓN Y MANEJO DE DATOS MANUAL DE SPSS 1 MASTER CALIDAD TOTAL 1/ INTRODUCCIÓN Las aplicaciones de la Estadística en la

Más detalles

STATGRAPHICS Centurion XVII Software de análisis de datos estadístico y gráfico. Mejoras de la versión 17.1

STATGRAPHICS Centurion XVII Software de análisis de datos estadístico y gráfico. Mejoras de la versión 17.1 STATGRAPHICS Centurion XVII Software de análisis de datos estadístico y gráfico STATGRAPHICS ofrece más de 230 procedimientos de Análisis Exploratorio de Datos, Estadística Descriptiva e Inferencial, Modelos

Más detalles

DYANE Versión 4 Diseño y Análisis de Encuestas

DYANE Versión 4 Diseño y Análisis de Encuestas DYANE Versión 4 Diseño y Análisis de Encuestas Miguel Santesmases Mestre 1. DESCRIPCIÓN GENERAL DEL PROGRAMA DYANE 1. FINALIDAD Y MÉTODO DEL PROGRAMA DYANE (Diseño y Análisis de Encuestas) es un programa

Más detalles

Capítulo 16 Análisis de varianza con medidas repetidas: El procedimiento MLG: Medidas repetidas

Capítulo 16 Análisis de varianza con medidas repetidas: El procedimiento MLG: Medidas repetidas Capítulo 6 Análisis de varianza con medidas repetidas: El procedimiento MLG: Medidas repetidas Los modelos de análisis de varianza (ANOVA) con medidas repetidas (MR) sirven para estudiar el efecto de uno

Más detalles

CATÁLOGO DE INFERENCIAS

CATÁLOGO DE INFERENCIAS Las inferencias son los elementos claves en los modelos de conocimiento o Son los elementos constitutivos de los procesos de razonamiento No existe ningún estándar CommonKADS ofrece un catálogo que cubre

Más detalles

ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH

ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH ANÁLISIS DE CORRELACIÓN EMPLEANDO EXCEL Y GRAPH Cuando se estudian en forma conjunta dos características (variables estadísticas) de una población o muestra, se dice que estamos analizando una variable

Más detalles

La demanda de plazas en la licenciatura de Medicina en España

La demanda de plazas en la licenciatura de Medicina en España La demanda de plazas en la licenciatura de Medicina en España Estudio econométrico por Comunidades Autónomas de la demanda de plazas en las facultades de Medicina españolas para el curso 2006/2007 Asignatura:

Más detalles

Autores: Olga ÁVILA * Eleonora CERATI * Roberto MACÍAS * Claudia REDOLATTI * Ingrid SCHWER * María Laura TAVERNA*

Autores: Olga ÁVILA * Eleonora CERATI * Roberto MACÍAS * Claudia REDOLATTI * Ingrid SCHWER * María Laura TAVERNA* USO DE ANÁLISIS MULTIVARIADO PARA CARACTERIZAR LA FORMACIÓN MATEMÁTICA DE LOS ALUMNOS INGRESANTES Y MEDIR SU DESEMPEÑO EN LA PRIMERA ASIGNATURA DEL ÁREA EN LA UNIVERSIDAD Autores: Olga ÁVILA * Eleonora

Más detalles

Modelos de regresión: lineal simple y regresión logística

Modelos de regresión: lineal simple y regresión logística 14 Modelos de regresión: lineal simple y regresión logística Irene Moral Peláez 14.1. Introducción Cuando se quiere evaluar la relación entre una variable que suscita especial interés (variable dependiente

Más detalles

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1 ÍNDICE Introducción... XV Capítulo 1. El concepto de Data Mining... 1 Introducción... 1 Una definición de Data Mining... 3 El proceso de Data Mining... 6 Selección de objetivos... 8 La preparación de los

Más detalles

Prácticas 1- Bases de Metodología de Investigación en Ciencias Comportamentales II

Prácticas 1- Bases de Metodología de Investigación en Ciencias Comportamentales II Práctica 1.- Bases metodológicas 1 de 19 Índice Prácticas 1- Bases de Metodología de Investigación en Ciencias Comportamentales II 2. Bases informáticas para el análisis estadístico... 2 2.1. Generalidades

Más detalles

PRACTICA 2002_2003 /2 VALIDEZ CRITERIAL (ANÁLISIS DE COMPONENTES PRINCIPALES, CORRELACIÓN Y REGRESIÓN LINEAL MÚLTIPLE) Psicometría. Prof. J. L.

PRACTICA 2002_2003 /2 VALIDEZ CRITERIAL (ANÁLISIS DE COMPONENTES PRINCIPALES, CORRELACIÓN Y REGRESIÓN LINEAL MÚLTIPLE) Psicometría. Prof. J. L. Prof. J.L. Melià. Pràctica 00/03. Pagina / 6 PRACTICA 00_003 / VALIDEZ CRITERIAL (ANÁLISIS DE COMPONENTES PRINCIPALES, CORRELACIÓN Y REGRESIÓN LINEAL MÚLTIPLE) Psicometría. Prof. J. L. Melià Bibliografía

Más detalles

Estadística I. Finanzas y Contabilidad

Estadística I. Finanzas y Contabilidad Estadística I. Finanzas y Contabilidad Práctica 1: INTRODUCCIÓN AL USO DE SOFTWARE ESTADÍSTICO OBJETIVO: Los estudiantes deberán conocer el funcionamiento de la Hoja de Cálculo EXCEL y utilizarla para

Más detalles

4. MÉTODOS DE CLASIFICACIÓN

4. MÉTODOS DE CLASIFICACIÓN 4. MÉTODOS DE CLASIFICACIÓN Una forma de sintetizar la información contenida en una tabla multidimensional (por ejemplo una tabla léxica agregada), es mediante la conformación y caracterización de grupos.

Más detalles

Lección n 5. Modelos de distribución n potencial de especies

Lección n 5. Modelos de distribución n potencial de especies Lección n 5. Modelos de distribución n potencial de especies 1. Elaboración de modelos de distribución de especies. a. Planteamiento. El modelado del nicho ambiental se basa en el principio de que la distribución

Más detalles

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística 1 TAMAÑO DEL EFECTO 2 TAMAÑO DEL EFECTO vel tamaño del efecto es el nombre dado a una familia de índices que miden la magnitud

Más detalles

APLICACIONES CON SOLVER OPCIONES DE SOLVER

APLICACIONES CON SOLVER OPCIONES DE SOLVER APLICACIONES CON SOLVER Una de las herramientas con que cuenta el Excel es el solver, que sirve para crear modelos al poderse, diseñar, construir y resolver problemas de optimización. Es una poderosa herramienta

Más detalles

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción Capítulo 18 Análisis de regresión lineal: El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables.

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Análisis e Interpretación de Datos Unidad XI. Prof. Yanilda Rodríguez MSN Prof. Madeline Fonseca MSN Prof. Reina del C.Rivera MSN

Análisis e Interpretación de Datos Unidad XI. Prof. Yanilda Rodríguez MSN Prof. Madeline Fonseca MSN Prof. Reina del C.Rivera MSN Análisis e Interpretación de Datos Unidad XI Prof. Yanilda Rodríguez MSN Prof. Madeline Fonseca MSN Prof. Reina del C.Rivera MSN Competencias de Aprendizaje Al finalizar la actividad los estudiantes serán

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson

ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson ASOCIACIÓN LINEAL ENTRE VARIABLES CUANTITATIVAS: la correlación de Pearson 3datos 2011 Análisis BIVARIADO de variables cuantitativas OBJETIVO DETERMINAR 1º) si existe alguna relación entre las variables;

Más detalles

PROGRAMA DE ESTUDIOS. : Investigación en Psicología II.

PROGRAMA DE ESTUDIOS. : Investigación en Psicología II. PROGRAMA DE ESTUDIOS A. ANTECEDENTES GENERALES Nombre de la asignatura Carácter de la asignatura Pre requisitos Co requisitos Créditos Ubicación dentro del plan de estudio Número de clases por semana Número

Más detalles

T. 8 Estadísticos de asociación entre variables

T. 8 Estadísticos de asociación entre variables T. 8 Estadísticos de asociación entre variables. Concepto de asociación entre variables. Midiendo la asociación entre variables.. El caso de dos variables categóricas.. El caso de una variable categórica

Más detalles

Empresa o Entidad C.A Electricidad de Valencia. Autores del Trabajo Nombre País e-mail Jimmy Martínez Venezuela jmartinez@eleval.

Empresa o Entidad C.A Electricidad de Valencia. Autores del Trabajo Nombre País e-mail Jimmy Martínez Venezuela jmartinez@eleval. Título Estudio Estadístico de Base de Datos Comercial de una Empresa Distribuidora de Energía Eléctrica. Nº de Registro 231 Empresa o Entidad C.A Electricidad de Valencia Autores del Trabajo Nombre País

Más detalles

Estudio comparativo de los currículos de probabilidad y estadística español y americano

Estudio comparativo de los currículos de probabilidad y estadística español y americano Estudio comparativo de los currículos de probabilidad y estadística español y americano Jaldo Ruiz, Pilar Universidad de Granada Resumen Adquiere las mismas capacidades en Probabilidad y Estadística un

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2009/2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad INTRODUCCIÓN

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA ÁREA ACADÉMICA DE INGENIERÍA TÉCNICAS ESTADÍSTICAS DE CLASIFICACIÓN, UN EJEMPLO DE ANÁLISIS CLUSTER M O N O G R A F

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

ANÁLISIS DE DATOS MULTIVARIANTE

ANÁLISIS DE DATOS MULTIVARIANTE ANÁLISIS DE DATOS MULTIVARIANTE Verdaderamente no hay cultura más que cuando el espíritu se ensancha a la dimensión de lo universal J. Leclercq. Prof. Esperanza Ayuga Téllez NTRODUCCIÓN DEFINICIÓN: El

Más detalles

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local 21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable

Más detalles

GRADO EN QUÍMICA POR LA UNIVERSIDAD DE SANTIAGO DE COMPOSTELA PRÁCTICAS DE QUÍMICA ANALÍTICA MANUAL DE PRÁCTICAS DE QUÍMICA ANALÍTICA IV

GRADO EN QUÍMICA POR LA UNIVERSIDAD DE SANTIAGO DE COMPOSTELA PRÁCTICAS DE QUÍMICA ANALÍTICA MANUAL DE PRÁCTICAS DE QUÍMICA ANALÍTICA IV GRADO EN QUÍMICA POR LA UNIVERSIDAD DE SANTIAGO DE COMPOSTELA PRÁCTICAS DE QUÍMICA ANALÍTICA MANUAL DE PRÁCTICAS DE QUÍMICA ANALÍTICA IV 1. NORMAS DE TRABAJO DURANTE LAS PRÁCTICAS. La asistencia a las

Más detalles

EJEMPLIFICACIONES DE DISTINTOS DISEÑOS DE INVESTIGACIÓN EN EDUCACIÓN SOCIAL

EJEMPLIFICACIONES DE DISTINTOS DISEÑOS DE INVESTIGACIÓN EN EDUCACIÓN SOCIAL EJEMPLIFICACIONES DE DISTINTOS DISEÑOS DE INVESTIGACIÓN EN EDUCACIÓN SOCIAL Estas ejemplificaciones tienen el objetivo de completar y facilitar la comprensión del estudio teórico de los temas 3, 4 y 5

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

El Análisis de la Regresión a través de SPSS

El Análisis de la Regresión a través de SPSS El Análisis de la Regresión a través de SPSS M. D olores M artínez M iranda Profesora del D pto. E stadística e I.O. U niversidad de G ranada Referencias bibliográficas. Hair, J.F., Anderson, R.E., Tatham,

Más detalles

Dia 4 Sesión 2: Matrices de impactos cruzados

Dia 4 Sesión 2: Matrices de impactos cruzados Seminario de Prospectiva y Pensamiento Estratégico C. A. Buenos Aires, 2al 6 de junio de 2014 Dia 4 Sesión 2: Matrices de impactos cruzados Diego Gauna y Candela Martinez Goñi - INTA Temario Metodología

Más detalles

Cómo hacer una Regresión Logística con SPSS paso a paso. (I)

Cómo hacer una Regresión Logística con SPSS paso a paso. (I) DOCUWEB FABIS Dot. Núm 070202 Cómo hacer una Regresión Logística con SPSS paso a paso. (I) Aguayo Canela, Mariano. Servicio de Medicina Interna. Hospital Universitario Virgen Macarena. Sevilla Resumen

Más detalles

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST

UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST UNIDAD DIDÁCTICA 7 ANÁLISIS DE ÍTEMS Y BAREMACIÓN DE UN TEST 7.1. ANÁLISIS DE LOS ÍTEMS Al comenzar la asignatura ya planteábamos que uno de los principales problemas a los que nos enfrentábamos a la hora

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Estadístico de Datos Climáticos Análisis de agrupamiento (o clusters) (Wilks, Cap. 14) Facultad de Ciencias Facultad de Ingeniería 2013 Objetivo Idear una clasificación o esquema de agrupación

Más detalles

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO I. INTRODUCCIÓN Beatriz Meneses A. de Sesma * En los estudios de mercado intervienen muchas variables que son importantes para el cliente, sin embargo,

Más detalles

Propiedades de Muestras Grandes y Simulación

Propiedades de Muestras Grandes y Simulación Propiedades de Muestras Grandes y Simulación Microeconomía Cuantitativa R. Mora Departmento of Economía Universidad Carlos III de Madrid Esquema 1 Propiedades en muestras grandes (W App C3) 2 3 Las propiedades

Más detalles

Capítulo 5: METODOLOGÍA APLICABLE A LAS NORMAS NE AI

Capítulo 5: METODOLOGÍA APLICABLE A LAS NORMAS NE AI Capítulo 5: METODOLOGÍA APLICABLE A LAS NORMAS NE AI La segunda fase del NIPE corresponde con la adecuación de las intervenciones de enfermería del sistema de clasificación N.I.C. (Nursing Intervention

Más detalles

Máster en Economía y Organización de empresas

Máster en Economía y Organización de empresas Máster en Economía y Organización de empresas Módulo III: Competencias para la preparación de trabajo fin de Máster Dr. Eulogio Cordón Pozo ÍNDICE DE CONTENIDOS! 1. Errores en la medición. El modelo de

Más detalles

Este documento describe el proceso completo a seguir para analizar la existencia de una relación lógica entre dos variables. www.fundibeq.

Este documento describe el proceso completo a seguir para analizar la existencia de una relación lógica entre dos variables. www.fundibeq. DIAGRAMA DE DISPERSIÓN 1.- INTRODUCCIÓN Este documento describe el proceso completo a seguir para analizar la existencia de una relación lógica entre dos variables. Describe la construcción de los Diagramas

Más detalles

Indicaciones específicas para los análisis estadísticos.

Indicaciones específicas para los análisis estadísticos. Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por

Más detalles

CREDIT SCORING: Enfoque y ventajas para las instituciones. financieras. Parte I

CREDIT SCORING: Enfoque y ventajas para las instituciones. financieras. Parte I [.estrategiafinanciera.es ] CREDIT SCORING: Enfoque y ventajas para las instituciones financieras. Parte I Un sistema de scoring preciso al que se le haga un seguimiento correcto representa un instrumento

Más detalles

Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68.

Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68. Departamento de Economía Aplicada: UDI de Estadística. Universidad Autónoma de Madrid Notas sobre el manejo de Excel para el análisis descriptivo y exploratorio de datos. (Descriptiva) 1 1 Introducción

Más detalles