x i x io V no V n+1 ; y no x = x io x V n+1. Por tanto x i x V n+1 + V n+1 V n,

Tamaño: px
Comenzar la demostración a partir de la página:

Download "x i x io V no V n+1 ; y no x = x io x V n+1. Por tanto x i x V n+1 + V n+1 V n,"

Transcripción

1 COMPLETITUD La noción de completitud que vamos a definir, es una generalización de la conocida en espacios métricos. Como en este caso, el hecho de saber que un cierto conjunto de un e.v.t. es completo suele ser de gran utilidad, pues permite conocer a priori las redes convergentes, sin tener que determinar previamente el candidato a límite. 1 Definición. a) Una red (x i ) i I en un e.v.t. E se llama de Cauchy si para cada entorno V de 0, existe un i o = i o (V ) I tal que si i, j i o, se cumple que x i x j V. b) Un filtro G en un e.v.t. E es de Cauchy si para entorno V de 0, existe un A G tal que A A V. Notemos que la definición anterior, a diferencia de la definición de sucesión de Cauchy en un espacio métrico, depende sólo de la topología de E y, por tanto, basta comprobar la condición para una base de entornos de 0. En particular, si E es un e.v.t. metrizable y d es una distancia que define su topología, en general las sucesiones d-cauchy y las sucesiones de Cauchy como e.v.t. no coinciden. Obviamente, si d es invariante por traslaciones, ambas nociones coinciden. Razonado como en el caso de sucesiones en espacios métricos, se comprueban fácilmente los siguientes hechos: 1.- Toda red (resp., filtro) convergente en un e.v.t., es de Cauchy. 2.- Si una red (resp., filtro) de Cauchy en el e.v.t. E posee una subred (resp., filtro más fino) convergente a un elemento x E, ella misma (resp., él mismo) es convergente a x. 3.- Toda sucesión de Cauchy es acotada. 2 Definición. Un subconjunto A del e.v.t. E se dice completo si toda red (o filtro) de Cauchy en A converge a un punto de A. 3 Observación. Si (E, d) es un e.v.t. metrizable, puede suceder que E sea completo como e.v.t y no lo sea el espacio métrico (E, d). Por ejemplo, R con la distancia usual es un e.v.t. completo. Sin embargo, si consideramos la distancia d(x, y) = Artg(x) Artg(y), sabemos 1

2 que el espacio métrico (R, d) (homeomorfo a (R,. )) no es completo (la sucesión (n) n N es d-cauchy y no converge.) Un resultado de V. Klee prueba que un e.v.t. metrizable (E, d) completo como espacio métrico, lo es como e.v.t. (cfr. p. ej., [G. Köthe: Topological Vector Spaces I]) 4 Propiedades. a) todo subconjunto completo de un e.v.t. separado, es cerrado. b) Todo subconjunto cerrado de un conjunto completo, es completo. c) Si E y F son e.v.t. y T L(E, F ), T transforma redes de Cauchy en E en redes de Cauchy en F. d) Si E y F son e.v.t. topológicamente isomorfos y uno de ellos es completo, el otro también lo es. e) Todo subconjunto compacto de un e.v.t., es completo. f) Una red en un producto de e.v.t. es de Cauchy, si y sólo si cada proyección lo es. En consecuencia, el producto de una familia no vacía de e.v.t. completos, es completo. Demostración. (a), (b) y (c) son de comprobación inmediata. (d) resulta inmediatamente de (c). (e) resulta de que toda red en un compacto posee una subred convergente y de la observación (2) anterior. En cuanto a (f), es consecuencia directa de la definición de la topología producto.. Hasta ahora no sabemos siquiera si un espacio de Banach es completo, de acuerdo con la definición que hemos dado. El siguiente resultado nos da una respuesta afirmativa: 5 Proposición. Un e.v.t. E que cumpla el I A.N. es completo si y sólo si toda sucesión de Cauchy en E converge. Demostración. Para probar la implicación no trivial, sea (V n ) una base decreciente numerable de entornos de 0 en E, que cumpla V n+1 + V n+1 V n, n, y supongamos que (x i ) i I es una red de Cauchy en E. Por inducción, podemos construir una sucesión de índices (i n ) I, tales que i n i n+1 y si i, j i n se cumpla que x i x j V n. La sucesión y n = x in es claramente de Cauchy, luego por hipótesis converge a un cierto x E. Veamos que lim i I x i = x. En efecto, dado V n elijamos n o > n de modo que si m n o se tenga y m x V n+1. Sea i o = i no. Si i i o, resulta x i x io V no V n+1 ; y no x = x io x V n+1. Por tanto x i x V n+1 + V n+1 V n, 2

3 c.q.d.. En general no es suficiente que toda sucesión de Cauchy converja para que un e.v.t. sea completo, como muestra el siguiente 6 Ejemplo. Sea E = R (0,1) con la topología producto, que es un e.v.t. separado y completo por la propiedad (f). Consideremos F = {f E : f se anula fuera de un conjunto a lo más numerable de (0, 1)}. F es un s.v. de E y si (f n ) F converge a f E, claramente f F. Por tanto, toda sucesión de Cauchy en F converge a un elemento de F. Sin embargo, F no es completo, pues no es cerrado en E, ya que F E y es denso. En efecto, si f E y V = {g E : g(t i ) f(t i ) < ɛ, 1 i n} es un entorno básico de f, la función h(t) = f(t i ) si t = t i, 1 i n; 0 si t t i está en V F. De manera más explícita: la red (χ A ), donde A recorre los subconjuntos finitos de [0,1], ordenados por inclusión, es de Cauchy en F (de hecho, converge a la función 1), pero no converge en F. El ejemplo anterior justifica la siguiente definición: 7 Definición. Un e.v.t. E se dice secuencialmente completo si toda sucesión de Cauchy en E converge. Se dice que E es casi-completo si todo conjunto cerrado y acotado de E es completo. Teniendo en cuenta que toda sucesión de Cauchy es acotada (véase p. ej., la sección siguiente), es claro que completo casi-completo secuencialmente completo y que los tres conceptos coinciden en el caso de espacios con I A.N. En general, las tres nociones son distintas. 8 Ejemplos. 1.- Todo espacio de Banach es un e.v.t. completo. 2.- Los espacios l p y L p (0 < p < 1) son e.v.t. completos. (Basta tener en cuenta que son e.v.t. metrizables completos y que la métrica usual es invariante por traslaciones.) 3.- Sea X un espacio topológico completamente regular y E = C(X) con la topología compacta-abierta. Entonces son equivalentes a) X es un espacio K R. b) E es completo. c) E es casi-completo. En efecto, sea (f i ) i I una red de Cauchy en E. Para cada compacto K X, las restricciones (f i K ) forman una red de Cauchy en C(K) y, por tanto, convergen a una 3

4 f K C(K). Si K 1 K 2 son compactos de X, es claro que f K2 K1 = f K1. Por tanto, existe f : X K tal que f K = f K para todo compacto K de X. Si X es un espacio K R resulta entonces que f es continua y como, obviamente, (f i ) converge a f uniformemente sobre cada compacto, lim i I f i = f en E. Esto prueba que (a) (b). Claramente (b) (c). Finalmente, para ver que (c) (a), sea f : X R tal que la restricción a cada compacto K de X es continua. Debemos deducir que f es continua. Supongamos en primer lugar f acotada y sea A = {g C b (X) : g f }. A es un conjunto cerrado y acotado en E, luego completo por hipótesis. Para cada compacto K X, la restricción f K admite una extensión g K A. Si consideramos el conjunto K de los compactos de X ordenado por inclusión, la red (g K ) K K es claramente de Cauchy en A, luego por (c), converge a una g E. Pero para cada x X se tiene f(x) = lim K K g K (x) = g(x), luego f A E es continua. Si f no es acotada, definamos f n = inf(f, n). Cada f n es acotada y tiene restricción continua a cada compacto de X, luego por lo visto antes, f n E. Por otro lado, (f n ) es una sucesión de Cauchy en E, luego por hipótesis converge a un elemento de E. Pero para cada x X es claro que f(x) = lim n f n (x), luego f E, c.q.d.. Recordemos que todo espacio metrizable y todo espacio localmente compacto es un espacio K R. 4.- Sea Ω un abierto no vacío de R n, 0 m < y E = E m (Ω) (que según sabemos verifica el I A.N.). Si (f k ) k N es una sucesión de Cauchy en E, para cada α N n, α m resulta que (D α f k ) k N es una red de Cauchy en C(Ω) = E o (Ω). Por el ejemplo anterior, existe g α C(Ω) tal que (D α f k ) converge uniformemente sobre cada compacto a g α. Si se prueba que g α = D α g 0, resultará que g 0 E y lim k f k = g 0 en E, lo que probará que E es completo por la proposición 6.5.Por inducción, es obvio que basta probar que si α < m y e r = (0,..., 1, r..., 0), entonces D e r g α = g α+er. Sea pues a Ω y U una bola compacta de centro a contenida en Ω. Por lo dicho antes, lim k D α+e r f k (x) = g α+er (x), lim k D α f k (x) = g α (x), uniformemente en x U. Por un resultado clásico, resulta entonces que g α tiene derivada respecto a x r en U y D e r g α (x) = g α+er (x), x U, c.q.d Argumentando como en el ejemplo anterior se prueba que E(Ω) = E (Ω) es completo. 6.- El teorema de Weierstrass muestra que si Ω es un abierto no vacío de C n, E = H(Ω) es un subespacio cerrado de C(Ω) y, por tanto, completo. 7.- Si (Ω, Σ, µ) es un espacio de medida finito, E = (L 0 (µ), τ µ ) es completo: Sea (f n ) una sucesión de Cauchy en E. Elijamos una subsucesión n 1 < n 2 < de modo que si 4

5 n n k se cumpla que f n f nk V 1 2 k, 1 3 k, e.d. µ {ω Ω : f n (ω) f nk (ω) 12 } k < 1 3 k. Si A k := {ω : f nk+1 (ω) f nk (ω) 1 2 k } y A := n=1 m n A m, como µ( m n A m ) m n µ(a m ) m n 1 3 m n 0, resulta que µ(a) = 0. Si ω / A, la serie f n1 (ω) + [f nk+1 (ω) f nk (ω)] k=1 converge (absolutamente), luego existe lim k f nk (ω) := f(ω). Así pues, la subsucesión (f nk ) converge en casi todo punto y, por consiguiente, en medida, y lo mismo sucede con la (f n ), por ser de Cauchy. 5

F-ESPACIOS. 1.- Introducción

F-ESPACIOS. 1.- Introducción F-ESPACIOS 1.- Introducción Recordemos que un subconjunto A de un espacio topológico X se llama diseminado o raro (nowhere dense en ingés) si A=. Un subconjunto que se pueda escribir como unión numerable

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Espacios compactos. 7.1 Espacios compactos

Espacios compactos. 7.1 Espacios compactos 58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que

Más detalles

1. Espacios topológicos compactos.

1. Espacios topológicos compactos. PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada

Más detalles

Principio de acotación uniforme

Principio de acotación uniforme Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios

Más detalles

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud

Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 5 -Completitud, Continuidad uniforme y Compacidad- Cuanto más sólido, bien definido y espléndido es el edificio erigido por el entendimiento, más imperioso

Más detalles

1 Continuidad uniforme

1 Continuidad uniforme Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

CARACTERIZACIONES DE LA COMPLETITUD DE R

CARACTERIZACIONES DE LA COMPLETITUD DE R CARACTERIZACIONES DE LA COMPLETITUD DE R 1 Definición 1. Diremos que un cuerpo ordenado K es arquimediano si lím n n que decir que N, visto como subconjunto de K, no está acotado en K. = 0 en K. Esto es

Más detalles

Subconjuntos notables de un Espacio Topológico

Subconjuntos notables de un Espacio Topológico 34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Funciones continuas Motivación

Funciones continuas Motivación Lección 9 Funciones continuas Generalizando la noción que conocemos para funciones reales de variable real, vamos a estudiar la continuidad para funciones entre dos espacios métricos cualesquiera. La definimos

Más detalles

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

TOPOLOGÍA. Resumen Curso 2011/2012

TOPOLOGÍA. Resumen Curso 2011/2012 TOPOLOGÍA Resumen Curso 2011/2012 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición 1.1.1. Una distancia

Más detalles

Acotación y compacidad

Acotación y compacidad Lección 8 Acotación y compacidad Para subconjuntos de un espacio métrico, estudiamos ahora la noción de acotación, que como ocurría con la complitud, no es una noción topológica, pero se conserva en un

Más detalles

TEOREMA DE HAHN-BANACH.

TEOREMA DE HAHN-BANACH. TEOREMA DE HAHN-BANACH. Sea E un e.v y M un s.v. de E. Toda aplicación lineal T 0 : M F de M en otro e.v. F se extiende a una aplicación lineal T : E F. Por ejemplo, basta considerar un suplementario algebraico

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas:

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas: 4 Espacios compactos En este capítulo introducimos los conceptos de espacio y subespacio compacto. Se estudian propiedades de los conjuntos compactos, así como relación entre la compacidad y las funciones

Más detalles

1. La topología inducida.

1. La topología inducida. PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y

Más detalles

Espacios compactos. 1. Cubiertas

Espacios compactos. 1. Cubiertas Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. La compacidad se puede estudiar desde dos puntos de vista: el topológico, a través

Más detalles

2.3. Aplicaciones del teorema de Baire a espacios de Banach

2.3. Aplicaciones del teorema de Baire a espacios de Banach 40 CAPÍTULO. COMPLETITUD Y CATEGORÍAS.3. Aplicaciones del teorema de Baire a espacios de Banach En esta sección, veremos algunas aplicaciones del teorema de Baire a espacios vectoriales normados. En particular,

Más detalles

Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli-

Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli- Tema 1 EL TEOREMA DE PEANO En este tema vamos a probar que bajo la hipótesis de ser f continua en un entorno del punto (, y 0 ), se puede garantizar la existencia, aunque no necesariamente la unicidad,

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

1. Caracterización de compacidad en espacios métricos

1. Caracterización de compacidad en espacios métricos Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS TEÓRICO-PRÁCTICAS 10: COMPACIDAD II 1. Caracterización de compacidad en espacios métricos

Más detalles

Axiomas de separación

Axiomas de separación CAPíTULO 6 Axiomas de separación Tema 1. Axiomas de separación: conceptos básicos El objetivo de este capítulo es considerar ciertas propiedades topológicas que comparten algunos espacios topológicos y

Más detalles

RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO

RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO 2008-09 En este resumen no se puede escribir o añadir nada, ni por delante, ni por detrás. En todo caso, sólo se permite subrayar lo que se

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 5 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

Espacios Čech-completos

Espacios Čech-completos Espacios Čech-completos escrito por PEDRO PABLO RIVAS SORIANO Tutor: Víctor Fernández Laguna Facultad de Ciencias UNIVERSIDAD DE EDUCACIÓN A DISTANCIA Trabajo presentado para la obtención del título de

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y

Más detalles

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n

Más detalles

Sucesiones y convergencia

Sucesiones y convergencia Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia

Más detalles

Notas del Primer Capítulo del Libro Análisis Funcional de W. Rudin

Notas del Primer Capítulo del Libro Análisis Funcional de W. Rudin 1 Notas del Primer Capítulo del Libro Análisis Funcional de W. Rudin Alejandra García García Estas notas son el trabajo desarrollado dentro del seminario de Análisis que se ha impartido durante los primeros

Más detalles

Topología Segundo cuatrimestre Práctica 1 Espacios topológicos

Topología Segundo cuatrimestre Práctica 1 Espacios topológicos Topología Segundo cuatrimestre - 2015 Práctica 1 Espacios topológicos Ejemplos 1. Sea (X, τ) un espacio topológico y sea Y X. Muestre que τ Y = U Y : U τ} es una topología sobre Y. Llamamos a τ Y subespacio.

Más detalles

Topologías. Segundo cuatrimestre Práctica 1. Determine condiciones necesarias y suficientes sobre κ para que τ κ sea una topología sobre

Topologías. Segundo cuatrimestre Práctica 1. Determine condiciones necesarias y suficientes sobre κ para que τ κ sea una topología sobre Topología Segundo cuatrimestre - 2012 Práctica 1 Topologías Ejemplos de topologías 1. Sea X un conjunto. (a) Sea τ = {U P(X) : X \ U es finito} { }. Probar que τ es una topología sobre X, a la que llamamos

Más detalles

Espacios topológicos y espacios métricos

Espacios topológicos y espacios métricos CAPíTULO 2 Espacios topológicos y espacios métricos Tema 1. Definición y primeros ejemplos Como queda anunciado al final del capítulo anterior ampliaremos la definición de abierto de un conjunto utilizando

Más detalles

El Teorema de Stone-Weierstrass

El Teorema de Stone-Weierstrass Capítulo 3 El Teorema de Stone-Weierstrass Vamos a ver en esta lección el teorema clásico de Weierstrass y la importante generalización del mismo dada por Stone. El teorema de Weierstrass El teorema de

Más detalles

INTRODUCCIÓN A LOS ESPACIOS DE FUNCIONES. Problemas

INTRODUCCIÓN A LOS ESPACIOS DE FUNCIONES. Problemas Problemas Curso 2013-2014 Problemas 1. Sea E un espacio normado. Si a, b son elementos de E, probar: (a) 1 2 (a + b) 2 1 2 a 2 + 1 2 b 2. (b) a max{ a + b, a b }. 2. Demostrar que en un espacio normado,

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

Ejercicios de Análisis Funcional. Curso

Ejercicios de Análisis Funcional. Curso Ejercicios de Análisis Funcional Curso 2010-2011 1 1 Preliminares de espacios normados Problema 1.1. Demostrar que para 1 < p < la norma. p en R 2 verifica la siguiente propiedad: Si x, y R 2 con x y y

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos.

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. Topología Segundo cuatrimestre - 2011 Práctica 1 Topologías Ejemplos de topologías 1. Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. 2. Sea X un conjunto. (a) Sea τ = {U

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012 AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 212 Introducción Algunas fechas: 197: Noción de Operador lineal

Más detalles

La propiedad de compacidad

La propiedad de compacidad En un artículo anterior hemos obtenido dos importantes resultados relacionados con la continuidad de una función en un intervalo: el teorema de los ceros de Bolzano y el teorema del valor intermedio. De

Más detalles

Métodos matemáticos: Análisis funcional

Métodos matemáticos: Análisis funcional Métodos matemáticos: Análisis funcional Conceptos y resultados fundamentales Curso 2011/2012 Aquí encontrarás los Teoremas hay que saber para el primer parcial ( 1) así como las definiciones, problemas

Más detalles

Algunos resultados de Topología I. Rafael López Departamento de Geometría y Topología Universidad de Granada

Algunos resultados de Topología I. Rafael López Departamento de Geometría y Topología Universidad de Granada Algunos resultados de Topología I Rafael López Departamento de Geometría y Topología Universidad de Granada 2 Índice general 1 Espacios topológicos 5 1.1 Definición, bases de topología y de entornos..............

Más detalles

Sucesiones monótonas Monotonía. Tema 6

Sucesiones monótonas Monotonía. Tema 6 Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:

Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue: Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,

Más detalles

Ejercicio Demuestra que T R es efectivamente una topología.

Ejercicio Demuestra que T R es efectivamente una topología. 88 7. CONSTRUCCIÓN DE TOPOLOGÍAS Tema 3. Topologías finales: cociente Una situación análoga a la del Tema 1 se plantea cuando ciertas operaciones de conjuntos (como el cociente por una relación de equivalencia)

Más detalles

Topología en R n. Continuidad de funciones de varias variables

Topología en R n. Continuidad de funciones de varias variables . Continuidad de funciones de varias variables María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Continuidad

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles

INTRODUCCIÓN UNIDAD DIDÁCTICA 1 Espacios Métricos

INTRODUCCIÓN UNIDAD DIDÁCTICA 1 Espacios Métricos Índice Pág. INTRODUCCIÓN... 9 UNIDAD DIDÁCTICA 1 Espacios Métricos CAPÍTULO 1. ESPACIOS MÉTRICOS... 13 1. Espacios métricos... 17 2. Adherencia y acumulación de un conjunto... 23 3. Conjuntos compactos.

Más detalles

Parte 2: Definición y ejemplos de topologías.

Parte 2: Definición y ejemplos de topologías. Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

Problemas de TOPOLOGÍA Hoja 2

Problemas de TOPOLOGÍA Hoja 2 Problemas de TOPOLOGÍA Hoja 2 1. Sea X un conjunto, (Y, T Y ) un espacio topológico y f : X Y una aplicación. Probar que T = {f 1 (G) : G T Y } es una topología sobre X. Esta topología se llama topología

Más detalles

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A}

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A} Capítulo 6 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio 4.1.- Relación 4. Compacidad. Conexión Supongamos que A es compacto y sea A α Λ B α un recubrimiento de A por bolas abiertas. Entonces, como

Más detalles

Compacidad y conexión

Compacidad y conexión Tema 4 Compacidad y conexión Estudiamos ahora dos propiedades clave de las funciones continuas entre espacios métricos, que generalizan sendos teoremas bien conocidos para funciones reales de variable

Más detalles

Topología del plano complejo

Topología del plano complejo Tema 2 Topología del plano complejo Repasamos algunos conceptos y resultados acerca de las propiedades métricas y topológicas del plano complejo. Todos ellos son bien conocidos, pues como espacio métrico,

Más detalles

La siguiente definición es muy intuitiva. Se dice que una sucesión {x n } es:

La siguiente definición es muy intuitiva. Se dice que una sucesión {x n } es: Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

Espacios Métricos. 25 de octubre de 2011

Espacios Métricos. 25 de octubre de 2011 Espacios Métricos 25 de octubre de 2011 1. Nociones de espacios métricos Llamaremos espacio métrico a un conjunto X con una función d : X X R 0 (que llamaremos la métrica de X) que verifica las siguientes

Más detalles

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3

Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3 Taller de Cálculo Avanzado - Segundo Cuatrimestre de 2008 Práctica 3 Topología. Decir qué propiedades (abierto, cerrado, acotado) tienen los siguientes conjuntos. (a) Q. (b) N. (c) {x R : x > 0}. (d) (0,

Más detalles

Construcción de topologías

Construcción de topologías CAPíTULO 7 Construcción de topologías Por construir topologías queremos decir lo siguiente. Supongamos que un conjunto A (no espacio topológico) está relacionado de alguna manera con un espacio topológico

Más detalles

Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales

Parte II. Cálculo Diferencial para Funciones de Varias Variables Reales Parte II Cálculo Diferencial para Funciones de Varias Variables Reales Capítulo 5 Derivadas Direccionales y Derivadas Parciales Iniciamos, con este capítulo, el cálculo diferencial para funciones de varias

Más detalles

Análisis de Fourier. Resumen de los apuntes de D. Antonio Cañada Villar. Sergio Cruz Blázquez. Curso 2015/2016

Análisis de Fourier. Resumen de los apuntes de D. Antonio Cañada Villar. Sergio Cruz Blázquez. Curso 2015/2016 Análisis de Fourier Resumen de los apuntes de D. Antonio Cañada Villar Curso 2015/2016 Sergio Cruz Blázquez Índice 1 El espacio L 2 (a, b) Definición y primeras notas El espacio L 1 (a, b) L 2 (a, b) como

Más detalles

Teorema de Hahn-Banach

Teorema de Hahn-Banach Capítulo 3 Teorema de Hahn-Banach 3.1. Introducción Una vez introducidos los espacios vectoriales más importantes donde se tiene una estructura métrica a saber, los espacios de Hilbert y los espacios de

Más detalles

Cálculo diferencial e integral I. Eleonora Catsigeras

Cálculo diferencial e integral I. Eleonora Catsigeras Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones

Más detalles

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad); MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.

Más detalles

Espacios Lineales. José D. Edelstein. Universidade de Santiago de Compostela. Santiago de Compostela, febrero de 2011

Espacios Lineales. José D. Edelstein. Universidade de Santiago de Compostela. Santiago de Compostela, febrero de 2011 Espacios Lineales José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, febrero de 2011 Espacios vectoriales. Espacios normados. Espacios de Hilbert. José D.

Más detalles

Espacios de funciones

Espacios de funciones Espacios de funciones Eugenio Borghini Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales Eugenio Borghini Espacios de funciones 1 / 14 Durante la materia nos cruzamos con varios ejemplos

Más detalles

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez.

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Medidas Problemas para examen Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Sigma-álgebras 1. Propiedades elementales de σ-álgebras. Demuestre que una σ-álgebra es

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Qué son esos espacios de Hilbert? Qué son esos espacios de Hilbert? David Hilbert Para relajarnos

Más detalles

Conjuntos Abiertos y Cerrados

Conjuntos Abiertos y Cerrados Conjuntos Abiertos y Cerrados 1. (a) En la prueba de que la intersección de una colección finita de conjuntos abiertos es un conjunto abierto, dónde se uso la hipótesis de que la colección es finita? 2.

Más detalles

INTRODUCCIÓN A LA TEORÍA DESCRIPTIVA DE CONJUNTOS

INTRODUCCIÓN A LA TEORÍA DESCRIPTIVA DE CONJUNTOS INTRODUCCIÓN A LA TEORÍA DESCRIPTIVA DE CONJUNTOS UDAYAN B.DARJI 1. Introducción En este curso estudiaremos objetos definibles como conjuntos borelianos, conjuntos analíticos, y clasificaciones de funciones

Más detalles

Segundo Cuatrimestre 2005 Práctica 4

Segundo Cuatrimestre 2005 Práctica 4 Topología Segundo Cuatrimestre 2005 Práctica 4 Compacidad. 1) Sea X un espacio topológico. Probar que son equivalentes: a) X es cuasi-compacto. b) Para todo espacio topológico Y, y para todo abierto W

Más detalles

TEMA VI: ESPACIOS DE HILBERT

TEMA VI: ESPACIOS DE HILBERT TEMA VI: ESPACIOS DE HILBERT. Espacios con producto escalar Definición: Sea L un espacio vectorial sobre el cuerpo K (R ó C). Por un producto escalar (o interno) sobre L entedemos una aplicación :

Más detalles

Práctica 3: Espácios Métricos. A. R n como Espácio Métrico

Práctica 3: Espácios Métricos. A. R n como Espácio Métrico Cálculo Avanzado Segundo Cuatrimestre de 2005 Práctica 3: Espácios Métricos Não se pode esperar aprender Matemática contemplativamente. Apelo, portanto, ao leitor para que tente resolver os exercícios

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Maestría en Matemáticas

Maestría en Matemáticas Reactivos Propuestos para Examen de Admisión (ASN) Ingreso en Agosto de 203. Sea R el conjunto de los números reales y S el conjunto de todas las funciones valuadas en los reales con dominio en R. Muestre

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

Índice. Funciones de varias variables reales I Espacios normados. Revisando con perspectiva. Se puede hacer de forma más general?

Índice. Funciones de varias variables reales I Espacios normados. Revisando con perspectiva. Se puede hacer de forma más general? Índice Funciones de varias variables reales I Espacios normados José Manuel Mira Departamento de Matemáticas Universidad de Murcia Grado en Matemáticas 2013-2014 (18-09-2013) 1 Espacios normados. El espacio

Más detalles

Unidad 1: Espacios métricos

Unidad 1: Espacios métricos Unidad 1: Espacios métricos 1.1 Definición y Ejemplos. (1) Explicar que una métrica permite introducir una noción de cercanía entre los elementos de un conjunto. (2) Explicar que sobre un conjunto determinado

Más detalles

Apuntes sobre la integral de Lebesgue

Apuntes sobre la integral de Lebesgue Apuntes sobre la integral de Lebesgue Miguel Lacruz Martín Universidad de Sevilla 1. Medida de Lebesgue 1.1. Introducción La longitud l(i) de un intervalo I R se define habitualmente como la distancia

Más detalles

Ceros de las funciones holomorfas

Ceros de las funciones holomorfas Tema 9 Ceros de las funciones holomorfas A partir de ahora vamos a ir obteniendo una serie de aplicaciones importantes de la teoría local desarrollada anteriormente. El desarrollo en serie de Taylor deja

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Ejercicios Análisis II

Ejercicios Análisis II Ejercicios Análisis II Ejercicios resueltos del libro Real and Complex Analysis de Walter Rudin Mauricio Bravo Vera mauro.bravo@gmail.com Segundo semestre 2010 Índice general 1. Integración Abstracta

Más detalles

Análisis Real: Primer Curso. Ricardo A. Sáenz

Análisis Real: Primer Curso. Ricardo A. Sáenz Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 16 Capítulo 2.

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Espacios eucĺıdeos Definición Se dice que un espacio vectorial E es un espacio eucĺıdeo si

Más detalles