Fundamentos de Biología Aplicada I Estadística Curso Práctica 6: Regresión Logística I
|
|
- Agustín Ayala Valdéz
- hace 6 años
- Vistas:
Transcripción
1 Fundamentos de Biología Aplicada I Estadística Curso Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS Ajuste de un modelo de regresión logística Estimación de los parámetros del modelo Intervalo de conanza para Contrastes sobre los parámetros Bondad de ajuste del modelo Predicciones Datos de cangrejo de herradura 7 1
2 1 Objetivos de la práctica En muchas situaciones prácticas nos interesa determinar la relación entre una variable dependiente Y y una o varias variables independientes X. Hay ocasiones en las que la variable dependiente Y es una variable categórica dicotómica, es decir, toma sólo dos valores (1 ó 0). En ese caso nos interesa modelizar y = (x ) + ; donde (x ) representa la P (Y = 1=x ). El modelo logístico establece que la función de regresión (x ) es de la forma: 1 e0+1x (x ) = = 1 + e (0+1x) 1 + e 0+1x En esta práctica aprenderemos a ajustar y analizar un modelo de regresión logística simple con SPSS. 2 Estimación de un modelo de regresión logística con SPSS Ejemplo: Vamos a estimar el modelo de regresión logística para los datos de Iris comentados en clase de teoría. Queremos explicar la especie de or de iris (versicolor o no) en función de la longitud del pétalo. Los datos se encuentran en el chero irisspss.sav. En primer lugar, realiza un gráco de dispersión (Figura 1) de los datos que justique la elección de un modelo de regresión logística para explicar la relación entre las variables objeto de estudio. Figura 1: Gráco de dispersión para los datos de Iris. 2.1 Ajuste de un modelo de regresión logística Para ajustar un modelo de regresión logística a los datos debes selecciona el menú Analizar. Los pasos son los siguientes: 1. Analizar IRegresión ILogística Binaria. Página 2 de 7
3 2. Selecciona la variable correspondiente a la especie como variable dependiente y la variable correspondiente a la longitud de pétalo como covariable. Recuerda que la variable dependiente (que es la que deseamos modelizar o predecir) debe ser una variable categórica dicotómica (si la variable no está codicada con valores 0 y 1, SPSS le asignará ese código interno). 3. En Opciones marca X IC para exp(b) En primer lugar (ver Figura 2) aparece un cuadro resumen con el número de casos introducidos, los seleccionados para el análisis y los excluídos. A continuación aparece una tabla que especica la codicación de la variable Y. Figura 2: Resumen y codicación. Vamos a analizar los resultados del ajuste que aparecen resumidos en la tabla Variables en la ecuación (ver Figura 3) Figura 3: Ajuste de un modelo de regresión logística en SPSS para los datos de Iris Estimación de los parámetros del modelo Las estimaciones de los parámetros del modelo aparecen en la primera columna de la tabla. En nuestro ejemplo ^ 0 = 43:781 y ^ 1 = 9:002. ¾Cuál es entonces la función de regresión logística estimada (x )? La segunda columna de la tabla Variables en la ecuación corresponde a los errores típicos de los parámetros. Página 3 de 7
4 2.1.2 Intervalo de conanza para 1 El intervalo de conanza para 1 es de la forma: ( ^1 z 1 =2( ^ 1 ); ^ 1 + z 1 =2( ^ 1 )) donde z 1 =2 es el valor que deja una probabilidad 1 =2 a su izquierda en una N(0; 1). El intervalo que devuelve SPSS es el intervalo de conanza para e 1 y se construye a partir del anterior como: ( ) e ^ 1 z 1 =2 ( ^ 1) ; e ^ 1+z 1 =2 ( ^ 1) 2.2 Contrastes sobre los parámetros Suponiendo que se cumple el modelo de regresión logística, estamos interesados en determinar si la variable Longitud de pétalo es signicativa para explicar la especie de la or. Planteamos entonces el siguiente contraste: H 0 : 1 = 0 H 1 : 1 6= 0 (La variable Longitud de pétalo no es signicativa) (La variable Longitud de pétalo es signicativa) El estadístico de Wald se obtiene dividiendo el estimador ^ 1 entre su error típico ( ^ 1 ) (E.T. en SPSS). ^ 1 W = ( ^ 1 ) El valor que devuelve SPSS es W 2, que bajo la hipótesis nula, sigue una distribución chi-cuadrado con 1 grado de libertad Rechazamos la hipótesis nula si el p-valor del estadístico es pequeño (columna Sig.). En este ejemplo, rechazamos H 0 y concluimos que la variable Longitud de pétalo es signicativa. 2.3 Bondad de ajuste del modelo Siempre que se construye un modelo de regresión debemos corroborar que el modelo calculado se ajusta efectivamente a los datos usados para estimarlo. En regresión logística se calculan coecientes de determinación, parecidos al coeciente R 2 que se obtenía en regresión lineal, que expresan la proporción (en tanto por uno) de la variación explicada por el modelo. Los valores de estos coecientes aparecen recogidos en la Tabla Resumen del Modelo, ver Figura 4. Figura 4: Tabla resumen para los datos de Iris. -2LL (desviación): mide hasta qué punto un modelo se ajusta bien a los datos. Cuanto más pequeño sea el valor, mejor será el ajuste. Página 4 de 7
5 R cuadradro de Cox y Snell: Sus valores oscilan entre 0 y 1 (tiene un valor máximo inferior a 1, incluso para un modelo perfecto). R cuadrado de Nagelkerke: es una versión corregida de la R cuadrado de Cox y Snell y cubre el rango completo de 0 a 1. La prueba de Hosmer-Lemeshow es otro método para estudiar la bondad de ajuste del modelo de regresión logística que consiste en comparar los valores previstos (esperados) por el modelo con los valores realmente observados. Ambas distribuciones, esperada y observada, se contrastan mediante una prueba de 2. La hipótesis nula del test de Hosmer-Lemeshow es que no hay diferencias entre los valores observados y los valores pronosticados (el rechazo este test indicaría que el modelo no está bien ajustado). Para obtener el resultado de este test en SPSS, al hacer el análisis de regresión logística binaria, en Opciones marca X Bondad de ajuste de Hosmer-Lemeshow. Los resultados se muestran en la Figura 5. El valor de la signicación nos lleva a no rechazar la hipótesis nula. La conclusión es que el modelo ajusta bien a los datos. Figura 5: Prueba de Hosmer-Lemeshow. Otra forma de evaluar el ajuste del modelo es construir una tabla 2 2 clasicando a todos los individuos de la muestra según la concordancia de los valores observados con los predichos o estimados por el modelo. Una ecuación sin poder de clasicación alguno tendría unos porcentajes de clasicación correcta igual al 50 % (por el simple azar). Un modelo puede considerarse aceptable si los porcentajes de clasicación correcta son altos, como ocurre en el ejemplo del Iris (ver Figura 6). Página 5 de 7
6 Figura 6: Porcentajes de clasicación correcta para los datos de Iris. 2.4 Predicciones Al hacer el ajuste de regresión logística podemos pedirle a SPSS que nos devuelva los valores pronosticados. Con estos valores podremos representar la curva ajustada. 1. Analizar IRegresión I Logística Binaria. 2. En la opción Guardar, selecciona X Probabilidades y Grupo de pertenencia, ver Figura Puedes ver los valores pronosticados en la Vista de datos 4. Representa la curva ajustada como se muestra en la Figura 8 mediante el menú: GrácosICuadro de diálogo antiguosi Dispersión/Puntos. Selecciona como variable para el eje Y la probabilidad pronosticada y como variable para el eje X la longitud de pétalo. Para añadir la línea conectando los puntos, pincha en el gráco para abrir el Editor de grácos y selecciona en el menú ElementosI Línea de interpolación, ver Figura 8. Figura 7: Valores pronosticados en el modelo de regresión logística. Página 6 de 7
7 Figura 8: Valores pronosticados y curva de regresión ajustada. 3 Datos de cangrejo de herradura El chero crabspss.sav contiene los datos de cangrejo de herradura comentados en clase de teoría. Recuerda que los datos corresponden a un total de 188 cangrejos de herradura hembra. Las variables de estudio son: X=ancho de cangrejo de herradura hembra Y, que toma los valores Y = 1 si el cangrejo hembra tiene algún satélite (cangrejo macho residiendo cerca) Y = 0 si el cangrejo hembra no tiene ningún satélite Siguiendo el guión de los datos de iris ajusta un modelo de regresión logística que explique el comportamiento de los satélites en función del ancho de la hembra en esta especie. Comenta los resultados obtenidos. Página 7 de 7
UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS
UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS I. INTRODUCCIÓN Y MANEJO DE DATOS MANUAL DE SPSS 1 MASTER CALIDAD TOTAL 1/ INTRODUCCIÓN Las aplicaciones de la Estadística en la
Tema 12: Contrastes Paramétricos
Tema 1 Tema 1: Contrastes Paramétricos Presentación y Objetivos. Se comienza este tema introduciendo la terminología y conceptos característicos de los contrastes de hipótesis, típicamente a través de
Covarianza y coeficiente de correlación
Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también
Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS
Introducción a la Econometría (LE y LADE, mañana) Prof. Magdalena Cladera ANÁLISIS DE REGRESIÓN CON EXCEL Y SPSS ESTIMACIÓN DE UN MODELO DE REGRESIÓN LINEAL CON EXCEL La Herramienta para análisis Regresión
Indicaciones específicas para los análisis estadísticos.
Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por
Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0])
Regresión logística Puede considerarse un caso especial de l análisis de regresión en donde la variable dependiente es dicotómica («Sí» [1] o «No» [0]) Se trata de calcular la probabilidad en la que una
1 Ejemplo de análisis descriptivo de un conjunto de datos
1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos
Trabajo de Matemáticas y Estadística Aplicadas
Licenciatura en Ciencia Ambientales Matemáticas y Estadística aplicada Prof. Susana Martín Fernández POLITÉCNICA Trabajo de Matemáticas y Estadística Aplicadas GUIÓN 1: Estadística descriptiva Tipo 1 1-
ANÁLISIS DE DATOS NO NUMERICOS
ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas
REGRESION simple. Correlación Lineal:
REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)
Tema 3. Comparaciones de dos poblaciones
Tema 3. Comparaciones de dos poblaciones Contenidos Hipótesis para la diferencia entre las medias de dos poblaciones: muestras pareadas Hipótesis para la diferencia entre las medias de dos poblaciones:
1 Introducción al SPSS
Breve guión para las prácticas con SPSS 1 Introducción al SPSS El programa SPSS está organizado en dos bloques: el editor de datos y el visor de resultados. En la barra de menú (arriba de la pantalla)
ANÁLISIS DESCRIPTIVO CON SPSS
ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:
DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009
Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis
Cómo obtener un Modelo de Regresión Logística Binaria con SPSS
Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo obtener un Modelo de Regresión Logística Binaria con SPSS Vanesa Berlanga-Silvente y Ruth Vilà-Baños Fecha de presentación:
(.$263*7.5"4+%#,"8..9$ $.$ - -. 7.# "4< $ 8 $ 7 "% @
!"#$%!& ' ($ 2 ))!"#$%& '$()!& *($$+%( & * $!" "!,"($"$ -(.$!- ""& +%./$$&,-,$,". - %#,"0# $!01 "23(.4 $4$"" ($" $ -.#!/ ". " " ($ "$%$(.$2.3!- - *.5.+%$!"$,"$ (.$263*7.5"4+%#,"8..9$ $.$ - $,"768$"%$,"$%$!":7#;
Tutorial - Parte 2: Scoring
Introducción Tutorial - Parte 2: Scoring En este segundo tutorial aprenderá lo que significa un modelo de Scoring, verá cómo crear uno utilizando Powerhouse Analytics y finalmente a interpretar sus resultados.
REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.
REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer
Tema 1: Test de Distribuciones de Probabilidad
Tema 1: Test de Distribuciones de Probabilidad 1.- Una compañía de seguros tiene 1000 asegurados en el ramo de accidentes. Si la el modelo mejor para el número de siniestros en un año es: a) Normal (5;,3).
UNIVERSIDAD AUTÓNOMA DE MADRID DPTO DE ECONOMÍA CUANTITATIVA CURSO 2010/2011 ECONOMETRIA I HOJA 2. Problemas
UNIVERSIDAD AUTÓNOMA DE MADRID DPTO DE ECONOMÍA CUANTITATIVA CURSO 2010/2011 ECONOMETRIA I HOJA 2 Problemas 1. Supongamos que se dispone de una muestra de n = 5 individuos, con la que se quiere estudiar
Estadística con Excel Informática 4º ESO ESTADÍSTICA CON EXCEL
1. Introducción ESTADÍSTICA CO EXCEL La estadística es la rama de las matemáticas que se dedica al análisis e interpretación de series de datos, generando unos resultados que se utilizan básicamente en
Statgraphics Centurión
Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que
Cómo hacer una Regresión Logística con SPSS paso a paso. (I)
DOCUWEB FABIS Dot. Núm 070202 Cómo hacer una Regresión Logística con SPSS paso a paso. (I) Aguayo Canela, Mariano. Servicio de Medicina Interna. Hospital Universitario Virgen Macarena. Sevilla Resumen
Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3
Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar
TEMA 4: Variables binarias
TEMA 4: Variables binarias Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 4: Variables binarias Curso 2011-12 1 / 51 Variables
1.1. Introducción y conceptos básicos
Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................
Capítulo 7: Distribuciones muestrales
Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.
Semana de dieta (X) 1 2 3 4 5 Peso en Kg (Y) 88.5 87 84 82.5 79
. Una persona se somete a una dieta de adelgazamiento durante cinco semanas. A continuación se detalla su peso al término de cada una de esas semanas: Semana de dieta X) 2 3 4 Peso en Kg Y) 88. 87 84 82.
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales
Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:
SPSS: ANOVA de un Factor
SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de
FICHERO DE AYUDA DEL PROGRAMA MEGAPRIMI
FICHERO DE AYUDA DEL PROGRAMA MEGAPRIMI Versión MEGAPRIMI : 4.0 Fecha : 19/06/2010 1. INFORMACION GENERAL Versión completamente gratuita. Entre otras muchas opciones, el programa permite seleccionar cualquier
Se podría entender como una matriz de filas y columnas. Cada combinación de fila y columna se denomina celda. Por ejemplo la celda A1, B33, Z68.
Departamento de Economía Aplicada: UDI de Estadística. Universidad Autónoma de Madrid Notas sobre el manejo de Excel para el análisis descriptivo y exploratorio de datos. (Descriptiva) 1 1 Introducción
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICA APLICADA A LA CIENCIA OCIALE EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ECOGER UNA DE LA DO OPCIONE Y DEARROLLAR LA
Práctica 5. Contrastes paramétricos en una población
Práctica 5. Contrastes paramétricos en una población 1. Contrastes sobre la media El contraste de hipótesis sobre una media sirve para tomar decisiones acerca del verdadero valor poblacional de la media
MANUAL PARA EL USO DE SPSS
MANUAL PARA EL USO DE SPSS 1 INTRODUCCIÓN El propósito de este manual, es ilustrar con un ejemplo cómo generar tablas de frecuencia, tablas de contingencia, cálculos de medias, así como la generación de
EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores
EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u
PRUEBAS NO PARAMÉTRICAS
PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la
Curso Práctico de Bioestadística Con Herramientas De Excel
Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA barcillo@gmail.com (593-9) 4194239 Fabrizio Marcillo Morla Guayaquil, 1966. BSc. Acuicultura. (ESPOL 1991). Magister
Aplicaciones de Estadística Descriptiva
Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos
SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas
SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria
Pruebas de. Hipótesis
Pruebas de ipótesis Pruebas de ipótesis Otra manera de hacer inferencia es haciendo una afirmación acerca del valor que el parámetro de la población bajo estudio puede tomar. Esta afirmación puede estar
ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral
ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar
ESTIMACIÓN. puntual y por intervalo
ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio
2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES
2 VARIABLES ESTADÍSTICAS BIDIMENSIONALES 1 Se ha medido el volumen, X, y la presión, Y, de una masa gaseosa y se ha obtenido: X (litros) 1 65 1 03 0 74 0 61 0 53 0 45 Y (Kg/cm 2 ) 0 5 1 0 1 5 2 0 2 5 3
Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics-
Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics- 1. Introducción Ficheros de datos: TiempoaccesoWeb.sf3 ; AlumnosIndustriales.sf3 El objetivo de esta práctica es asignar un modelo
FICHERO DE AYUDA DEL PROGRAMA MEGAEURO
FICHERO DE AYUDA DEL PROGRAMA MEGAEURO Versión MEGAEURO : 1.0 Fecha : 02/10/2010 1. INFORMACION GENERAL Versión completamente gratuita. Entre otras muchas opciones, el programa permite seleccionar cualquier
Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2
Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación
Práctica 2. Estadística Descriptiva
Práctica 2. Estadística Descriptiva Ejercicio 1 Mucha gente manifiesta reacciones de alergia sistémica a las picaduras de insectos. Estas reacciones varían de paciente a paciente, no sólo en cuanto a gravedad,
ESTADÍSTICA DESCRIPTIVA CON SPSS
ESTADÍSTICA DESCRIPTIVA CON SPSS (2602) Estadística Económica Joaquín Alegre y Magdalena Cladera SPSS es una aplicación para el análisis estadístico. En este material se presentan los procedimientos básicos
Movimiento a través de una. José San Martín
Movimiento a través de una curva José San Martín 1. Introducción Una vez definida la curva sobre la cual queremos movernos, el siguiente paso es definir ese movimiento. Este movimiento se realiza mediante
GUIÓN TEMA 4. VARIABLES BINARIAS 4.1. Variables binarias
ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 2011/12 GUIÓN TEMA 4. VARIABLES BINARIAS 4.1. Variables binarias Bibliografía apartados : Greene, 8.2 A.F.Gallastegui:
TEMA 4: Introducción al Control Estadístico de Procesos
TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción
-Género: no nos ha quedado claro cómo influye este parámetro en el gasto en ocio, si positiva o negativamente.
INTRODUCCIÓN En este trabajo estudiamos el gasto en ocio de la población, escogiendo una muestra al azar. Realizando encuestas hemos recogido información de 125 personas, las variables que hemos visto
Análisis de Regresión Múltiple con Información Cualitativa: Variables Binarias o Ficticias
Análisis de Regresión Múltiple con Información Cualitativa: Variables Binarias o Ficticias Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía
6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS
6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS Esquema del capítulo Objetivos 6.1. 6.. 6.3. 6.4. ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS COEFICIENTES DE CONTINGENCIA LA
UNIVERSIDAD CARLOS III DE MADRID Grado en Ingeniería Industrial Estadística 17 de mayo de 2013
Apellidos Nombre UNIVERSIDAD CARLOS III DE MADRID Grado en Ingeniería Industrial Estadística 17 de mayo de 2013 N o lista Grupo El fichero datos 17m.sgd contiene información sobre los 327 vuelos comerciales
PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.
PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) PRUEBAS NO PARAMÉTRICAS F(X) es la función de distribución que hipotetizamos. Fs(X) es la probabilidad o proporción teórica de
Parámetros y estadísticos
Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población
Curso de Estadística no-paramétrica
Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació
Combinar correspondencia
Combinar correspondencia Mediante la opción Combinar correspondencia Word2010 nos permite incluir en un documento, datos almacenados en otro sitio. De esta forma podremos obtener copias de un mismo documento
TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.
TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son
Instalación del programa PSPP y obtención de una distribución de frecuencias.
Práctica 2. Instalación del programa PSPP y obtención de una distribución de frecuencias. Con esta práctica instalaremos el programa PSPP. El programa es un software específico para el análisis estadístico
Cómo hacer paso a paso un Análisis de Supervivencia con SPSS para Windows.
DOCUWEB FABIS Dot. Núm 0702006 Cómo hacer paso a paso un Análisis de Supervivencia con SPSS para Windows. Aguayo Canela M, Lora Monge E Servicio de Medicina Interna. Hospital Universitario Virgen Macarena.
Medidas de tendencia central o de posición: situación de los valores alrededor
Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas
Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante
Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto
Empresarial y Financiero
Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),
Modelos de regresión: lineal simple y regresión logística
14 Modelos de regresión: lineal simple y regresión logística Irene Moral Peláez 14.1. Introducción Cuando se quiere evaluar la relación entre una variable que suscita especial interés (variable dependiente
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las
Equivalencia financiera
Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común
Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal
Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se
EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA
EJEMPLO DE REPORTE DE LIBERTAD FINANCIERA 1. Introduccio n El propósito de este reporte es describir de manera detallada un diagnóstico de su habilidad para generar ingresos pasivos, es decir, ingresos
Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía
Regresión múltiple I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía I.- INTRODUCCIÓN Como la Estadística Inferencial nos permite trabajar con una variable a nivel de intervalo
Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16
3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una
- MANUAL DE USUARIO -
- MANUAL DE USUARIO - Aplicación: Kz Precio Hora Instagi Instagi Teléfono: 943424465-943466874 Email: instagi@instagi.com GUIA PROGRAMA CALCULO PRECIO HORA 1. Introducción 2. Datos de la empresa 2.1.Gastos
3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO
Análisis estadístico 31 3. ANÁLII ETADÍTICO DE LA PRECIPITACIONE EN EL MAR CAPIO 3.1. ANÁLII Y MÉTODO ETADÍTICO UTILIZADO 3.1.1. Introducción Una vez analizado el balance de masas que afecta al mar Caspio
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
Asignatura: Econometría. Conceptos MUY Básicos de Estadística
Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes
Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS
ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos
9.1.Análisis de tablas de contingencia
9.1.Análisis de tablas de contingencia Qué es una tabla de contingencia? Observamos datos de frecuencias de sucesos Diseños de cohortes Diseños de casos y controles Diseños transversales Estamos interesados
Problemas de Probabilidad resueltos.
Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas
Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Videoconferencias semana de estadística Universidad Latina, Campus Heredia Costa Rica Universidad del Valle
Análisis de la Varianza de un Factor
Práctica de Estadística con Statgraphics Análisis de la Varianza de un Factor Fundamentos teóricos El Análisis de la Varianza con un Factor es una técnica estadística de contraste de hipótesis, cuyo propósito
Introducción a la Estadística con Excel
Introducción a la Estadística con Excel En el siguiente guión vamos a introducir el software Excel 2007 y la manera de trabajar con Estadística Descriptiva. Cargar o importar datos En Excel 2007 podemos
Combinar correspondencia (I)
Combinar correspondencia (I) Mediante la opción Combinar correspondencia Word2007 nos permite incluir en un documento, datos almacenados en otro sitio. De esta forma podremos obtener copias de un mismo
Los valores de las respuesta son las puntuaciones que, de cada individuo, o cluster, obtenemos semanalmente durante cinco semanas consecutivas:
Sobre los modelos lineales mixtos Ejemplo: Recuperación de infarto. Para estudiar las diferencias entre dos procedimientos diferentes de recuperación de pacientes de un infarto, se consideraron dos grupos
Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor
Capítulo 14 Análisis de varianza de un factor: El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,
Estadística aplicada y modelización. 10 de septiembre de 2005
Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla
Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:
Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial
MEJORAR EL RENDIMIENTO DEL EXPLORADOR DE INTERNET
MEJORAR EL RENDIMIENTO DEL EXPLORADOR DE INTERNET Internet Explorer almacena en archivos temporales las páginas Web y sus archivos relacionados que carga de Internet, lo que significa que la primera vez
Esta es una excelente herramienta de análisis y seguimiento de la facturación. Dispone usted de cantidad de criterios por los que analizar las ventas.
ANÁLISIS DE FACTURACION Esta es una excelente herramienta de análisis y seguimiento de la facturación. Dispone usted de cantidad de criterios por los que analizar las ventas. Debe comprender que la información
Análisis y cuantificación del Riesgo
Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el
PRÁCTICA No. 1 ESTADÍSTICA DESCRIPTIVA PARTE I
PRÁCTICA No. 1 ESTADÍSTICA DESCRIPTIVA PARTE I Objetivos: Al finalizar esta práctica, el alumno podrá utilizar de manera más eficiente diversas funciones de Excel que le faciliten el cálculo de los principales
Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso.
Programa de Statgraphics TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. AUTOR: JUAN VICENTE GONZÁLEZ OVANDO ANALISIS Y CALCULOS A) Planteamos los
5.1 PLAN DE TABULACIÓN, ANÁLISIS E INTERPRETACIÓN DE DATOS. Con base a los datos que se obtengan de la muestra, y para responder al
47 5.1 PLAN DE TABULACIÓN, ANÁLISIS E INTERPRETACIÓN DE DATOS PARA PRUEBA DE HIPÓTESIS. Con base a los datos que se obtengan de la muestra, y para responder al problema y objetivos planteados, deberán
GUIA APLICACIÓN DE SOLICITUDES POR INTERNET. Gestión de Cursos, Certificados de Aptitud Profesional y Tarjetas de Cualificación de Conductores ÍNDICE
ÍNDICE ACCESO A LA APLICACIÓN... 2 1.- HOMOLOGACIÓN DE CURSOS... 4 1.1.- INICIAR EXPEDIENTE... 4 1.2.- CONSULTA DE EXPEDIENTES... 13 1.3.- RENUNCIA A LA HOMOLOGACIÓN... 16 2.- MECÁNICA DE CURSOS... 19
TEMA 7 ANÁLISIS DE DATOS: INTRODUCCIÓN AL SPSS
TEMA 7 ANÁLISIS DE DATOS: INTRODUCCIÓN AL SPSS 1. Introducción 2. Definición de variables 3. Introducción de los datos 4. Análisis de los datos 5. Otras utilidades 1. INTRODUCCIÓN El SPSS es un paquete
Test ( o Prueba ) de Hipótesis
Test de Hipótesis 1 Test ( o Prueba ) de Hipótesis Ejemplo: Una muestra de 36 datos tiene una media igual a 4.64 Qué puede deducirse acerca de la población de donde fue tomada? Se necesita contestar a
Estadística descriptiva con Excel (Cálculo de medidas)
Universidad Pedagógica Experimental Libertador Instituto Pedagógico de Miranda José Manuel Siso Martínez Departamento de Ciencias Naturales y Matemáticas Cátedra: Estadística aplicada a la educación Estadística
Estudio de casos y controles sobre factores de riesgo en el cáncer colorrectal
Estudio de casos y controles sobre factores de riesgo en el cáncer colorrectal Objetivos del estudio Estimar el riesgo de padecer cáncer colorrectal asociado a una serie de variables Población Casos Controles
Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León
Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJECICIO Nº Páginas OPTATIVIDAD: EL ALUMNO DEBEÁ ESCOGE UNA DE LAS DOS OPCIONES