CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A"

Transcripción

1 CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 9000 euros y el modelo B un tercio más caro. La oferta está limitada por las existencias, que son de 20 coches del modelo A y 10 del B y por el deseo de vender al menos tantas unidades del modelo A como del modelo B. Por otra parte, para cubrir gastos de esta campaña, los ingresos obtenidos con ella deben ser al menos de euros. 1. Cuántos coches de cada modelo deberá vender para maximizar sus ingresos? 2. Cuál es el importe de la venta? Se trata de un problema de programación lineal. Si vende x coches del modelo A e y del modelo B, debe cumplirse: 0 x 20; 0 y 10 x y; 9000x y x + 4y 12 El objetivo es maximizar los ingresos: I(x, y) = 9000x y Las restricciones generan la región factible, sombreada, en la siguiente figura. La solución óptima, máxima o mínima, se encuentra en alguno de los vértices de esa región factible; sus coordenadas son: 3x + 4y = 12 P: P = (12/7, 12/7); x = y Q = (10, 10); R = (20, 10); S = (20, 0) y T = (4, 0) Los ingresos para esos niveles de ventas son: En P, I(12/7, 12/7) = euros. En Q, I(10, 10) = euros En R, I(20, 10) = euros En S, I(20, 0)) = euros En T, I/4, 0) = euros. Los ingresos se maximizan vendiendo todos los coches, los 20 del modelo A y los 10 del B. b) Los ingresos ascenderán a euros.

2 CANTABRIA / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ARITMÉTICA Y ÁLGEBRA / BLOQUE 1/ OPCIÓN A BLOQUE 1 OPCIÓN A En una confitería se dispone de 24 kg de polvorones y 15 kg de mantecados, que se envasan en dos tipos de cajas del modo siguiente: caja tipo 1: 200 g de polvorones y 100 g de mantecados. Precio: 4 caja tipo 2: 200 g de polvorones y 300 g de mantecados. Precio: 6 1. Cuántas cajas de cada tipo se tendrán que preparar y vender para obtener el máximo de ingresos? 2. Cuál es el importe de la venta? Se trata de un problema de programación lineal. Con los datos anteriores se obtiene: Cantidad Polvorones Mantecados Ingresos Tipo 1 x 0,2x 0,1x 4x Tipo 2 y 0,2y 0,3y 6y Disponibilidades 24 kg 15 kg El objetivo es maximizar los ingresos. Esto es: Maximizar I(x, y) = 4x + 6y restringida por: 0,2x + 0,3y 24 0,1x + 0,3y 15 x 0; y 0 Estas restricciones generan la región factible sombreada en la siguiente figura: Como sabemos la solución óptima se encuentra en alguno de los vértices, que son: 2x + 2y = 240 O = (0, 0), P = (0, 45), Q: Q = (105, 15) y R = (120, 0) x + 3y = 150

3 CANTABRIA / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ARITMÉTICA Y ÁLGEBRA / BLOQUE 1/ OPCIÓN A Los ingresos para esos puntos son: En O, I(0, 0) = 0 En P, I(0, 45) = 270 En Q, I(105, 15) = 510 En R, I(120, 0) = 480 La solución óptima se obtiene preparando 105 cajas del tipo 1 y 15 del tipo 2, siendo los ingresos de 510 euros.

4 CANTABRIA / JUNIO 02. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a En una pequeña empresa se fabrican sólo dos tipos de aparatos, A y B. Como máximo pueden fabricarse 3 aparatos de cada tipo y, obligatoriamente, al menos uno de tipo B. Se quieren obtener unas ventas superiores a 600 euros, teniendo en cuenta que los precios a los que se venden los artículos A y B son 300 y 100 euros, respectivamente. Hallar todas las posibilidades de fabricación. Sean x e y el número de aparatos fabricados de tipo A y B, respectivamente. Debe cumplirse que: 0 x 3 1 y 3 300x + 100y > 600 Estas desigualdades generan la región sombreada en la siguiente figura, donde los puntos indican las posibilidades reales de fabricación.. Las posibilidades de fabricación son: x y ventas (euros)

5 CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1b La siguientes desigualdades definen un recinto en el plano: x + 3y 150; 5x + y 200; 3x + 4y 240; x 1: y 1 1. Determinar los vértices del recinto. 2. Si la función objetivo es 0,75x + y, alcanza un máximo?, es único?, alcanza un mínimo?, es único? 1. Las desigualdades dadas generan la región sombreada en la siguiente figura. Los vértices son los puntos de corte de las rectas asociadas a las desigualdades dadas. A = (1, 1); B = (1, 149/3); C: x + 3y = 150 3x + 4y = 240 C = (24, 42) D: 5x + y = 200 3x + 4y = 240 D = (560/17, 600/17); E = (199/5, 1) 2. Como se sabe, los máximos y mínimos de la función objetivo f(x, y) = 0,75x + y (que es lineal) están en alguno de los vértices. Sus valores son: En A = (1, 1), f(1, 1) = 1,75 En B = (1, 149/3), f(x, y) = 50,42 En C = (24, 42), f(x, y) = 60 En D = (560/17, 600/17), f(x, y) = 60 En E = (199/5, 1), f(x, y) = 30,85. La función objetivo alcanza el máximo en cualquiera de los puntos del segmento CD. Su valor es 60. La función objetivo alcanza el mínimo en el punto A. Ese mínimo es único.

6 CANTABRIA /JUNIO 98. LOGSE /MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ARITMÉTICA Y ÁLGEBRA /BLOQUE 1 /OPCIÓN 1-b Opción 1-b. Se desea realizar una mezcla con dos sustancias A y B, que ha de contener como mínimo 10 unidades de cada una de ellas. Estas sustancias nos las venden dos proveedores en forma de lotes. El lote del primer proveedor es tal que los contenidos de B y A están en la relación de 4 a 1 y contiene una unidad de A. El lote del segundo proveedor es tal que los contenidos de A y B están en la relación de 4 a 1 y contiene una unidad de B. El primer proveedor vende cada lote a pesetas, precio que es la mitad de a lo que vende el segundo el suyo. Ambos proveedores nos venden lotes enteros o fracciones de ellos. Qué número de lotes hemos de comprar para que el coste sea mínimo? Cuál es ese coste? La información suministrada por el problema se resume en la tabla: Lote Cantidad A B 1º x x 4y 2º y 4y y La función objetivo es: Coste = 1000x y mínimo, sujeta a las restricciones: x + 4y 10 4x + y 10 x 0; y 0 Estas restricciones generan la región factible dada en la figura adjunta.

7 CANTABRIA /JUNIO 98. LOGSE /MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ARITMÉTICA Y ÁLGEBRA /BLOQUE 1 /OPCIÓN 1-b Los vértices son: A=(0, 10), B=(2, 2) y C=(10, 0). El coste es mínimo en B(2, 2); esto es, cuando x = 2 e y = 2, siendo Coste = 6000 pesetas. Esta solución se comprueba trazando las recta de nivel 1000x y = k, que tienen su nivel mínimo (k mínimo) cuando tocan en B=(2, 2).

8 CASTILLA Y LEÓN / JUNIO 00. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE A / PREGUNTA 1 Un empresario puede utilizar dos locales para almacenar trigo. En uno de ellos (almacén A) se sabe que la cantidad almacenada tiene una merma a lo largo del año de 0,002 por kilogramo y en el otro (almacén B) la merma es de 0,001 por kilogramo. El coste de mantener el producto durante un año en el almacén A es de 0,01 euros por kilogramo y en el B, de 0,03 euros por kilogramo; este coste se calcula sobre la cantidad almacenada al principio (sin merma). Para el año 2001, el empresario quiere almacenar, al menos, 100 toneladas, pero quiere que la merma producida no supere los 200 kilogramos y que el coste total de almacenamiento sea menor de 1500 euros. Qué cantidad ha de almacenar en cada local para tener la mayor cantidad de trigo posible? Si almacena x kilos en A e y en B, se tendrán las siguientes restricciones: x + y , 0,002x + 0,001y 200 0,01x + 0,03y El objetivo es maximizar f(x, y) = x + y (0,002x + 0,001y) = 0,998x + 0,999y Esto es: Maximizar f(x, y) = 0,998x + 0,999y Restringido por: x + y x + y x + 3y Estas restricciones generan la región factible (sombreada) en la siguiente figura, donde la unidad de referencia es la tonelada.

9 CASTILLA Y LEÓN / JUNIO 00. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE A / PREGUNTA 1 Los vértices son: P = (75.000, ), Q = (90.000, ), R = ( , 0) El valor de la función objetivo en esos vértices es, respectivamente: f(p) = , f(q) = , f(r) = La mayor cantidad de trigo, kg, se obtiene almacenando kg: kg en el almacén A; kg en B.

10 CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE A / PREGUNTA 1A Una empresa familiar tiene tres empleados que trabajan como máximo durante 40 horas semanales cada uno en la elaboración de dos tipos de productos, A y B, Para la elaboración de una unidad de cada producto se requieren 3 horas para el tipo A y 4 horas para el B. La familia ha decidido que no se elaborarán más de 32 unidades semanales del producto tipo A y 12 del producto tipo B. El beneficio proporcionado por cada unidad del producto tipo A es de 6 euros y 3 euros por cada unidad del tipo B. Determina el número de unidades que deben elaborar del tipo A y B para obtener un beneficio máximo. Sean x e y el número de unidades que debe elaborar de cada tipo, A y B, respectivamente. Entonces, se trata de maximizar B(x, y) = 6x + 3y restringido por: 3x + 4y 120 (número de horas disponibles) x 32 y 12 x 0; y 0 Estas restricciones generan la región factible (sombreada) en la siguiente figura. Como sabemos, la solución óptima se encuentra en alguno de los vértices; sus coordenadas son: O = (0, 0), P = (0, 12), Q: 3x + 4y = 120 Q = (24, 12), y = 12 R: 3x + 4y = 120 R = (32, 6), S = (32, 0). x = 32 El beneficio en cada uno de esos vértices es: En O, B0, 0) = 0. En P, B(0, 12) = 36 En Q, B(24, 12) = 180 En R, B(32, 6) = 210 En S, B(32, 0) = 192

11 CASTILLA Y LEÓN / SEPTIEMBRE 02. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE A / PREGUNTA 1A El beneficio máximo se obtiene elaborando 32 unidades del tipo A y 6 del tipo B.

12 CASTILLA Y LEÓN / SEPTIEMBRE 03. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE A / PREGUNTA 1A BLOQUE A PREGUNTA 1 Una fábrica produce dos modelos de aparatos de radio, A y B. La capacidad de producción de aparatos de tipo A es de 60 unidades por día y para el tipo B de 75 unidades por día. Cada aparato de tipo A necesita 10 piezas de un componente electrónico y 8 piezas para los del tipo B. Cada día se dispone de 800 piezas del componente electrónico. La ganancia por cada aparato producido de los modelos A y B es de 30 euros y 20 euros, respectivamente. Determina la producción diaria de cada modelo que maximiza la ganancia. Sean x e y el número de aparatos que debe producir de cada tipo, A y B, respectivamente. Entonces, se trata de maximizar G(x, y) = 30x + 20y restringido por: x 60 y 75 10x + 8y 800 (número de piezas disponibles) x 0; y 0 Estas restricciones generan la región factible (sombreada) en la siguiente figura. Como sabemos, la solución óptima se encuentra en alguno de los vértices; cuyas coordenadas son: O = (0, 0), P = (0, 75), Q: 10x + 8y = 800 y = 75 R: 10x + 8y = 800 R = (60, 25), S = (60, 0). x = 60 La ganancia en cada uno de esos vértices es: Q = (20, 75),

13 CASTILLA Y LEÓN / SEPTIEMBRE 03. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE A / PREGUNTA 1A En O, G0, 0) = 0. En P, G(0, 75) = 1500 En Q, G(20, 75) = 2100 En R, G(60, 25) = 2300 En S, G(60, 0) = 1800 La ganancia máxima se obtiene produciendo 60 aparatos del tipo A y 25 del tipo B.

14 CASTILLA LA MANCHA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 2 / EJERCICIO A EJERCICIO A Un fabricante de abanicos dispone de dos modelos A y B. El modelo A requiere, para su elaboración, 20 cm 2 de papel, 120 cm 2 de lámina de madera y 1 enganche metálico. El modelo B requiere: 60 cm 2 de papel, 80 cm 2 de lámina de madera y 1 enganche metálico. El coste de producción de cada modelo es 1,20 euros el A y 1,30 euros el B. El precio de venta es de 1,80 euros cada uno, independientemente del modelo.. Teniendo en cuenta que las existencias son de 3000 cm 2 de papel, 7200 cm 2 de lámina de madera y 70 enganches. 1) Representa la región factible. 2) Determina el número de abanicos de cada modelo que ha de hacer para obtener un beneficio máximo. 3) Calcula cuál es ese beneficio. Se trata de un problema de programación lineal. Con los datos anteriores, y suponiendo que se hacen x abanicos del modelo A e y del B, se obtiene: Abanico Cantidad Papel Madera Enganches Beneficio Modelo A x 20x 120x x 0,60x Modelo B y 60y 80y y 0,50y Existencias 3000 cm cm 2 70 Las restricciones del problema vienen dadas por las existencias y por la no negatividad de las cantidades: Restricciones: 20x + 60y (1) 120x + 80 y 7200 (2) x + y 70 (3) x 0; y 0 Estas restricciones generan la región factible (sombreada) en la siguiente figura. 2) y 3) Como sabemos, la solución óptima se da en alguno de los vértices, cuyas coordenadas son:

15 CASTILLA LA MANCHA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 2 / EJERCICIO A 20x + 60y = 3000 O = (0, 0), P = (0, 50), Q: Q = (30, 40), x + y = x + 80y = 7200 R: R = (40, 30) y S = (60, 0). x + y = 70 El objetivo es maximizar los beneficios. Esto es: Maximizar B(x, y) = 0,60x + 0,50y Para determinar en qué vértice se da el máximo puede recurrirse al trazado de las rectas de nivel, cuya ecuación es 0,60x + 0,50y = k. Como en este caso no es imprescindible determinaremos el beneficio máximo evaluando la función objetivo en cada uno de los vértices hallados. Así se obtiene: En O, B(0, 0) = 0. En P, B(0, 50) = 25 euros En Q, B(30, 40) = 38 euros En R, B(40, 30) = 39 euros. En S, B(60, 0) = 36 euros. El máximo beneficio es de 39 euros y se consigue fabricando 40 abanicos del modelo A y 30 del modelo B.

16 CASTILLA LA MANCHA/ JUNIO 05 LOGSE/ MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES/ ARITMÉTICA Y ÁLGEBRA/ BLOQUE 2/ EJERCICIO A BLOQUE 2 EJERCICIO A Un taller pirotécnico fabrica cohetes sencillos que luego vende a 2,70 euros el paquete de 10 y cohetes de colores que vende a 3,60 el paquete de 10. Por problemas de mecanización no pueden fabricar al día más de 400 cohetes sencillos ni más de 300 cohetes de colores, ni más de 500 cohetes sumando los de las dos clases. Se supone que se vende toda la producción. 1) Representa la región factible. 2) Cuántos cohetes de cada clase convendrá fabricar y vender para que el beneficio sea máximo? 3) Calcula ese beneficio máximo. Se trata de un problema de programación lineal. 1) La región factible viene determinada por las restricciones, que son: 10x 400 (1) 10y 300 (2) 10x + 10y 500 (3) x 0; y 0 La región factible es la zona sombreada en la siguiente figura. 2) La función objetivo es f(x, y) = 2,70x + 3,60y, que se desea maximizar. Como sabemos, la solución óptima se da en alguno de los vértices: Gráficamente puede determinarse trazando las rectas de nivel, cuya ecuación es 2,70x + 3,60y = k, donde k indica el nivel que alcanza la función. El nivel aumenta cuando las rectas se desplazan paralelamente siguiendo la dirección del vector (2,70, 3,60). El valor máximo de k se consigue en el punto Q, pues es el mayor desplazamiento que puede darse a las rectas de nivel dentro de la región factible. Las coordenadas de Q son (20, 30). Por tanto habrá que fabricar 20 paquetes sencillos y 30 de colores: 200 cohetes sencillos y 300 de colores. 3) Los ingresos máximos serán f(20, 30) = 162 euros.

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

1º Dibuja las regiones factibles definidas por los siguientes sistemas:

1º Dibuja las regiones factibles definidas por los siguientes sistemas: Departamento de Matemáticas 2º de bachillerato Matemáticas II aplicadas a las Ciencias Sociales Tema 3: Programación lineal. 1º Dibuja las regiones factibles definidas por los siguientes sistemas: 0,3

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID)

PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) PROGRAMACIÓN LINEAL-SELECTIVIDAD (MADRID) 1.- (Junio 99). Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragar los gastos del viaje de estudios. Cada lote de tipo A consta

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS EN LA PAU 2004 (ÁLGEBRA) + 3y

EJERCICIOS Y PROBLEMAS PROPUESTOS EN LA PAU 2004 (ÁLGEBRA) + 3y EJERCICIOS Y PROBLEMAS PROPUESTOS EN LA PAU 004 (ÁLGEBRA) 1.- Sea el sistema de inecuaciones x+ y 6 3x y 13 x + 3y 3 x 0 a) Dibuje el recinto cuyos puntos son las soluciones del sistema y obtenga sus vértices.

Más detalles

4 Programación lineal

4 Programación lineal 4 Programación lineal TIVIES INIILES 4.I. Resuelve las siguientes inecuaciones de primer grado. a) ( ) 4( ) b) > 6 a) 6 4 8 6 4 8 6 9, Solución:, b) > 6 6 6 > 6 6 6 6 > 6 6 6 > 6 8 > 0 > Solución:, 4.II.

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL

PROBLEMAS DE PROGRAMACIÓN LINEAL PROBLEMAS DE PROGRAMACIÓN LINEAL A.- Problemas generales B.- Problemas con porcentajes C.- Problemas de dietas D.- Problemas para profundizar A.- PROBLEMAS GENERALES Ejercicio 1.- En una fábrica se construyen

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B.

Modelo 2014. Problema 2A.- Septiembre 2012. Ejercicio 1A. Septiembre 2010. F.M. Ejercicio 1A. Septiembre 2010. F.G. Ejercicio 1B. Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios

Problemas de inecuaciones Programación lineal - 1. MasMates.com Colecciones de ejercicios 1. Cierta sala de espectáculos tiene una capacidad máxima de 1500 personas, entre adultos y niños; el número de niños asistentes no puede superar los 600. El precio de la entrada a una sesión de un adulto

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL.

PROBLEMAS DE PROGRAMACIÓN LINEAL. Observación: Para resolver correctamente los ejercicios, hay que responder a todos sus apartados sobre lo que se pregunta. No obstante, hay soluciones a apartados que no se han dado y que se deja al alumno

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

6 PROGRAMACIÓN LINEAL

6 PROGRAMACIÓN LINEAL 6 PROGRAMACIÓN LINEAL Introducción El tema comienza con una introducción a la programación lineal, en la que se exponen todos los conceptos necesarios como región factible, función objetivo, vector director

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! PROGRAMACIÓNLINEAL 1.0septiembre1995 UnaempresadeautomóvilestienedosplantasPyQdemontajedevehículosenlasqueproducetresmodelosA,ByC.Dela plantapsalensemanalmente10unidadesdelmodeloa,30delby15delc,ydelaq,20unidadesdelmodeloa,20delby70del

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

TEMA 3. PROGRAMACIÓN LINEAL

TEMA 3. PROGRAMACIÓN LINEAL Colegio Ntra. Sra. de Monte-Sión Departamento de Ciencias Asignatura: Matemáticas Aplicadas a las CCSS II Profesor: José Mª Almudéver Alemany TEMA 3. PROGRAMACIÓN LINEAL. Inecuaciones lineales con dos

Más detalles

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio

EJERCICIOS. Calcula la producción diaria de los artículos A y B que maximiza el beneficio EJERCICIOS EJERCICIO 1 En una granja de pollos se da una dieta "para engordar" con una composición mínima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

Máximo o mínimo de una función

Máximo o mínimo de una función Análisis: Máimos, mínimos, optimización 1 MAJ00 Máimo o mínimo de una función 1. Dados tres números reales cualesquiera r 1, r y r, hallar el número real que minimiza la función D( ) ( r ) ( r ) ( r 1

Más detalles

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA...

CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... CONTENIDOS 0.- MAPA CONCEPTUAL DE LA UNIDAD... 1 1.- FORMULACIÓN DEL PROBLEMA... 2 2.- RESOLUCIÓN DEL PROBLEMA... 2 2.1. NATURALEZA DE LAS RESTRICCIONES... 2 2.2. DÓNDE ESTÁ Y CÓMO SE ENCUENTRA LA SOLUCIÓN...

Más detalles

Matemáticas aplicadas a las ciencias sociales II PL

Matemáticas aplicadas a las ciencias sociales II PL Matemáticas aplicadas a las ciencias sociales II PL 1) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL Orientaciones para la PRUEBA DE ACCESO A LA UNIVERSIDAD en relación con este tema: Inecuaciones lineales con una o dos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 21 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

Colección de Problemas IV

Colección de Problemas IV 1.- Una compañía se dedica a la elaboración de 2 productos, la demanda de estos productos es de 200 unidades para cada uno de ellos. La compañía podrá elaborar los productos o comprarlos a un proveedor.

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

Tema 1. - SISTEMAS DE ECUACIONES.

Tema 1. - SISTEMAS DE ECUACIONES. Matemáticas aplicadas CCSS. Ejercicios modelo Selectividad - Tema. - SISTEMAS DE ECUACIONES. Ejercicio. ( ) a) ( puntos) Determine dos números sabiendo que al dividir el mayor por el menor obtenemos 7

Más detalles

PARTE GENERAL. INSTRUCCIONES ESPECÍFICAS DE ESTA MATERIA Se han de Toda respuesta ha de estar debidamente justificada, valorándose positivamente las

PARTE GENERAL. INSTRUCCIONES ESPECÍFICAS DE ESTA MATERIA Se han de Toda respuesta ha de estar debidamente justificada, valorándose positivamente las PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR Convocatoria de junio de 2002 (Resolución de 26 de Abril de la Consejería de Educación y Cultura del Gobierno del Principado de Asturias. BOPA de

Más detalles

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es

Matemáticas Aplicadas a. 2º Bachillerato. Capítulo 4: Programación lineal. LibrosMareaVerde.tk www.apuntesmareaverde.org.es Matemáticas Aplicadas a las Ciencias Sociales II. 2º Bachillerato. Capítulo 4: Programación lineal Autores: Leticia González Pascual y Álvaro Valdés Menéndez 101 Índice 1. INECUACIONES LINEALES CON DOS

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS

ACTIVIDADES INICIALES. y 2 7, y 0,12. b) 0,12v 1 1 55 EJERCICIOS PROPUESTOS Solucionario 5 Inecuaciones ACTIVIDADES INICIALES 5.I. rdena de menor a mayor los siguientes números. a), 6 8, 4 y 7 b) 0,v,, y 0, 4 5 5 0 90 5 a) 75 ; 6 8 7 ; 4 80 y 7 70 7 6 8 4 4 00 5 00 5 00 0 00 0

Más detalles

LAS FUNCIONES ELEMENTALES

LAS FUNCIONES ELEMENTALES UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes

Más detalles

ÁLGEBRA LINEAL - Año 2012

ÁLGEBRA LINEAL - Año 2012 UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS ÁLGEBRA LINEAL - Año 0 Notas de Cátedra correspondientes a la UNIDAD SIETE PROGRAMACIÓN LINEAL * INECUACIONES Se denomina inecuación a

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

-.PROGRAMACION LINEAL.- Problemas resueltos

-.PROGRAMACION LINEAL.- Problemas resueltos -.PROGRAMACION LINEAL.- Problemas resueltos EJEMPLO 1. Un expendio de carnes de la ciudad acostumbra preparar la carne para albondigón con una combinación de carne molida de res y carne molida de cerdo.

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN 1.- Ejemplo resuelto Un herrero dispone de 80 kg. de acero y 120 kg. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente

Más detalles

Ministerio de Educación Nuevo Bachillerato Ecuatoriano. Programación lineal

Ministerio de Educación Nuevo Bachillerato Ecuatoriano. Programación lineal Ministerio de Educación Nuevo Bachillerato Ecuatoriano Programación lineal Con el fin de motivar a sus estudiantes, un profesor de Matemática decide proporcionarles dos paquetes de golosinas: uno con 2

Más detalles

Programación lineal. 2.1 Problemas PAU

Programación lineal. 2.1 Problemas PAU 1 Programación lineal 2.1 Problemas PAU Junio 94: Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo el modelo A a un precio de 1,5 millones de ptas. y el modelo B a 2

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V.

EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. EJERCICIOS PROPUESTOS EN LAS P.A.U. DE LA C. V. BLOQUE 1: ÁLGEBRA. JUN00 P4A: Por un helado, dos horchatas y cuatro batidos, nos cobraron en una heladería 1.700 pta un día. Otro día, por cuatro helados

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

1º BACHILLERATO MATEMÁTICAS CCSS

1º BACHILLERATO MATEMÁTICAS CCSS PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente

Más detalles

PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE.27-11-15

PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE.27-11-15 PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE.27-11-15 1) (2,5 puntos)una empresa que fabrica motos y coches en dos factorías F1 y F2, ha recibido un pedido de 300 coches y 500 motos. En la factoría F1 se producen

Más detalles

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía, de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel.

1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 2. Alba y Ana han comprado un regalo a su madre. Indica cuánto ha

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO

ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO CURSO 10-11 ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO NOMBRE: GRUPO:.; Nº:. Los contenidos mínimos para la prueba extraordinaria de septiembre se encuentran en la programación, que se puede consultar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

-Teoría y Problemas resueltos de Programación Lineal

-Teoría y Problemas resueltos de Programación Lineal -Teoría y Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables.

Más detalles

OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO

OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Cuál de los siguientes números es par? A 2009 B 2 + 0 + 0 + 9

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

PROGRAMACIÓN LINEAL. x, y 0. y x 3 5x y 27. f x, y =15x 25y

PROGRAMACIÓN LINEAL. x, y 0. y x 3 5x y 27. f x, y =15x 25y PROGRAMACIÓN LINEAL Jun.08) Una compañía de telefonía móvil quiere celebrar una jornada de Consumo razonable y ofrece a sus clientes la siguiente oferta: 15 céntimos de euro por cada mensaje SMS y 25 céntimos

Más detalles

1º E.S.O. NÚMEROS ENTEROS:

1º E.S.O. NÚMEROS ENTEROS: 1º E.S.O. NÚMEROS ENTEROS: 1. Los números naturales. Sistema de numeración decimal. Orden y representación de los números naturales. Los números grandes: millones, millardos, billones. Suma, resta y multiplicación.

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales

Más detalles

Programación Lineal: Modelos PLE

Programación Lineal: Modelos PLE Programación Lineal: Modelos PLE CCIR / Matemáticas euresti@itesm.mx CCIR / Matemáticas Programación Lineal: Modelos PLE euresti@itesm.mx 1 / 35 Introduccion Introduccion En esta lectura se verán cómo

Más detalles

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal. ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio

Más detalles

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO

ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO ACTIVIDADES DE REPASO. MATEMÁTICAS º ESO NÚMEROS NATURALES. Calcula: a) 4 6 5 + 3 4 b) (4 6 5) + 3 4 c) 4 6 (5 + 3 4) d) 4 (6 5) + 3 4 e) (5 + 0) 8 f) (73 37) : 6. Calcula: a) 987 + 5 + 3 784 b) 3 978

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE TRABAJO DE VERANO 2014 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: ARITMÉTICA Y ÁLGEBRA CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE Números: reales, irracionales, racionales.

Más detalles

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por

Más detalles

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen TEMA 6 FUNCIONES 1.- Estudia y clasifica las relaciones que aparecen en las siguientes situaciones (elementos relacionados, características de la relación, dependencia entre elementos, conjuntos que se

Más detalles