1. GRÁFICAS. Página 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. GRÁFICAS. Página 1"

Transcripción

1 1. GRÁFICAS Página 1

2 Lectura, construcción e interpretación de gráficas Características globales y locales de las gráficas Página 2

3 1. LECTURA, CONSTRUCCIÓN E INTERPRETACIÓN DE GRÁFICAS. ETAPA CICLISTA Este es el perfil de una etapa ciclista de un club de cicloturismo. Y ésta es la gráfica que indica cómo se recorrió esa etapa. a) Cuál es la longitud de la etapa?. Cuánto tiempo tardaron en recorrerla?. b) En qué tramo van más deprisa y en cuál más despacio?. Cuándo pasan por la cima más alta?. c) Qué distancia hay de C a D?. Cuánto tiempo tardaron en recorrerla?. Qué velocidad llevaron?. EL VIAJE Esta gráfica indica la cantidad de gasolina que hay en el depósito de un coche a lo largo de un viaje. a) Qué variables intervienen en la gráfica? b) Cuánta gasolina tenía en el momento de iniciar el viaje?. c) En qué momento lleva más gasolina?. Y menos?. Cuánta gasolina lleva en cada caso?. d) En qué momentos el depósito contiene exactamente 40 litros de gasolina?. En algún momento el depósito contiene 70 litros de gasolina?. e) Intenta describir el viaje señalando los momentos en que el coche está rodando, cuando para, cuando pone gasolina, cuánta pone, etc. Página 3

4 PRECIOS DEL PETRÓLEO En la siguiente gráfica se muestra la evolución de los precios del petróleo, en dólares por barril, desde 1972 hasta Comenta la gráfica. A qué puede deberse el cambio brusco de crecimiento que se produce en 1979?. BOTELLAS Tomamos una botella y la vamos llenando de agua vaso a vaso. Cada vez que echamos un vaso de agua medimos la altura que alcanza el agua en el interior de la botella y anotamos los resultados: nº de vasos echados nivel alcanzado Aquí tenemos cuatro botellas y sus correspondientes gráficas. Asigna a cada una la suya. BOLÍGRAFO O REGLA Apoya una regla o un bolígrafo sobre la pared y el suelo de la clase y mide la distancia del punto de contacto con el suelo a la pared (X) y la distancia del punto de contacto con la pared al suelo (Y). Representa gráficamente la relación entre ambas medidas. Página 4

5 VOLUMEN Y TEMPERATURA Esta gráfica representa la variación del volumen específico del agua (en cm 3 por cada kilogramo) al aumentar la temperatura. a) Cuando la temperatura aumenta de 0ºC a 4ºC, qué le pasa al volumen?. b) Indica dos temperaturas diferentes para las que una masa de 1 kg de agua ocupa el mismo volumen. c) A qué temperatura el volumen es mínimo?. Cuál es este volumen?. DOS COCHES La gráfica siguiente muestra la distancia que separa a los coches A y B de una cierta ciudad durante el período de tiempo que dura el viaje. Comenta detalladamente las particularidades de cada viaje. CONTAMINACIÓN El nivel de contaminación de una ciudad a las 7 de la mañana es de 20 partes por millón, y crece de forma lineal 15 partes por millón cada hora. Sea y la contaminación en el instante t después de las 7 de la mañana. a) Halla la función que relaciona y con t. b) Halla el nivel de contaminación a las 5 de la tarde. Página 5

6 2. CARACTERÍSTICAS GLOBALES Y LOCALES DE LAS GRÁFICAS. AUTOMÓVILES O TRACTORES Cierta empresa tiene capacidad para montar automóviles o tractores. Según los recursos que dedique a la fabricación de unos, puede destinar el resto a la fabricación de los otros. En la gráfica se representa la relación existente. 1) Construye una tabla como la siguiente con algunos valores. Observa el sentido de crecimiento de dichos valores. TRACTORES X 0 AUTOMÓVILES Y 800 2) Esta gráfica, es creciente o decreciente?. Cuál es su dominio?. Cuál es su recorrido?. Dominio de una función es el conjunto de valores de x para los que está definida la función; es decir, para los que existe gráfica. Se representa por Dom (f). Imagen o Recorrido de una función es el conjunto de valores que toma la y para cada uno de los puntos de su dominio. Se representa por Im (f). Una función es decreciente si al aumentar la x, la y disminuye; es decir, al recorrer la gráfica de izquierda a derecha, la gráfica baja. Una función es creciente si al aumentar la x, la y aumenta; es decir, al recorrer la gráfica de izquierda a derecha, la gráfica sube. INTERVALOS FINITOS Intervalo abierto de extremos a y b es el conjunto de números reales comprendidos entre a y b, a, b a, b x R / a x b. excluidos los extremos. Intervalo cerrado de extremos a y b es el conjunto de números reales comprendidos entre a y b, a,b x R / a x b. incluyendo los extremos. Intervalo semiabierto por la izquierda (semicerrado por la derecha) de extremos a y b es el conjunto de números reales comprendidos entre a y b, excluyendo a e incluyendo b. a, b a, b x R / a x b. Página 6

7 Intervalo semicerrado por la izquierda (semiabierto por la derecha) de extremos a y b es el conjunto de números reales comprendidos entre a y b, incluyendo a y excluyendo b. a, b a, b x R / a x b. INTERVALOS INFINITOS También podemos utilizar intervalos infinitos, como los siguientes: a, a, x R / a x a, a, x R / a x, b, b x R / x b, b, b x R / x b,, R RECTÁNGULO Expresa la altura de un rectángulo de perímetro p en función de su base. Concrétala para el caso en que p=100. Representa gráficamente la función obtenida. Cuál es el dominio y recorrido?. PUNTOS DE CORTE 1) Observa las siguientes rectas. Escribe las coordenadas de los puntos de corte de cada recta con los ejes de coordenadas. Observa que todos los puntos de corte con el eje de abcisas tienen su ordenada igual a 0. En general, los puntos de corte de una función y = f x con el eje de abcisas se obtienen haciendo y = 0 en la fórmula de la función y averiguando los correspondientes valores de x. Observa que todos los puntos de corte con el eje de ordenadas tienen su abcisa igual a 0. En general, el punto de corte de una función y = f x con el eje de ordenadas se obtiene haciendo x = 0 en la fórmula de la función y hallando el correspondiente valor de y. 2) Dibuja las gráficas de las siguientes funciones: a) x + 2y = 0 b) x + 3y = 6 c) x y = 1 Halla los puntos de corte de cada función con los ejes de coordenadas. Página 7

8 COCHE Y BICICLETA Dos ciudades A y B distan 180 km. Un ciclista parte de A a las 8 horas y se dirige a B a una velocidad de 30 km/h. Un automovilista parte de B hacia A a las 9 horas 20 minutos a una velocidad de 120 km/h. a) Representa gráficamente la marcha de cada uno de los móviles. En abcisas el tiempo y en ordenadas la distancia de cada móvil a la ciudad A. b) Lee sobre la gráfica la hora y el lugar de encuentro. VACACIONES Estamos de vacaciones. Disponemos de 10 días. Deseamos alquilar un coche y nos dan dos opciones: A: 50 euros diarios. B: 20 euros diarios + 0,10 euros por km recorrido. Estudia la función de gasto en cada opción. A partir de qué recorrido es más rentable la opción A que la B?. FOTOCOPIAS Una casa de reprografía cobra a 5 cents la fotocopia, mientras que las hojas a multicopista salen a 1 50 cents más 50 cents fijos cualquiera que sea el número de copias que se realicen de un mismo ejemplar. Haz en ambos casos la gráfica de la función nº de copias importe total. A partir de cuántas copias conviene hacerlas a multicopista?. CONSUMO DE AGUA El consumo de agua en un colegio viene dado por esta gráfica: a) Durante qué horas el consumo de agua es nulo?. b) Cuándo es creciente el consumo?. Cuándo es decreciente?. Durante qué horas se alcanzan los valores máximos y mínimos de consumo de agua?. c) Haz una gráfica similar para el consumo de agua en una discoteca. Una función presenta un máximo absoluto en un punto cuando el valor de la función en dicho punto es el mayor de su dominio. El máximo es relativo si el valor de la función en dicho punto es mayor que en los puntos cercanos. En un punto de máximo relativo la función pasa de ser creciente a ser decreciente. Página 8

9 Una función tiene un mínimo relativo en un punto si el valor de la función en dicho punto es menor que en los puntos cercanos. En un punto de mínimo relativo, la función pasa de ser decreciente a ser creciente. Un extremo local de una función es un punto de máximo o mínimo relativo. GASOLINA El consumo de gasolina de cierto vehículo, en litros por cada 100 Km, cuando circula por una carretera recta y horizontal de dirección única, viene dado por la tabla: X (Km/h) Y(l/100 Km) 8 7,4 6,5 6 6,8 7,7 8,5 9,4 10, Dibuja la gráfica de la función, sabiendo que tiene un mínimo en x = 80. AUTOBUSES Una empresa concierta un contrato con una empresa de autobuses para el traslado de sus trabajadores. Pagarán 0'9 euros por trabajador si hay un mínimo de 50 y disminuirá a todos un céntimo de euro por cada persona que pase de 50. Dibuja la gráfica de la función que da el coste en función del número de trabajadores. Qué número de trabajadores proporcionará mayores ingresos a la empresa?. COMERCIO Un comerciante vende cierto producto a 3 euros el kilogramo, para compras de hasta 10 kg; y a 2,50 euros el kilogramo, para compras superiores a esta cantidad. Escribe la función que relaciona el desembolso a realizar con el peso del producto, dibuja su gráfica y estudia sus características. Se dice que una función es continua en un punto si la gráfica de dicha función no presenta saltos en dicho punto. La gráfica de una función continua se puede dibujar sin levantar el lápiz del papel. Una función es discontinua en un punto si en dicho punto la gráfica presenta un salto. Para dibujar la gráfica de una función discontinua hay que levantar el lápiz del papel. EL TELÉFONO Para que comience a funcionar un teléfono público se necesita una moneda de 10 céntimos; al cabo de tres minutos, para continuar la comunicación, se tiene que introducir otra moneda de 10 céntimos que permite hablar durante los tres minutos siguientes, y así sucesivamente. Haz una gráfica que nos permita ver cómo varía el precio de una llamada telefónica (Y) según su duración (X). Es continua?. APARCAMIENTO En el aparcamiento de unos grandes almacenes figura la tarifa de precios siguiente: Primera y Segunda horas gratis Cada hora más o fracción, 0'89 euros Máximo 15 euros por 24 horas. Representa la gráfica de la función de da el coste del aparcamiento según el número de horas transcurridas. Es una función continua?. Página 9

10 PRECIOS Cierto artículo se vende a un precio u otro según la cantidad comprada, de acuerdo con estos datos: a 100 pts el kg si 0 x<5, a 90 pts el kg si 5 x<10, a 75 pts el kg si 10 x<20, a 55 pts el kg si 20 x, donde x es el peso en kg. Escribe la fórmula de la correspondiente función, represéntala gráficamente y estudia su continuidad. DESCUENTOS Un establecimiento comercial ofrece a sus clientes los siguientes descuentos: del 10 por 100 para compras de hasta diez mil pesetas; del 15 por 100 para compras superiores a esa cifra, hasta veinte mil pesetas; del 20 por 100 para compras superiores a veinte mil pesetas. Escribe la función correspondiente, dibuja la gráfica y estudia su continuidad. PISCINA El agua de una piscina se renueva cada seis horas de la siguiente forma: durante las cuatro primeras horas se va llenando lentamente, siempre al mismo ritmo, hasta alcanzar el máximo de su capacidad (6500 litros); permanece media hora totalmente cubierta y después se vacía más rápidamente en tan solo hora y media. Cuando está completamente vacia, vuelve a iniciarse el proceso automáticamente. Haz una gráfica tiempo-capacidad, que indique cómo cambia la cantidad de agua de la piscina durante veinticuatro horas. Una función es periódica cuando los valores que toma se van repitiendo cada cierto intervalo, que se llama período. y = f(x) es periódica de periodo T si y solo si f( x + T ) = f(x) siendo T el período INSTRUMENTOS MUSICALES El sonido emitido por cualquier instrumento musical produce vibraciones en las moléculas de aire, que pueden ser registradas mediante un aparato llamado oscilógrafo, donde aparece la gráfica de la función tiempo desplazamiento. Por este procedimiento se obtienen diversas gráficas que explican la diferente percepción, por parte del oído, de tales sonidos. Así, en la figura siguiente puedes ver la nota Do emitida por un clarinete y por un piano. Ambas gráficas tienen la particularidad de repetir una figura cada cierto tiempo, llamado período. El número de períodos por segundo se llama frecuencia. a) Cuánto vale la frecuencia en ambas gráficas?. b) En qué se diferencian ambas gráficas?. Página 10

11 LA NORIA Material: círculo graduado, regla, compás, cartabón, papel milimetrado, calculadora. Una noria de feria tiene un radio de 10 m y da una vuelta completa en 30 segundos. En la siguiente figura tienes una maqueta. A qué altura, por encima o por debajo de la recta r se encuentra un viajero que está sentado en una cabina según va variando el ángulo de giro?. a) Utilizando un círculo graduado completa la siguiente tabla y dibuja, en papel milimetrado, la gráfica ángulo altura durante la primera vuelta. Ángulo de giro 0º 15º 30º 45º 60º 90º 120º 150º 180º 225º 240º 270º 300º 330º 360º Altura (metros) Encima/Debajo b) Cómo será la gráfica en la segunda vuelta?. Y en las siguientes?. Dibuja aproximadamente un esbozo de la gráfica durante cinco vueltas. c) Cuál es el período y la frecuencia de este movimiento?. MAREA La siguiente tabla da la altura de la marea sobre el nivel medio del mar en el puerto de Valencia a lo largo de una parte del día (T = hora del día, H = altura sobre el nivel medio del mar): T H Dibuja, en papel cuadriculado o milimetrado, la gráfica de la función hora del día altura de la marea. A qué hora estaba más alta la marea?. A qué hora estaba más baja la marea?. Aproximadamente, cuál es el período?. Un barco puede salir del puerto cuando la altura de la marea es al menos de 3 6 m. Entre qué horas podrá abandonar el puerto?. Página 11

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado.

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Funciones EJERCICIOS 00 Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Expresión algebraica: y = x 3 x o f(x) = x

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS . FUNCINES EJERCICIS PRPUESTS. Un kilogramo de azúcar cuesta,0 euros. Completa la siguiente tabla que relaciona las magnitudes número de kilogramos y precio en euros. N.º de kilogramos 5 0 0 Precio,0 5,50..3

Más detalles

8 FUNCIONES: PROPIEDADES GLOBALES

8 FUNCIONES: PROPIEDADES GLOBALES 8 FUNCINES: PRPIEDADES GLBALES EJERCICIS PRPUESTS 8. Escribe las coordenadas de los puntos que aparecen en la figura. A D B C A( 3, 3) B(3, ) C(3, ) D( 3, 3) 8. Representa estos puntos en un eje de coordenadas.

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Interpretación de gráficas Se suelta un globo que se eleva y, al alcanzar cierta altura, estalla. La siguiente gráfica representa la altura, con el paso del tiempo, a la que se encuentra

Más detalles

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos.

Posteriormente el matemático suizo Leonard Euler (1707-1783) fue el primero que utilizó el símbolo y = f(x) en la forma que ahora lo utilizamos. Una función en matemáticas, es un término que se usa para indicar la relación entre dos o más magnitudes. El matemático alemán Gottfried Wilhelm Leibniz (1646-1716) fue el primero que utilizó el término

Más detalles

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido

Funciones y gráficas. Objetivos. Antes de empezar. 1.Funciones pág. 162 Concepto Tablas y gráficas Dominio y recorrido 9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar

Más detalles

FUNCIONES 2º ESO. x(nº de bolígrafos) y (Coste en )

FUNCIONES 2º ESO. x(nº de bolígrafos) y (Coste en ) FUNCIONES 2º ESO (1) (a) Representa los siguientes puntos: (6,-5), (6,-3), (6,0) y (6,3). (b) Idem. (-4,2), (-1,2), (0,2), (4,2) y (6,2). (c) Halla el simétrico respecto al eje de abscisas del punto (3,4).

Más detalles

x 0 1 2 3 4 y = 2x 0 2 4 6 8

x 0 1 2 3 4 y = 2x 0 2 4 6 8 Función lineal La función lineal es del tipo: y = mx Su gráfica es una línea recta que pasa por el origen de coordenadas. y = 2x x 0 1 2 3 4 y = 2x 0 2 4 6 8 1 Pendiente La pendiente es la inclinación

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 152

7Soluciones a los ejercicios y problemas PÁGINA 152 PÁGINA 5 Pág. P RACTICA Interpretación de gráficas En la gráfica siguiente viene representado el porcentaje de fumadores en España en los últimos años (parte roja), así como la previsión de cómo se supone

Más detalles

INTERPRETACIÓN DE GRÁFICAS

INTERPRETACIÓN DE GRÁFICAS INTERPRETACIÓN DE GRÁFICAS Ejercicio nº 1.- La siguiente gráfica representa una excursión en autobús de un grupo de estudiantes, reflejando el tiempo (en horas) y la distancia al instituto (en kilómetros):

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

8Soluciones a las actividades de cada epígrafe

8Soluciones a las actividades de cada epígrafe PÁGINA 128 Pág. 1 En una comarca hay una cierta especie de vegetal que se encuentra con frecuencia. Se ha estudiado la cantidad media de ejemplares por hectárea que hay a distintas alturas. El resultado

Más detalles

3ª Parte: Funciones y sus gráficas

3ª Parte: Funciones y sus gráficas 3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles

Formas de expresar la relación entre dos variables.

Formas de expresar la relación entre dos variables. 866 _ 00-06.qxd 7/6/08 : Página Funciones INTRDUCCIÓN RESUMEN DE LA UNIDAD La representación gráfica de las funciones es la forma más adecuada de entender la relación entre las variables. Estas gráficas

Más detalles

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente?

1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? UD 4 Funciones. Características globales 4º ESO (opción A) 1. Representa gráficamente las funciones f (x) =3x + 2 y g(x) = -3x + 2. De qué depende que una función lineal sea creciente o decreciente? 2.

Más detalles

LAS FUNCIONES ELEMENTALES

LAS FUNCIONES ELEMENTALES UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes

Más detalles

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no:

FUNCIONES. Ejercicios de autoaprendizaje. 1. De las siguientes gráficas indica cuáles representan función y cuáles no: FUNCIONES Recuerda: Una función es una correspondencia entre dos conjuntos (o relación entre magnitudes), de forma que cada elemento del conjunto inicial le corresponde sólo un elemento del conjunto final.

Más detalles

Funciones y gráficas

Funciones y gráficas Funciones y gráficas Contenidos 1. Relaciones funcionales Concepto y tabla de valores Gráfica de una función Imagen y antiimagen Expresión algebraica Relaciones no funcionales 2. Características de una

Más detalles

2. Escribe las coordenadas de los puntos. 3. Indica razonadamente cuáles de estas gráficas representan funciones.

2. Escribe las coordenadas de los puntos. 3. Indica razonadamente cuáles de estas gráficas representan funciones. TEMA 10: FUNCIONES CONCEPTO DE FUNCIÓN Una función es una relación entre dos variables, que llamaremos X e Y en la que a cada valor de X le hace corresponder un único valor de Y. X es la variable independiente

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

TEMA 4 FUNCIONES ELEMENTALES I

TEMA 4 FUNCIONES ELEMENTALES I Tema 4 Funciones elementales I Ejercicios resueltos Matemáticas B 4º ESO 1 TEMA 4 FUNCIONES ELEMENTALES I DEFINICIÓN DE FUNCIÓN EJERCICIO 1 : Indica cuáles de las siguientes representaciones corresponden

Más detalles

4Soluciones a los ejercicios y problemas PÁGINA 96

4Soluciones a los ejercicios y problemas PÁGINA 96 Soluciones a los ejercicios y problemas PÁGINA 96 Pág. P RACTICA Interpretación de gráficas Pepe y Susana han medido y pesado a su hijo, David, cada mes desde que nació hasta los meses. Estas son las gráficas

Más detalles

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción.

Recuerdas qué es? Constante de proporcionalidad Es el cociente de cualquiera de las razones que intervienen en una proporción. Recuerdas qué es? Coordenadas de un punto Un punto del plano viene definido por un par ordenado de números. La primera coordenada es la abscisa del punto, la segunda coordenada es la ordenada del punto.

Más detalles

Funciones y gráficas. Objetivos

Funciones y gráficas. Objetivos 8 Funciones y gráficas Objetivos En esta quincena aprenderás a: Conocer e interpretar las funciones y las distintas formas de presentarlas. Reconocer el dominio y el recorrido de una función. Determinar

Más detalles

CUADERNO Nº 10 NOMBRE: FECHA: / / Funciones lineales

CUADERNO Nº 10 NOMBRE: FECHA: / / Funciones lineales Funciones lineales Contenidos 1. Función de proporcionalidad directa Definición Representación gráfica 2. Función afín Definición Representación gráfica 3. Ecuación de la recta Forma punto-pendiente Recta

Más detalles

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

2 3º) Representar gráficamente la función: y (Junio 1996)

2 3º) Representar gráficamente la función: y (Junio 1996) 4 1º) Dada la función y. Calcula a) Dominio y punto de corte. b) Regiones y simetría. c) Monotonía y etremos. d) Asíntotas y gráfica. e) Recorrido y continuidad. http://www.youtube.com/watch?v=iazce_pvedq

Más detalles

Funciones y gráficas. Objetivos. Antes de empezar

Funciones y gráficas. Objetivos. Antes de empezar 9 Funciones y gráficas Objetivos En esta quincena aprenderás a: Reconocer si una relación entre dos variables es una función o no. Distinguir la variable independiente y la dependiente. Expresar una función

Más detalles

1 EL MOVIMIENTO Y SU DESCRIPCIÓN

1 EL MOVIMIENTO Y SU DESCRIPCIÓN EL MOVIMIENTO Y SU DESCRIPCIÓN EJERCICIOS PROPUESTOS. De una persona que duerme se puede decir que está quieta o que se mueve a 06 560 km/h (aproximadamente la velocidad de la Tierra alrededor del Sol).

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B septiembre de 1999 Parte General Apartado B Duración: 1 hora 30 minutos 1.- Un alumno ha obtenido 7,1 y 8,3 en las dos primeras evaluaciones de matemáticas. Qué nota debe sacar en la tercera evaluación

Más detalles

1º BACHILLERATO MATEMÁTICAS CCSS

1º BACHILLERATO MATEMÁTICAS CCSS PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA 9 FUNCINES DE PRPRCINALIDAD DIRECTA E INVERSA EJERCICIS PRPUESTS 9. Dibuja la gráfica de la función que eprese que el precio del litro de gasolina en los últimos 6 meses ha sido siempre de 0,967 euros.

Más detalles

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág.

Funciones. Objetivos. Antes de empezar. 1.Relaciones funcionales...pág. 204. 2.Representación gráfica...pág. 211. 3.Propiedades generales...pág. 11 Funciones. Objetivos En esta quincena aprenderás a: Comprender, distinguir y valorar el concepto de función Interpretar y relacionar tabla, gráfica y fórmula de una relación funcional Distinguir los

Más detalles

Problemas sobre la función afín

Problemas sobre la función afín Problemas sobre la función afín 1. Representar gráficamente las funciones: a. b. f(x) = 2x + 3 c. d. e. f. 2. Indicar pendiente y ordenada en el origen de las funciones afines siguientes: a. f(x) = 2-3x

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

CAPÍTULO VI. Funciones

CAPÍTULO VI. Funciones CAPÍTULO VI Funciones FUNCIONES 1. Indicar si las siguientes expresiones son o no funciones indicando razonadamente por qué. ( ) a) f : Z N : x x 2 + 1 b) f : Z R : x 1 x 2 c) La recta que pasa por los

Más detalles

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto

Tablas y gráficas. Objetivos. Antes de empezar. 1.Sistema de ejes coordenados pág. 178 Ejes cartesianos Coordenadas de un punto 11 Tablas y gráficas Objetivos En esta quincena aprenderás a: Representar puntos en el plano Calcular las coordenadas de un punto Construir e interpretar gráficas cartesianas Construir e interpretar tablas

Más detalles

11. Pruebas de acceso. a Ciclos Formativos

11. Pruebas de acceso. a Ciclos Formativos 11. Pruebas de acceso a Ciclos Formativos Ámbito científico 1. Septiembre 1997 2. Septiembre 1998 3. Septiembre 1999 4. Septiembre 2000 5. Junio 2001 6. Junio 2002 7. Mayo 2003 8. Mayo 2004 204 Pruebas

Más detalles

PÁGINA 149 PARA EMPEZAR. La mosca y la araña. La mosca de Descartes ha acabado posándose en un cuadro. Una araña la ve y va a por ella.

PÁGINA 149 PARA EMPEZAR. La mosca y la araña. La mosca de Descartes ha acabado posándose en un cuadro. Una araña la ve y va a por ella. Soluciones a las actividades de cada epígrafe PÁGINA 19 Pág. 1 PARA EMPEZAR La mosca y la araña La mosca de Descartes ha acabado posándose en un cuadro. Una araña la ve y va a por ella. B C D M A Describe

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Problemas de funciones para 2º E.S.O

Problemas de funciones para 2º E.S.O Problemas de funciones para 2º E.S.O 1º) Esboza una representación gráfica de las siguientes funciones: a) La altura a la que se encuentra el asiento de un columpio, al pasar el tiempo. b) La temperatura

Más detalles

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen TEMA 6 FUNCIONES 1.- Estudia y clasifica las relaciones que aparecen en las siguientes situaciones (elementos relacionados, características de la relación, dependencia entre elementos, conjuntos que se

Más detalles

Coordenadas cartesianas

Coordenadas cartesianas Matemáticas del día a día 1 Coordenadas cartesianas Un punto se representa en los planos o mapas con dos valores ordenados. Estos valores, normalmente, son dos números pero también pueden ser dos letras

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES 9 Funciones ACTIVIDADES INICIALES 9.I. Busca en internet cuáles son los precios que reciben los agricultores y ganaderos por cinco alimentos básicos, por ejemplo, leche, arroz, huevos, patatas y plátanos.

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

MATEMÁTICAS-EJERCICIOS DE RECUPERACION PENDIENTES 1º E.S.O. 2º BLOQUE. Nombre y Apellidos:

MATEMÁTICAS-EJERCICIOS DE RECUPERACION PENDIENTES 1º E.S.O. 2º BLOQUE. Nombre y Apellidos: TEMA 7. SISTEMA METRICO DECIMAL 1. 2. Para pasar de una medida de superficie inferior a otra inmediatamente superior: a) Se multiplica el resultado de la medida por 100. b) Se multiplica el resultado de

Más detalles

PÁGINA 131 PARA EMPEZAR. Una función para las oscilaciones de un péndulo

PÁGINA 131 PARA EMPEZAR. Una función para las oscilaciones de un péndulo Soluciones a las actividades de cada epígrafe PÁGINA 131 Pág. 1 PARA EMPEZAR Una función para las oscilaciones de un péndulo Representa en tu cuaderno las observaciones, en una cuadrícula como la que aquí

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x + EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS).- La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función del tiempo t, en horas, por la epresión: Tt t

Más detalles

10Soluciones a los ejercicios y problemas

10Soluciones a los ejercicios y problemas 0Soluciones a los ejercicios y problemas PÁGINA 6 Pág. P RACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valores como esta, y di cuál es el vértice

Más detalles

EJERCICIOS PROPUESTOS. a) En efecto, ya que a cada medida en centímetros le corresponde otra en pulgadas.

EJERCICIOS PROPUESTOS. a) En efecto, ya que a cada medida en centímetros le corresponde otra en pulgadas. 0 FUNCINES EJERCICIS PRPUESTS 0. Para pasar de centímetros a pulgadas se multiplica por y se divide por 5. a) Es una función? Escribe su epresión algebraica. c) Confecciona una tabla y representa la gráfica

Más detalles

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un Selectividad Andalucía Matemáticas Aplicadas a las Ciencias Sociales Bloque Funciones EJERCICIOS DE EXÁMENES DE SELECTIVIDAD ANDALUCÍABLOQUE FUNCIONES 1 JUNIO 014 OPCIÓN A La función de beneficios f en

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

7Soluciones a las actividades de cada epígrafe PÁGINA 142

7Soluciones a las actividades de cada epígrafe PÁGINA 142 PÁGINA 142 Pág. 1 Las representaciones gráficas de las funciones son una forma muy sencilla y visual de describir muchos fenómenos de la vida cotidiana. Por ejemplo, la temperatura del agua con la que

Más detalles

Funciones. El Diario. La gripe española. LA VERDAD Muertes anuales por gripe

Funciones. El Diario. La gripe española. LA VERDAD Muertes anuales por gripe Funciones La gripe española Salamanca, 98. Dos enfermeras, una de ellas con evidentes signos de agotamiento, realizaban el cambio de turno en el hospital. La enfermera saliente, Carmen, le daba unas pautas

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página Completa la siguiente tabla: Nº- de vídeos 0 6 7 8 9 0 Coste no socios 0, 7, 0, 7, 0, Coste socios 6 7 8 9 0 Completa en tu cuaderno la gráfica de la derecha, representando los resultados con

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

10 PROPIEDADES DE LAS FUNCIONES

10 PROPIEDADES DE LAS FUNCIONES 0 PRPIEDADES DE LAS FUNCINES PARA EMPEZAR Copia y completa la tabla, y representa la gráfica de la función. Se trata de una función continua? Figura 3 4 5 N.º de puntos f() hace corresponder a cada natural

Más detalles

BLOQUE III Funciones

BLOQUE III Funciones BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica

Más detalles

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1º) El perímetro de un triángulo isósceles mide 15 cm. El lado desigual del triángulo es la mitad de cada uno de los lados iguales. Halla la longitud de cada uno

Más detalles

Proporcionalidad. 1. Calcula:

Proporcionalidad. 1. Calcula: Proporcionalidad 1. Calcula:. Resuelve los siguientes problemas: a. Tres kilos de naranjas cuestan,4. Cuánto cuestan dos kilos? b. Seis obreros descargan un camión en tres horas. Cuánto tardarán cuatro

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

PRACTICO 2: Funciones Noviembre 2011

PRACTICO 2: Funciones Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO : Funciones Noviembre 011 Ejercicio 1.- Reescriba las oraciones que siguen usando la palabra función. (a) El impuesto

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 170

8Soluciones a los ejercicios y problemas PÁGINA 170 PÁGINA 70 Pág. P RACTICA Representación de rectas Representa las rectas siguientes: a) y b) y c) y d) y c) b) a) d) Representa estas rectas: c) a) y 0,6 b) y c) y, d) y d) a) b) Representa las rectas siguientes,

Más detalles

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos:

TEMA 8: FUNCIONES. Para establecer correctamente la relación que supone una función se pueden utilizar varios métodos: TEMA 8: FUNCIONES Una función es una relación entre dos magnitudes, x e y, que asigna a cada valor de x, un único valor de y. Estas magnitudes reciben el nombre de variables, siendo x la variable independiente,

Más detalles

Por ejemplo si a = 1 y c = 2 obtenemos y x 2 2. 2 1, su gráfico es el mismo que el de. En general, a partir del gráfico de

Por ejemplo si a = 1 y c = 2 obtenemos y x 2 2. 2 1, su gráfico es el mismo que el de. En general, a partir del gráfico de Caso 3: En la ecuación general a b c, a 0 b 0, obtenemos a c, a 0. 10 = + = 8 6 4 = -1 3 - -1 1 3-1 Por ejemplo si a = 1 c = obtenemos. El gráfico de, es el mismo que el de desplazado unidades hacia arriba.

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

A) Posición, velocidad, desplazamiento, espacio recorrido: MRU

A) Posición, velocidad, desplazamiento, espacio recorrido: MRU A) Posición, velocidad, desplazamiento, espacio recorrido: MRU 1.- Un móvil se mueve sobre un plano horizontal de la siguiente forma: primero 5 m hacia el norte, a continuación 3 m al oeste, seguido de

Más detalles

PROBLEMAS de EDADES. 5. Un padre tiene 42 años y su hijo 7. Dentro de cuánto tiempo la edad del hijo será la cuarta parte de la del padre?

PROBLEMAS de EDADES. 5. Un padre tiene 42 años y su hijo 7. Dentro de cuánto tiempo la edad del hijo será la cuarta parte de la del padre? PROBLEMAS de EDADES 1. Cuatro alumnos tienen juntos 50 años. Hallar sus edades respectivas sabiendo que cada uno tiene 3 años más que el que le sigue en edad. 2. Preguntado un padre por la edad de su hijo,

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS Y. Representa en los mismos ejes las siguientes funciones: y = - ; b) y = ; c) y = +. Representa

Más detalles

Funciones racionales, irracionales, exponenciales y logarítmicas

Funciones racionales, irracionales, exponenciales y logarítmicas Funciones racionales, irracionales, eponenciales y logarítmicas. Funciones racionales Despeja y de la epresión y = 6. Qué tipo de función es? P I E N S A C A L C U L A 6 y = Es una función racional que

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

4 Ecuaciones y sistemas

4 Ecuaciones y sistemas Solucionario Ecuaciones y sistemas ACTIVIDADES INICIALES.I. Comprueba si las siguientes ecuaciones tienen como soluciones,,. a) 0 b) 5 () 8 a) 0 () () es solución. 0 8 9 6 0 6 0 0 9 5 5 6 5 es solución.

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. PÁGINA 8 Con los datos de la ilustración, calcula la distancia que recorre cada vehículo en una hora. Coche de caballos en min 0 km en 0 min Coche utilitario

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

EJERCICIOS PROPUESTOS. Halla el dominio y el recorrido de estas funciones. a) f (x) 3x 1 b) g(x) x c) h(x) x 3

EJERCICIOS PROPUESTOS. Halla el dominio y el recorrido de estas funciones. a) f (x) 3x 1 b) g(x) x c) h(x) x 3 0 FUNCINES EJERCICIS PRPUESTS 0. Halla el dominio y el recorrido de estas funciones. a) f () b) g() c) h() a) D(f) R; Recorrido (f) R b) D(g) R; Recorrido (g) [0, ) c) D(h) R; Recorrido (h) R 0. 0. Calcula

Más detalles

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen.

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen. Puntos de corte - Monotonía y Curvatura funciones simples Septiembre 2015 - Opción B Sea la función f() = 3 9 2 + 8 a) (1.7 puntos) Halle las coordenadas de sus etremos relativos y de su punto de infleión,

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16

IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16 IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: FUNCIONES Y GRÁFICAS: 1. Ricardo ha quedado con sus amigos para dar una vuelta

Más detalles

ACTIVIDADES SOBRE FUNCIONES. 3º ESO

ACTIVIDADES SOBRE FUNCIONES. 3º ESO CTIVIDDES SORE FUNCIONES. 3º ESO 1.- Las siguientes gráficas describen a dos aviones ligeros, y. La primera gráfica muestra que el avión es más caro que el. Qué otras informaciones podemos sacar de ella?

Más detalles

5 8 8 22.50 ; 5 x 8 22.50; x 36 22.50 x

5 8 8 22.50 ; 5 x 8 22.50; x 36 22.50 x 1 de 7 MAGNITUDES DIRECTAMENTE PROPORCIONALES Ejemplo 1: Un saco de patatas pesa 20 kg. Cuánto pesan 2 sacos? Un cargamento de patatas pesa 520 kg. Cuántos sacos se podrán hacer? CASO 3 Nº sacos 1 2 y

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q(x) en Kg) depende de la temperatura x (ºC) según la expresión. a) Calcula razonadamente cuál es la temperatura óptima

Más detalles

11 FUNCIONES POLINÓMICAS Y RACIONALES

11 FUNCIONES POLINÓMICAS Y RACIONALES FUNCINES PLINÓMICAS RACINALES EJERCICIS PRPUESTS. Estudia y representa la siguiente función cuadrática: f(). Es una parábola con las ramas hacia arriba, pues a 0. El vértice es el punto V, 5 8. El eje

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

13 FUNCIONES LINEALES Y CUADRÁTICAS

13 FUNCIONES LINEALES Y CUADRÁTICAS 3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PRPUESTS 3. Indica cuáles de las siguientes funciones son lineales. a) y 5 d) y 0,3x ) y 0,04 3x e) y x c) y x f) y 0,5x Son lineales a,, d y f. 3. Expresa cada

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Máximo o mínimo de una función

Máximo o mínimo de una función Análisis: Máimos, mínimos, optimización 1 MAJ00 Máimo o mínimo de una función 1. Dados tres números reales cualesquiera r 1, r y r, hallar el número real que minimiza la función D( ) ( r ) ( r ) ( r 1

Más detalles