Tema 21. Exponencial de una matriz Formas canónicas de Jordan.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 21. Exponencial de una matriz Formas canónicas de Jordan."

Transcripción

1 Tema 21 Exponencial de una matriz En este tema vamos a definir y calcular la exponencial de una matriz cuadrada mediante una expresión formalmente análoga al desarrollo en serie de potencias de la exponencial real Para calcular esta exponencial vamos a utilizar la forma canónica de Jordan de la matriz, lo que también nos permite desarrollar un procedimiento para el cálculo de la potencia de una matriz 211 Formas canónicas de Jordan Si A es diagonalizable existe P no singular tal que P 1 AP D, con D diagonal De esta forma, A PDP 1 y se tiene que A m PD m P 1 Cuando estamos interesados en calcular las potencias de una matriz y ésta no es diagonalizable buscamos una expresión de la matriz que nos permita operar de forma sencilla Esta expresión va a ser la forma canónica de Jordan y para obtener la base en la cual se expresa necesitamos ampliar el concepto de autovector Definición 211 Sean A M n n (R) una matriz cuadrada y λ i un autovalor de multiplicidad m i H k (λ i ) {u R n /(A λ i I) k u } con k N es un subespacio vectorial de R n cuyos elementos reciben el nombre de autovectores generalizados de orden k Estos subespacios forman una cadena creciente en la que H (λ i ) es el vector cero y H 1 (λ i ) el subespacio de autovectores asociado a λ i Siempre existe un orden a partir del cual la cadena no crece más, de forma que la dimensión del mayor subespacio de la cadena coincide con la multiplicidad del autovalor 535

2 Bloque VI ÁLGEBRA AMPLIADA Proposición 212 Sean A M n n (R) una matriz cuadrada y λ i un autovalor de multiplicidad m i H (λ i ) {θ} y H 1 (λ i ) H(λ i ) H k (λ i ) H k+1 (λ i ) k N Existe k i N tal que k k i dim(h k (λ i )) m i La forma canónica de Jordan de una matriz se estructura en cajas, que son submatrices cuadradas de un orden menor, de forma que obtenemos una matriz diagonal por cajas (no es realmente diagonal) Definición 213 Sea A M n n (R) una matriz cuadrada y λ un autovalor Una caja de Jordan de orden k asociada a λ es una matriz de orden k formada por el autovalor en la diagonal principal, unos en la diagonal inmediatamente superior y ceros en el resto λ 1 λ 1 λ 1 ( ) λ 1 J λ J J λ λ 1 J λ λ λ Una forma canónica de Jordan de orden n es una matriz J M n n (R) diagonal por cajas en la que las cajas, J i, son cajas de Jordan Es decir, J J 1 θ θ θ J 2 θ θ θ J k Cuando la matriz es diagonalizable su forma de Jordan es la correspondiente matriz diagonal en la que todas las cajas son de orden 1 De modo que las formas de Jordan son generalizaciones de las matrices diagonales, con la ventaja de que toda matriz tiene una forma canónica semejante Teorema 214 Sea A M n n (R) una matriz cuadrada Existe una matriz no singular P M n n (R) tal que P 1 AP J donde J es una forma de Jordan con tantas cajas como autovectores independientes tiene A Proyecto MATECO 21 Página 536

3 TEMA 21 EXPONENCIAL DE UNA MATRIZ Teorema 215 (Estructura por cajas de la forma canónica de Jordan) Sea A una matriz cuadrada El número de cajas asociadas a un autovalor es la dimensión de su subespacio de autovectores La suma de los ordenes de las cajas asociadas al autovalor es la multiplicidad del autovalor El número de cajas asociadas al autovalor que hay de cada orden recibe el nombre de partición de multiplicidad del autovalor y se obtiene a través de la cadena H (λ i ) H 1 (λ i ) H 2 (λ i ) H ki 1(λ i ) H ki (λ i ) donde k i N es el primer k tal que dim(h k (λ i )) m i Teorema 216 (Partición de multiplicidad de un autovalor en la forma canónica de Jordan) Sea A una matriz cuadrada El número de cajas de orden mayor o igual que i asociadas al autovalor λ i es d i dim(h i (λ)) dim(h i 1 (λ)) i 1,, k i El número de cajas de orden i asociadas al autovalor λ i es c ki d ki c i d i d i+1 i k i 1,, 1 Teorema 217 (Autovectores generalizados de la forma canónica de Jordan) Sea A una matriz cuadrada A cada caja de orden k asociada a un autovalor λ i le corresponde un conjunto linealmente independientes de k autovectores generalizados pertenecientes a H k (λ i ) cumpliendo: (A λ i I) u 1 θ u 1 H 1 (λ i ) \ H (λ i ) (A λ i I) u 2 u 1 u 2 H 2 (λ i ) \ H 1 (λ i ) (A λ i I) u k u k 1 u k H k (λ i ) \ H k 1 (λ i ) Ejercicio 218 Obtener, junto con la matriz de paso, la forma canónica de A Página 537 Proyecto MATECO 21

4 Bloque VI ÁLGEBRA AMPLIADA Solución La ecuación característica de A es: A λi λ 3 + 6λ 2 12λ + 8 El único autovalor se obtiene resolviendo la ecuación característica: λ 2 m 3 La estructura de las cajas asociadas al autovalor es: Como dim(h(2)) 3 rg(a 2I) 1 entonces hay una caja asociada a λ 2 Como m 3 entonces la suma de los ordenes de las cajas asociadas a λ 2 es tres Por tanto la forma de Jordan estará formada por una única caja de orden tres (en casos más complicados es necesario recurrir a la partición de multiplicidad para determinar tanto el número como el tipo de cajas) Para la única caja de orden 3 obtenemos el correspondiente conjunto de autovectores generalizados En primer lugar construimos la cadena de subespacios El subespacio de autovectores asociado a λ 2, H(2), es: (A 2I) X θ Como dim(h 1 (2)) 1 m(2) continuamos con la cadena El subespacio de autovectores de orden dos asociado a λ 2, H 2 (2), es: 2 (A 2I) 2 X θ 2 Como dim(h 2 (2)) 2 m(2) continuamos con la cadena El subespacio de autovectores de orden tres asociado a λ 2, H 3 (2), es: (A 2I) 3 X θ Como dim(h 3 (2)) 3 hemos terminado con la cadena Se obtiene una base de H 3 (2) y se elige un vector u 3 que no esté en H 2 (2) Proyecto MATECO 21 Página 538

5 TEMA 21 EXPONENCIAL DE UNA MATRIZ si tomamos como base de H 3 (2) la base canónica, el único vector que no está en H 2 (2) es u 3 (1,, ) Aunque en este caso sólo tenemos una caja, en general se comienza por las cajas de mayor orden y también se exige que el vector sea linealmente independiente con otros vectores del subespacio obtenidos para cajas previas Se obtienen el resto de vectores correspondientes a la caja: u 2 (A 2 I) u 3 u 1 (A 2 I) u El conjunto de autovectores generalizados independientes correspondiente a la caja es B {( 2, 2, ), (1, 1, ), (,, 1)} Como sólo tenemos una caja el conjunto de autovectores generalizados linealmente independientes correspondiente a la caja es una base de R 3 y las coordenadas de los vectores son las columnas de la matriz de paso El conjunto de vectores {v 1, v 2, v 3 } está formado por un autovector, v 1, por un autovector generalizado de orden dos, v 2, y por un autovector generalizado de orden tres, v 3 La forma de Jordan correspondiente a la única caja es J P 1 A P P Potencia de una matriz cuadrada 2 J P 1 A P Si A es diagonalizable existe P no singular tal que P 1 AP D, con D diagonal De esta forma, A PDP 1 y se tiene que A m PD m P 1 Si A no es diagonalizable existe P no singular tal que P 1 AP J, con J su forma canónica de Jordan De esta forma, A PJP 1 y se tiene que A k PJ k P 1 Página 539 Proyecto MATECO 21 2

6 Bloque VI ÁLGEBRA AMPLIADA Para calcular J k se descompone J como J D + J, con D la diagonal principal de J y J igual que J pero con ceros en diagonal principal (J J D), y se aplica el binomio de Newton Nota J m (D + J ) m ( ) m D m + ( ) ( ) m m D m 1 J D m 2 J Existe una potencia de J a partir de la cual las potencias sucesivas son cero (este tipo de matrices reciben el nombre de matrices nilpotentes) Nota Si la forma canónica está descompuesta en cajas J 1 J 2 (J 1 D 1 ) m (J 2 D 2 ) m J (J D) m J r (J r D r ) m Ejercicio 219 Calcular A k con A Solución En primer lugar obtenemos su forma de Jordan: La ecuación característica de A es: A λi λ 3 + 5λ 2 8λ + 4 con λ La estructura de las cajas asociadas a los autovalores es λ 1 1 m 1 λ 2 2 m 2 Como λ 1 1 tiene multiplicidad m 1 tiene asociada una caja de dimensión 1 Como dim H(2) 3 rg(a 2I) 1 hay una caja asociada a λ 2 y como tiene multiplicidad m 2 la única caja tiene orden 2 La forma de Jordan es 1 J Obtenemos el correspondiente conjunto de autovectores generalizados Proyecto MATECO 21 Página 54

7 TEMA 21 EXPONENCIAL DE UNA MATRIZ Para el autovalor λ 1 1, el subespacio de autovectores asociado, H(1), es: (A I) X θ en el que, resolviendo el sistema correspondiente, podemos tomar como autovector v 1 (2, 1, 2) Para el autovalor λ 2 2, necesitamos construir la cadena de subespacios el subespacio de autovectores asociado a λ 2, H(2), es: (A 2I) X θ El subespacio de autovectores de orden dos asociado a λ 2, H 2 (2), es: (A 2I) 2 X θ Como dim H 2 (2) 3 rg(a 2I) 2 2 m(2) hemos terminado con la cadena y obtenemos una base de H 2 (2) (ejercicio) De la base de H 2 (2) tomamos un vector que no pertenezca a H 1 (2), por ejemplo v 3 (1, 2, ), y el otro vector de la caja es v 2 (A 2I)v 3 ( 12, 3, 9) (estos vectores no se pueden simplificar ya que están relacionados entre si) El conjunto de autovectores generalizados correspondiente a la forma de Jordan está formado por un autovector asociado a λ 1 1, v 1, por un autovector asociado a λ 2 2, v 2, y por un autovector generalizado de orden dos asociado a λ 2 2, v 3 : B {(1, 2, ), (2, 1, 2), ( 12, 3, 9)} La forma de Jordan correspondiente es J P 1 A P Página 541 Proyecto MATECO 21

8 Bloque VI ÁLGEBRA AMPLIADA Se calcula J k P Descomponemos J como J D + J, con D que J pero con ceros en diagonal principal 1 J P 1 A P ( ) 1 2 la diagonal principal de J y J 2 ( ) 1 igual Se aplica el binomio de Newton teniendo en cuenta que J 2 y sus potencias sucesivas son cero, Jk (D + J ) k ( ) k D k + ( k 1) D k 1 J 1 : J k 2 k 2 k + k 2 k 1 2 k k k2 k 1 2 k Como A PJP 1 se tiene 2 k (2k + 5) 4 2 k+1 (2k + 1) k+1 (2k + 3) A k PJ k P 1 2 k 1 (k + 4) 2 2 k (k + 2) k (k + 3) 2 k 1 (3k + 8) 4 2 k (3k + 2) k (3k + 5) 213 Exponencial de una matriz cuadrada La exponencial de una matriz cuadrada, A M n (R) se define mediante la misma serie que la exponencial real Definición 211 Si A M n (R) Se define la exponencial de la matriz A como e A 1 k! Ak I + A + 1 2! A ! A3 + k Nota La sucesión de sumas parciales de esta serie es una sucesión de Cauchy con la norma matricial y, por tanto, la serie es convergente Nota (Propiedades de la exponencial) a) Si A y B conmutan respecto a la multiplicación e A e B e B e A e A+B (en general no se cumple la igualdad) Proyecto MATECO 21 Página 542

9 TEMA 21 EXPONENCIAL DE UNA MATRIZ b) Si f (t) e ta entonces f (t) Ae ta e ta A c) e A es la matriz inversa de e A (por tanto la matriz e A es siempre regular) d) Si A PJP 1 entonces e A Pe J P 1 (la propiedad es válida tanto si J es la forma canónica de Jordan como si es otra matriz) Nota (Cálculo de e A ) Para su cálculo basta con calcular e J Si A es diagonalizable existe P no singular tal que P 1 AP D, con D diagonal, y al ser A PJP 1 tenemos e A Pe D P 1 En este caso λ 1 e λ 1 D λ 2 λ n e D e λ 2 e λ n Si A no es diagonalizable entonces existe P no singular tal que P 1 AP J, con J su forma canónica de Jordan, y al ser A PJP 1 tenemos que e A procedimiento para calcular e J Pe J P 1 Por tanto, sólo nólo necesitamos un Análogamenta a la sección anterior descomponemos J como J D + J y, al ser e J e D+J e D e J, sólo faltaría calcular e J teniendo en cuenta que J es nilpotente y que, por tanto, existe r natural tal r que J r Θ y su desarrollo en serie es finito ej 1 k! Jk Nota Si J 1, J 2,, J k son las k cajas que constituyen la forma canónica de Jordan k J 1 J 2 e J 1 J e J e J 2 J r e J r Nota La exponencial de una caja de Jordan es λ 1 e λ λ 1 J λ e J e λ e λ (n 3)! λ e λ eλ 1! e λ e λ 2! (n 1)! e λ eλ 1! e λ (n 2)! Página 543 Proyecto MATECO 21

10 Bloque VI ÁLGEBRA AMPLIADA Ejercicio 2111 Obtener la exponencial de la siguiente matriz 3 1 A Solución Calculamos la forma canónica de la matriz La ecuación característica de A es: A λi (3 λ) 3 cuyo único autovalores es λ 3 con m(3) 3 La estructura de las cajas asociadas al autovalor es: Como dim(h(3)) 3 rg(a 2I) 2 entonces hay dos cajas asociadas a λ 3 Como m(3) 3 entonces la suma de los ordenes de las cajas asociadas a λ 3 es tres Por tanto la forma de Jordan estará formada por dos cajas, una de orden 2 y otra de orden 1 3 J Obtenemos los autovectores generalizados asociados a λ 3 En primer lugar, necesitamos construir la cadena de subespacios El subespacio de autovectores asociado a λ 3, H(3), es: 1 (A 3I) X θ 2 como dim H(3) 3 rg(a 3I) 2 m(3) continuamos con la cadena El subespacio de autovectores de orden dos asociado a λ 3, H 2 (3), es: (A 3I) 2 X θ Como dim H 2 (3) 3 rg(a 3I) 2 3 m(3) hemos terminado con la cadena Proyecto MATECO 21 Página 544

11 TEMA 21 EXPONENCIAL DE UNA MATRIZ Al ser H 2 (3) R 3 tomamos como base de H 2 (3) la base canónica de R 3 y elegimos un vector que esté en H 2 (3) y no esté en H(3): el tercer vector es este vector de H 2 (3) v 3 (, 1, ) el segundo vector es el vector de H(3) v 2 (A 3 I) v 3 ( 1,, 2) el primer vector es un vector de H(3) que tiene que ser independiente con v 2 v 1 (1,, ) El conjunto de autovectores y autovectores generalizados correspondiente a la caja está formado por dos autovectores, v 1 y v 2, y por un autovector generalizado de orden dos, v 3 B {(1,, ), ( 1,, 2), (, 1, )} La forma de Jordan correspondiente es J P 1 A P con 1 1 P 1 J P 1 A P Calculamos la exponencial de J ( ) ) J 1 3 e J 1 (e 3 e J 2 3 e 3 e3 ej 2 1! e 3 e 3 e 3 J e 3 e 3 e 3 e 3 La exponencial de A es e 3 e 3 e A Pe J P 1 e 3 2e 3 e 3 Página 545 Proyecto MATECO 21

12

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n A = a 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN

CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN CAPÍTULO 5: AUTOVALORES Y AUTOVECTORES, FORMA CANÓNICA DE JORDAN 5.1- Definición: matrices semejantes. Se dice que dos matrices A y B son semejantes si existe una matriz regular P tal que se verifica B

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n a A = 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n a A = 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

Curso Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones

Curso Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Tema 5. ÁLGEBRA Diagonalización. Curso 217-218 José Juan Carreño Carreño Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones Escuela Técnica Superior de Ingeniería

Más detalles

Formas canónicas reales

Formas canónicas reales Capítulo 7 Formas canónicas reales Introducción Sea V un espacio vectorial sobre C, f End(V y M B (f = A M(n n Sea λ = a + bi es una autovalor complejo de f de multiplicidad m Para tal autovalor complejo

Más detalles

Álgebra Lineal. Tema 7. La forma canónica de Jordan

Álgebra Lineal. Tema 7. La forma canónica de Jordan Álgebra Lineal Tema 7 La forma canónica de Jordan Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J S ALAS, A T ORRENTE Y EJS V ILLASEÑOR Índice

Más detalles

2.7 Aplicaciones del Teorema de Jordan

2.7 Aplicaciones del Teorema de Jordan 26 Álgebra lineal 27 Aplicaciones del Teorema de Jordan En esta sección seguimos suponiendo que K C Endomorfismos y matrices nilpotentes Definición Decimos que una matriz A M n (C es nilpotente si existe

Más detalles

Diagonalización de matrices

Diagonalización de matrices Diagonalización de matrices María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I M. Muñoz (U.P.C.T.) Diagonalización de matrices Matemáticas I 1 / 22 Valores y vectores propios de una matriz Definición

Más detalles

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}.

Proposición Sea V un espacio vectorial sobre K de dimensión n y B una base de V. Gl(n, K) = {A M(n n, K) A = 0}. Tema 6 Formas canónicas 6.1 Introducción Proposición 6.1.1. Sea V un espacio vectorial sobre K de dimensión n y B una base de V. La aplicación Φ B : End(V ) M(n n, K) definida por Φ B (f) = M B (f), es

Más detalles

Tema 7. El espacio vectorial R n Conceptos generales

Tema 7. El espacio vectorial R n Conceptos generales Tema 7 El espacio vectorial R n. 7.1. Conceptos generales Un vector es un segmento orientado que queda determinado por su longitud, dirección y sentido. Sin embargo, desde el punto de vista del Álgebra,

Más detalles

Tema 3: Forma canónica de Jordan de una matriz.

Tema 3: Forma canónica de Jordan de una matriz. Forma canónica de Jordan de una matriz 1 Tema 3: Forma canónica de Jordan de una matriz. 1. Planteamiento del problema. Matrices semejantes. Matrices triangularizables. El problema que nos planteamos en

Más detalles

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K Sesión 8: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K ) Calculamos los valores propios de A y sus multiplicidades algebraicas con: d A λ = det A λi nxn = Si d A

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

Ejercicios resueltos del capítulo 4

Ejercicios resueltos del capítulo 4 Ejercicios resueltos del capítulo 4 Ejercicios impares resueltos..a Calcular los autovalores y subespacios invariantes asociados a la matriz: A = Calculamos el polinomio característico y resolvemos: λ

Más detalles

Geometría afín y proyectiva, 2016 SEMANA 4

Geometría afín y proyectiva, 2016 SEMANA 4 Geometría afín y proyectiva, 2016 SEMANA 4 Sonia L. Rueda ETS Arquitectura. UPM September 30, 2016 Geometría afín y proyectiva 1. Álgebra Lineal 2. Geometría afín y eucĺıdea 3. Cónicas y cuádricas Álgebra

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

Solución de problemas I 1

Solución de problemas I 1 Universidad Autónoma de Madrid Álgebra II. Físicas. Curso 5 6 Solución de problemas I Álgebra II Curso 5-6. Proyecciones en el producto escalar estándar Ejercicio 7.7. (a) Dada la ecuación x + y z, dar

Más detalles

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS

1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS 1 1. DIAGONALIZACIÓN Y FORMAS CANÓNICAS Sea f : V V un endomorfismo de V, f End(V, con V un K-espacio vectorial de dimensión n, y sean B = {e 1,..., e n } B = {e 1,..., e n} bases de V. La matriz de f

Más detalles

4. Endomorfismos. 2 Autovalores y autovectores. 1 Introducción. 2.1 Definición y propiedades. 2.2 Subespacios característicos.

4. Endomorfismos. 2 Autovalores y autovectores. 1 Introducción. 2.1 Definición y propiedades. 2.2 Subespacios característicos. Tema III Capítulo 4 Endomorfismos Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 4 Endomorfismos 1 Introducción Vimos en el capítulo anterior que un endomorfismo es una aplicación

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 8. Valores y vectores propios. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 8. Valores y vectores propios Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR

Más detalles

Estadística III Repaso de Algebra Lineal

Estadística III Repaso de Algebra Lineal Repaso de Algebra Lineal Vectores Un vector columna de dimensión n 1 es una serie de números dispuestos como sigue: x 1 x 2 x =. x n Un vector fila de dimensión 1 p es una serie de números dispuestos como

Más detalles

Descomposición en forma canónica de Jordan (Segunda versión)

Descomposición en forma canónica de Jordan (Segunda versión) Descomposición en forma canónica de Jordan (Segunda versión) Francisco J. Bravo S. 1 de septiembre de 211 En esta guía se presentan los resultados necesarios para poder construir la forma de Jordan sin

Más detalles

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS

RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS RESUMEN DEL TEMA 7 VALORES Y VECTORES PROPIOS 1. Determinantes El determinante de una matriz cuadrada n n A = a 21 a 22 a 2n a n1 a n2 a nn es un número real, y se representa por: A = a 21 a 22 a 2n a

Más detalles

5. Aplicaciones Lineales

5. Aplicaciones Lineales Contents 5 Aplicaciones Lineales 2 5.1 Aplicaciones lineales. Definición y propiedades........................ 2 5.2 Núcleo e Imagen.................................................... 3 5.3 Descomposición

Más detalles

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES

CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 MATRICES CONTENIDOS MATEMÁTICAS II SEGUNDA EVALUACIÓN CURSO 2017/2018 Unidades: - Matrices (Bloque Álgebra) - Determinantes (Bloque Álgebra) - Sistemas de ecuaciones lineales (Bloque Álgebra) - Vectores (Bloque

Más detalles

DIAGONALIZACIÓN DE MATRICES

DIAGONALIZACIÓN DE MATRICES Tema 2 DIAGONALIZACIÓN DE MATRICES 2.1. Introducción El álgebra matricial proporciona herramientas elementales para simplificar y resolver problemas donde intervienen un número elevado de datos. El siguiente

Más detalles

A = En los casos afirmativos, hallar una forma diagonal D y obtener una matriz invertible real P M(3, 3) tal que P 1 AP = D.

A = En los casos afirmativos, hallar una forma diagonal D y obtener una matriz invertible real P M(3, 3) tal que P 1 AP = D. 22 Departamento de Álgebra. Universidad de Sevilla Tema 5. Sección 1. Endomorfismos. Endomorfismos diagonalizables. Ejercicio 5.1 Dadas las matrices complejas: 3 2 0 2 3 0, B = 0 0 5 14 1 12 13 0 12 17

Más detalles

Formas canónicas de Jordan

Formas canónicas de Jordan Capítulo 6 Formas canónicas de Jordan 61 Subespacios propios generalizados Introducción En el capítulo anterior se han estudiado los endomorfismos diagonalizables y se han dado condiciones necesarias y

Más detalles

ÁLGEBRA LINEAL Problemas, 2006/2007

ÁLGEBRA LINEAL Problemas, 2006/2007 ÁLGEBRA LINEAL Problemas, 2006/2007 Nota: si no se especifíca lo contrario suponemos que las matrices y espacios vectoriales están definidos sobre un cuerpo K arbitrario 1 Una matriz A de orden n n se

Más detalles

2.5 Teorema de Jordan

2.5 Teorema de Jordan Capítulo 2/ Forma canónica de Jordan (Versión 13-03-2015) 15 2.5 Teorema de Jordan En esta sección queremos abordar ya el caso general de un endomorfismo f : V V cualquiera (no necesariamente con un único

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

Forma canónica de Jordan.

Forma canónica de Jordan. Práctica 3 Forma canónica de Jordan. Contenido: Matrices semejantes. Polinomio característico. Valores propios. Vectores propios. Forma canónica de Jordan. Forma real de la forma canónica de Jordan. Aplicaciones:

Más detalles

Cálculo de una base de Jordan

Cálculo de una base de Jordan Cálculo de una base de Jordan Exponemos un método bastante autocontenido para hallar la forma canónica de Jordan de una matriz A K n n y la correspondiente matriz de cambio. Método 1. Hallamos los valores

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales.

Capítulo V. Valores y vectores propios. Diagonalización de operadores lineales. Capítulo V Valores y vectores propios. Diagonalización de operadores lineales. Hemos visto que la aplicaciones lineales de en están definidas a través de una expresión de la forma ; pero esta fórmula puede

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán

Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III. Ana Isabel Garralda Guillem y Manuel Ruiz Galán MATEMÁTICAS TICAS I Grado en Edificación MATERIAL DOCENTE: PRESENTACIÓN DEL TEMA III Ana Isabel Garralda Guillem y Manuel Ruiz Galán Tema. Diagonalización de matrices.1. Diagonalización de matrices por

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Matemáticas Empresariales II. Diagonalización de Matrices

Matemáticas Empresariales II. Diagonalización de Matrices Matemáticas Empresariales II Lección 6 Diagonalización de Matrices Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales II 1 / 25 Introducción Sea f un endomorfismo,

Más detalles

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas.

TEMA 11. Autovalores y autovectores. Diagonalización y formas canónicas. TEMA 11 F MATEMÁTICOS TEMA 11 Autovalores y autovectores Diagonalización y formas canónicas 1 Introducción Definición 1 (Matrices semejantes) Sean A y B dos matrices cuadradas de orden n Decimos que A

Más detalles

Diagonalización de Endomorfismos

Diagonalización de Endomorfismos Tema 5 Diagonalización de Endomorfismos 5.1 Introducción En este tema estudiaremos la diagonalización de endomorfismos. La idea central de este proceso es determinar, para una aplicación lineal f : E E,

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

1. W = {(x, y, z) x + y + z =0} 2. W = {(x, y, z) x 2 + y 2 + z 2 =1} Solución:

1. W = {(x, y, z) x + y + z =0} 2. W = {(x, y, z) x 2 + y 2 + z 2 =1} Solución: ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Fundamentos Matemáticos de Ingeniería T. I. Electrónica y Eléctrica Primer Parcial (--4), primera parte. PROBLEMA A)[ puntos] Indica razonadamente cuál de los

Más detalles

7.1 Transformaciones lineales nilpotentes

7.1 Transformaciones lineales nilpotentes Capítulo 7 Forma de Jordan En este capítulo continuaremos estudiando la estructura de los endomorfismos de un espacio vectorial de dimensión finita Veremos que si V es un K-espacio vectorial de dimensión

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

5. Autovalores y autovectores

5. Autovalores y autovectores 172 Autovalores y autovectores Al ser x 0 = y = P 1 x 0yportanto,λ es un autovalor de A. Recíprocamente, si λ es un autovalor de A existe un vector x 0talque A x = λx y por tanto, 5. Autovalores y autovectores

Más detalles

AUTOVALORES Y AUTOVECTORES

AUTOVALORES Y AUTOVECTORES 12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.

Más detalles

APÉNDICE A. Algebra matricial

APÉNDICE A. Algebra matricial APÉNDICE A Algebra matricial El estudio de la econometría requiere cierta familiaridad con el álgebra matricial. La teoría de matrices simplifica la descripción, desarrollo y aplicación de los métodos

Más detalles

CAPÍTULO 2 TRANSFORMACIONES LINEALES

CAPÍTULO 2 TRANSFORMACIONES LINEALES CAPÍULO RANSFORMACIONES LINEALES ransformación Sean V W espacios vectoriales. La función : V W recibe el nombre de transformación, los espacios V W se llaman dominio codominio de la transformación, respectivamente.

Más detalles

3. Sistemas de n ecuaciones diferenciales lineales de primer orden

3. Sistemas de n ecuaciones diferenciales lineales de primer orden Dpto Matemática Aplicada, Facultad de Informática, UPM EDO Sistemas Lineales 1 3 Sistemas de n ecuaciones diferenciales lineales de primer orden Se define un sistema de ecuaciones diferenciales lineales

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final de junio de APELLIDOS, NOMBRE: DNI: Firma Primer parcial Ejercicio ( Sea A una matriz simétrica definida positiva de orden n y v R n Pruebe que la matriz

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

Tema 6: Autovalores y autovectores

Tema 6: Autovalores y autovectores Tema 6: Autovalores y autovectores Curso 216/217 Ruzica Jevtic Universidad San Pablo CEU Madrid Referencias Lay D. Linear algebra and its applications (3rd ed). Chapter 5. 2 Autovalores y autovectores

Más detalles

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES

TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES TEMA 7. DIAGONALIZACION Y Y FORMAS CANONICAS 1. ENDOMORFISMOS NILPOTENTES Definición 1.1. Endomorfismo Nilpotente. Un endomorfismo T End(V ) es nilpotente si existe n N tal que f n 0. Definición 1.. Matriz

Más detalles

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización.

1 Autovalores y autovectores asociados a un endomor smo f. Diagonalización. utovalores y autovectores asociados a un endomor smo f Diagonalización Dado un endomor smo f de un espacio vectorial real V y jada una base B de V obtenemos una única matriz asociada a f respecto de la

Más detalles

2. Teorema de las multiplicidades algebraica y geométrica.

2. Teorema de las multiplicidades algebraica y geométrica. Guía. Álgebra III. Examen parcial II. Valores y vectores propios. Forma canónica de Jordan. Teoremas con demostraciones que se pueden incluir en el examen El examen puede incluir una demostración entera

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

Capítulo 1: Diagonalización de matrices

Capítulo 1: Diagonalización de matrices Capítulo : Diagonalización de matrices Matrices y determinantes Definición Una matriz es un arreglo rectangular de números reales a a a m a A a a m a n a n a nm La matriz es de orden n m si consta de n

Más detalles

Universidad de Salamanca

Universidad de Salamanca Universidad de Salamanca Gloria Serrano Sotelo Departamento de MATEMÁTICAS 1. Subespacios invariantes por un endomorfismo Sea E un k-espacio vectorial y T un endomorfismo de E. Un subespacio vectorial

Más detalles

2.4 Endomorfismos con un único autovalor

2.4 Endomorfismos con un único autovalor Capítulo 2/ Forma canónica de Jordan (Versión 13-3-215) 7 24 Endomorfismos con un único autovalor Diagramas de puntos En esta sección vamos a empezar estudiando endomorfismos con un único autovalor Aunque

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 18 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 11 Nov 2013-17 Nov 2013 Ecuaciones Matriciales Ecuaciones Matriciales En muchas ocasiones, se plantean

Más detalles

5.1.- Autovalores y autovectores. Definición y propiedades. La ecuación característica. El teorema de Cayley-Hamilton.

5.1.- Autovalores y autovectores. Definición y propiedades. La ecuación característica. El teorema de Cayley-Hamilton. MATEMÁTICAS I (Curso 2-22) Primer Curso del Grado en Ingeniería Electrónica, Robótica y Mecatrónica, Ingeniería de la Energía e Ingeniería de Organización Industrial Departamento de Matemática Aplicada

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final 7 de junio de 4 APELLIDOS, NOMBRE: DNI: irma Primer parcial Ejercicio Consideremos matrices A m m, B, C n n, Pruebe que bajo la hipótesis de que las inversas

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante

PROGRAMA DE EXAMEN. Unidad Nº1: Matrices y Función Determinante Ministerio de Cultura y Educación Universidad Nacional de San Juan Fac. de Ciencias Exactas Físicas y Naturales Ciclo Lectivo 2018 PROGRAMA DE EXAMEN Cátedra: ALGEBRA LINEAL Carrera: Licenciatura en Geofísica

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

. Calcular como en el ejercicio 3: A 1 1. i 0., iii) 1 i i a

. Calcular como en el ejercicio 3: A 1 1. i 0., iii) 1 i i a Primer Cuatrimestre 2006 Álgebra Lineal - Práctica 8 1 Sea A C n n y sean λ 1,, λ n las raíces del polinomio característico de A contadas con multiplicidad (a) Probar que det(a) = (b) Probar que tr(a)

Más detalles

a) Lo primero que hacemos es buscar las imágenes de los vectores de la base canónica: f(1,0,0) = (3, 5, 6) f(0,1,0) = ( 2, 3, 4) f(0,0,1) = (1, 2, 3)

a) Lo primero que hacemos es buscar las imágenes de los vectores de la base canónica: f(1,0,0) = (3, 5, 6) f(0,1,0) = ( 2, 3, 4) f(0,0,1) = (1, 2, 3) . Sea f: R 3 R 3 la aplicación lineal definida por las ecuaciones: f(x, y, z) = (3x y + z, 5x 3y + z, 6x 4y + 3z) a) Encontrar la matriz A de f en las bases canónicas. b) Es f biyectiva? Si lo es, encontrar

Más detalles

6. Forma canónica de matrices

6. Forma canónica de matrices 6. Forma canónica de matrices Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 6 6. Forma canónica de matrices 7 6.1 Introducción....................................

Más detalles

Examen Extraordinario de Álgebra III, licenciatura

Examen Extraordinario de Álgebra III, licenciatura Examen Extraordinario de Álgebra III, licenciatura El Examen a Título de Suficiencia de Álgebra III abarca los siguientes temas: 1. Formas bilineales y cuadráticas. 2. Valores y vectores propios. 3. Forma

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

Métodos Matemáticos: Análisis Funcional

Métodos Matemáticos: Análisis Funcional Licenciatura en Ciencias y Técnicas Estadísticas Universidad de Sevilla http://euler.us.es/ renato/clases.html Qué son esos espacios de Hilbert? Qué son esos espacios de Hilbert? David Hilbert Para relajarnos

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Álgebra II(61.08, 81.02) Segundo cuatrimestre 2017 Práctica 4. Autovalores y autovectores de matrices. Diagonalización.

Álgebra II(61.08, 81.02) Segundo cuatrimestre 2017 Práctica 4. Autovalores y autovectores de matrices. Diagonalización. Álgebra II(6108, 8102) Segundo cuatrimestre 2017 Práctica 4 Autovalores y autovectores de matrices Diagonalización Nota: salvo indicación particular, se considera que todas las matrices pertenecen a C

Más detalles

dia G o n a l i z a c i ó n

dia G o n a l i z a c i ó n Unidad elementos característicos dia G o n a l i z a c i ó n Objetivos: Al inalizar la unidad, el alumno: Encontrará los valores y los vectores característicos de una matriz. Utilizará los elementos característicos

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

Tema 4: Sistemas de ecuaciones lineales.

Tema 4: Sistemas de ecuaciones lineales. Tema 4: Sistemas de ecuaciones lineales 1 Rango de una matriz Definición Sea A Mat n m (K) Se llama rango de filas de A, y se denota por rg f (A) la dimensión del subespacio vectorial generado por las

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Álgebra Lineal Curso 206/7 6 de junio de 207 Soluciones a los ejercicios del examen final Se considera la aplicación lineal L : R 3 R 3 definida por L(x, y, z) = (z x, x + y + z, x y 3z). a) Hallar la

Más detalles

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos

Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 8 Solución a problemas sobre Determinantes - Hoja 07 - Todos resueltos Hoja 7. Problema 1 1. Sea A=( 1 1 1 1. Calcula: a A 1 b (5A 1 c

Más detalles

DIAGONALIZACIÓN DE MATRICES CUADRADAS

DIAGONALIZACIÓN DE MATRICES CUADRADAS DIAGONALIZACIÓN DE MATRICES CUADRADAS.- Considerar los vectores u = (, -, ) y v = (, -, ) de : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué

Más detalles

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices

Algunos Tipos de matrices. Matrices. Algunos Tipos de matrices. Algunos Tipos de matrices Matrices Una matriz de orden m n es un conjunto ordenado de m n números reales dispuestos en m filas y n columnas de la forma: A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2

Más detalles