PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE ÓPTICA. FÍSICA 2 BACHILLERATO. Profesor: Félix Muñoz Jiménez"

Transcripción

1 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º Calcula el ídce de efaccó elatvo del vdo al acete. Halla la velocdad de popagacó y la logtud de oda, e el acete y e el vdo de u ayo de colo vede de 5400 Å. Dato: ídce de efaccó del vdo,55; ídce de efaccó del acete,45 v,55 Idce de efaccó elatvo : v a,07,45 cete : v λ 0 λ Vdo : λ 0 λ Å,45 v c c ,5 k, Å, ,4 Å ,4 k, ,4 Å a Poblema º Sabedo que la velocdad de la luz e el agua e de 5000 k y de 44 k e el damate: a) Halla lo ídce de efaccó aboluto e el agua y e el damate. b) Halla el ídce de efaccó elatvo del agua epecto al damate. c 3 0 a) gua :,33 v,5 0 c 3 0 Damate :,4 v,4 0,33 v d b) ( agua - damate ) 0,55,4 v a Poblema º3 a) Qué fecueca tee u ayo de luz que e el agua y e el vdo tee ua logtud de oda de 364 Å y 36 Å, epectvamete? Halla u velocdad de popagacó e ambo medo, u ídce de efaccó o:,33 y,55. b) Qué logtud de oda peetaá e el vacío? Cuál eá ahoa u fecueca? c 3 0 v,5 0 4 a) gua : v 5 000k ν 6,07 0 Hz -7,33 λ 3,64 0 m c Vdo : v b) Vacío : λ v, ,3 k ν 6,05 0-7,55 λ 3,6 0 m λ 3,64 0 a fecueca eá la mma e lo do medo, -7 m, Å 3,6 0 7 y e el vaco, o vaa. m,55 λ V 4 Hz V

2 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º4 Paa la luz amalla del odo, cuya logtud de oda e el vacío e de 590 Å, lo ídce de efaccó aboluto del alcohol y del beceo, o,36 y,50 epectvamete. Halla la velocdad de popagacó y la logtud de oda e ambo medo de la luz amalla. 7 λ 0 5,9 0 m 7 alcohol : λ 4,33 0 m 4 33Å,36 c v λ 0 beceo : λ , k,36 5,9 0,50 7 m 3, m 3 97 Å c 3 0 v k,50 Poblema º5 a) U ayo de luz cde co 45º y paa dede el ae al agua ( 4/3). Calcula el águlo de efaccó. b) U ayo de luz cde co 45º y paa de u medo de ídce de efaccó de,55 a oto al agua (de 4/3). Calcula el águlo de efaccó. c) Qué cocluoe puede obtee de lo eultado de lo apatado ateoe? Uado la fómula: e α e α e α e 45º a) e α e α 0,53 α 3,03º 4/3 e α,55 e 45º b) e α e α 0, α 55,9º 4/3 c) Que cuado la luz paa a u medo de mayo ídce de efaccó e aceca a la omal, y al paa a u medo de meo ídce de efaccó e aleja de la omal. Poblema º6 Ua láma de vdo de caa plaa y paalela tuada e el ae tee u epeo de cm y u ídce de efaccó de,5. S u ayo de luz moocomátca cde e la caa upeo del vdo co u águlo de 30º. Halla: a) El valo del águlo e el teo de la láma y el águlo emegete. b) El deplazameto lateal del ayo cdete al atavea la láma. c) Dbuja la macha del ayo. a) e α e α e 30º,5 e α b) Del tágulo EB e calcula B : co α E B Co ete dato e el tágulo BC calculamo el deplazameto del ayo, d : El águlo eá 30º -9,47º 0,53º e 0,53º B d B e α co 9,47º 0,5 0,33... α,5,73 cm 9,47º d B e 0,53º,73 e 0,53º,33 cm

3 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. c) Pofeo: Félx Muñoz Jméez Poblema º7 U ayo de luz cde oblcuamete obe ua placa de vdo de 4 cm de epeo co u águlo de cdeca de 40º. El ídce de efaccó del vdo e,5. a upefce upeo e feo del vdo poduce ayo eflejado ca de la mma tedad. Cuál e la dtaca ete lo do ayo? e α 0,64 e 40º,5 e α e α 0,43 α 5,37º,5 x ta α R x 4 ta 5,37º,90 x,90 3, 4 S el águlo eflejado cal foma 40º co la omal foma 90º-40º 50º co la upefce : e 50º 3, e α 3, e 50º,9 cm Poblema º a devacó lateal que expemeta u ayo que cde co u águlo de 45º e la caa de ua láma e de,3 cm y el ídce de efaccó e de,56. Halla el epeo de la láma.

4 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez e α 45º 7º º e º d OB e α e 45º,56 e α OB epeo(o ) co 7º OB e α d eº,3 cm 0,3 epeo(o ) OB 0,7 0,45 α,56 4,47cm 7º co 7º 4,47 0,9 3,9 cm Poblema º9 U joyeo emplea ua lupa de f' cm ajutada a u ojo. S quee u aumeto de 4 vece, a qué dtaca de la lete debe eta el objeto? y' ' 4 ' 4 y ; ' f ' 4 De dode ale: - 6 cm; ' - 4 cm El objeto debe eta a 6 cm. Poblema º0 qué dtaca debe fotogafae ua toe de 50 m de altua co ua cámaa co objetvo omal de f' 50 mm, paa que la mage e la película ea de cm? b) Qué podíamo hace paa hace la toma dede má ceca? a) y' y ' 0,0 ' ,95m de dtaca al objetvo 4 ' f ' 4 0 0,05 b) Se puede ua u ga agula, po ejemplo f ' 5 mm, co lo que ale jutamete la mtad.

5 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º U objeto lumoo de 3 mm de altua etá tuado a 4 m de dtaca de ua patalla. Ete el objeto y la patalla e coloca ua lete delgada, de dtaca focal decoocda, que poduce obe la patalla ua mage de 9 mm. a) Detema la atualeza de la lete y el tpo de mage poducda. b) Calcula lo dato eceao paa hace ua cotuccó geométca de la mage. y' ' 3 ' 3. y Pueto que e valo aboluto: + ' 4m + 3 4m m;' 3m. Que e otacó DIN vee a e: - m; 3 m. ' f ' 3 4 P,33D f ' 3 3 f ' f 0,75m 4 Poblema º a dtaca ete u objeto y la patalla e de 36 cm y dpoemo de ua lete de 0,5 D. Qué tpo de mage e obtee e la guete tuacoe y cuál e u tamaño? a) y' y ' 4 y' y

6 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Image eal, vetda, de tamaño mtad que el objeto. y' ' 4 b) y' y y Image eal, vetda, de tamaño doble que el objeto. Pofeo: Félx Muñoz Jméez Poblema º3 Ceto epejo eféco foma ua mage eal, vetda y de tamaño doble, empe que lo objeto e túa a 0 cm. a) De qué tpo e el epejo? Dbuja la tuacó que e cta. b) Halla el ado de cuvatua y la pocó de la mage. a) Seá cócavo y co el objeto ete el ceto y el foco po lo que aldá ua mage vetda tal que y - y. ' y' y b) ' y y Po tato: - 0 cm; ' - 40 cm ,67cm ' 40 0 Poblema º4 U objeto tuado a cm de u epejo eféco cócavo poduce ua mage vtual 0 cm detá del epejo. a) Halla el ado del epejo. b) Cuále eá la caacteítca de la mage e aleja el objeto oto 0 cm de dode etá? a ) + + ' 0 De dode ale: - 0 cm b) S e aleja 0 cm má, queda a cm, e dec ete el foco y el vétce, al gual que ate. Po tato la mage eá vtual també. + ' 93,3cm ' 0 93,3 y' y' 3,33y y Image vtual, deecha y 3,33 vece mayo. Poblema º5 Co u epejo cócavo de 0, m de ado e quee poyecta ua mage eal de u objeto aumetada 9 vece. qué dtaca del ceto del epejo hay que coloca el objeto y dóde e obtedá la mage? Dbuja el tazado de ayo coepodete a la tuacó decta.

7 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Paa que e poduzca u aumeto, habá que colocala ete el ceto y el foco, co lo que aldá vetda: ' y' 9y ' 9 y y ' 9 0, De dode ale: - 0,44 m; ' - 4 m y ' o dtaca dede el vétce, luego la dtaca dede el ceto eá: 0,36 m a la deecha y 3, m a la zqueda. Poblema º6 a dtaca focal de u epejo cócavo vale 0, m. Cuáto mde u ado de cuvatua? Stuamo u objeto a m del epejo, dóde e fomaá la mage? Dbuja la tuacó. a) f 0, m; - 0,4 m b) + + ' ' 0,40 ' 0,5m Poblema º7 a) Calcula la pocoe y tamaño de la mágee dada po la lete de la fgua, paa lo objeto O y O, ambo de altua y cm. b) Compueba gáfcamete tu eultado medate tazado de ayo.

8 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. O : ' 60cm ' f ' ' 30 0 y' ' Image eal, vetda y de doble y' y cm y tamaño. Pofeo: Félx Muñoz Jméez O : ' 60cm ' f ' ' 5 0 y' ' Image vtual, deecha y cuato vece mayo. y' 4y 4cm y Poblema º Ecb u eucado que e coepoda co el gáfco guete y eolvelo. U poble eucado e el guete: Se coloca u objeto de 0 cm de altua a 0 cm de ua lete bcovexa de poteca D. Calcula aalítca y gáfcamete la pocó, tpo y tamaño de la mage fomada. /f ' ; f ' 0,5 m ' f ' ' 0,0 De dode ale: - /3 m. y' ' / 3,67 y',67y y' 6,7cm y 0,0 a mage e vtual, deecha y de mayo tamaño

9 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Poblema º9 Ceto tumeto óptco etá fomado po do lete covegete de dtaca focale + cm y +5 cm epectvamete, epaada 4 cm. Se túa u objeto a 3 cm po delate de la pmea lete. Calcula la pocó y el aumeto de la mage fal fomada po amba. ª ª lete : ' y' ' y' y y lete : ' y'' y' f ' 5 ' 3 6cm ' 3,33cm ' (4 6) 5 ' y'',67y' (,67y) 3,34y ' ' 6cm a pmea mage e vetda y de doble tamaño. a eguda e vetda y,67 vece mayo que la ateo co lo que ale deecha epecto a la pmea y 3,34 vece mayo que el objeto. Poblema º0 Paa qué ve el mcocopo y qué lete lo foma? Hace el tazado de ayo de la fgua y completa el gáfco.

10 PROBEMS DE ÓPTIC. FÍSIC BCHIERTO. Pofeo: Félx Muñoz Jméez Sve paa obeva objeto cecao de muy poco tamaño. Etá fomado po do lete covegete: El objetvo e la má póxma al objeto y tee dtaca focal pequeña. El ocula e la má póxma al ojo y tee mayo dtaca focal. Cuado e tee u tema fomado po do lete, e foma ua mage y' del objeto cal, que a u vez hace de objeto paa la eguda poducédoe ua mage fal y''.

OPTICA REFLEXIÓN Y REFRACCIÓN

OPTICA REFLEXIÓN Y REFRACCIÓN OPTICA REFLEXIÓN Y REFRACCIÓN IES La Magdalea. Avlés. Astuas La eflexó se poduce cuado ua oda ecueta ua supefce cota la cual ebota. E la eflexó el ayo cdete y el eflejado se popaga e el msmo medo. La velocdad

Más detalles

Donde n 1 es el índice de refracción del primer medio y n 2 el den segundo medio.

Donde n 1 es el índice de refracción del primer medio y n 2 el den segundo medio. Dpt. Fíca y Químca ÓPTCA GEMÉTRCA - RESUMEN. Epej Pla. La caacteítca de la mage que ma l epej pla la guete: - La mage e empe vtual. Se ma detá del epej y a la mma dtaca que el bjet. - La mage e del mm

Más detalles

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar

Matemáticas Aplicadas CC. SS. I -- I. E. S. Sabinar Matemátcas Aplcadas. SS. I -- I. E. S. Saba MATEMÁTIAS INANIERAS EN 1º BTO.. SS. 1. PORENTAJES 1.1 Aumetos y dsmucoes pocetuales. Ídce de vaacó 1.2 Aumetos y dsmucoes pocetuales ecadeados. Ídce de vaacó

Más detalles

seni nsenr seni nsenr nsen(90 i) ncos i r

seni nsenr seni nsenr nsen(90 i) ncos i r 0. Dos espejos planos están colocados pependculamente ente sí. Un ayo que se desplaza en un plano pependcula a ambos espejos es eflejado pmeo en uno y después en el oto espejo. Cuál es la deccón fnal del

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA MATERIA: MATEMÁTICAS II OPCIÓN A Examen de Evaluación. Geometía. Matemática II. Cuo 009-00 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN. TERCERA EVALUACIÓN. GEOMETRÍA Cuo 009-00 -V-00 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES 7 CAPITULO 4 AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES Existe vaios métodos de ayudas gáficas paa el diseño, acople y solució de poblemas e líeas de tasmisió, que ha ido evolucioado co el tiempo. Keell

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos.

Corrección topográfica de la imagen para mejorar las clasificaciones en zonas montañosas. Por Carmen Recondo. Modelos y métodos. Po Camen Recondo Coeccón toogáfca de la magen aa mejoa la clafcacone en zona montañoa. Modelo método. Jonada de Coeccón Toogáfca de mágene de Satélte Camu de Mee. Unvedad de Ovedo. 7 de dcembe de 009.

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

Tema 5: Operación de amortización. Préstamos

Tema 5: Operación de amortización. Préstamos Tem 5: Opecó de motzcó. Pétmo. Pltemeto geel de l opecó de motzcó co teee popgble. Recbe et deomcó tod opecó de petcó úc y cotpetcó múltple: Petcó: {(, t } otpetcó: {(, t, (, t,, (, t } El cptl de l petcó

Más detalles

Tests basados en la distribución Binomial

Tests basados en la distribución Binomial Métd N aamétc I 8 Elea J. Matíez d cuat. 004 et baad e la dtbucó Bmal et bmal: E ua heameta útl e mucha alcace y també e utlza e ca que e quee btee u tet de lbe dtbucó. E mucha tuace e el tet má tete;

Más detalles

N r euros es el precio

N r euros es el precio RETABILIDADES ACTIVOS FIACIEROS Ejemplo 1: Una leta del teoo a doce mee tiene un nominal de 10.000 euo. Ha ido compada po un pecio de 9.500 euo. Cual e el endimiento implícito de dicha leta?. Rendimiento

Más detalles

Cinemática del Robot Industrial

Cinemática del Robot Industrial Cemátca del Robot Idustal M.C. Mguel de J. Ramíe C. CMfgT Automatacó de Sstemas de Maufactua Adatacó: Glbeto Reoso Estuctua Mecáca del Robot Idustal Mecácamete u obot es ua cadea cemátca fomada de eslaboes

Más detalles

ESTADÍSTICA DESCRIPTIVA BIVARIADA

ESTADÍSTICA DESCRIPTIVA BIVARIADA ESTDÍSTIC DESCRIPTI IRID ESTDÍSTIC DESCRIPTI IRID No coepode tata ahoa el poblema de aalza multáeamete do vaable etadítca de ua poblacó paa lo cual la ceamo o tomamo ua mueta de ella etudado e bae a tal

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

Problemas. 1. Un objeto está situado a 12 cm de un espejo cóncavo cuyo radio de curvatura es 6 cm. Hallar a que distancia se encuentra la imagen.

Problemas. 1. Un objeto está situado a 12 cm de un espejo cóncavo cuyo radio de curvatura es 6 cm. Hallar a que distancia se encuentra la imagen. Problemas. U objeto está situado a cm de u espejo cócavo cuyo radio de curvatura es 6 cm. Hallar a que distacia se ecuetra la image. Sabemos que la ocal de u espejo viee dada por r 3 cm Al ser el espejo

Más detalles

±. C inicial = C inicial. Índice de variación

±. C inicial = C inicial. Índice de variación Aitmética mecatil: coteidos 2.1 Aumetos y dismiucioes pocetuales 2.2 Iteeses bacaios 2.3 Tasa aual equivalete ( T.A.E.) 2.4 Amotizació de péstamos 2.5 Pogesioes geométicas 2.6 Aualidades Pocetajes: C fial

Más detalles

FORMULARIO DE ESTADÍSTICA

FORMULARIO DE ESTADÍSTICA Reúmee de Matemática paa Bachilleato I.E.S. Ramó Gialdo FORMULARIO DE ESTADÍSTICA Cocepto báico Població: cojuto de todo lo elemeto objeto de ueto etudio Mueta: ubcojuto, extaído de la població,(mediate

Más detalles

XIII. La a nube de puntos-variables

XIII. La a nube de puntos-variables XIII. La a nube de punto-vaiable Una vaiable e epeentada con un vecto en R n. El conunto de etemidade de lo vectoe que epeentan la vaiable contituyen la nube de punto N. m im m n i m Pogama PRESTA - 999

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS DE LA INFORMÁTICA

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS DE LA INFORMÁTICA FUNDAMENTOS FÍSIOS Y TENOLÓGIOS DE LA INFORMÁTIA TEMA I.- ELETROSTÁTIA FUNDAMENTOS FÍSIOS Y TENOLÓGIO DE LA INFORMÁTIA Tema.ELETROSTÁTIA- Tecología de omputadoes-datsi-fi-upm-madd - M. A. Pascual Iglesas

Más detalles

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO

Espacios Afín y Euclídeo Resumen ESPACIOS AFÍN Y EUCLÍDEO ESACIOS AFÍN Y EUCLÍDEO Nota: Los pocedimietos expestos o so los úicos qe eselve los poblemas Defiició El espacio afí so los ptos coexistiedo jto al espacio vectoial V, co sistema de efeecia ( pto fijo

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes. 826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El

Más detalles

TEMA 2 MATEMÁTICAS FINANCIERAS

TEMA 2 MATEMÁTICAS FINANCIERAS Tema Matemáticas fiacieas 1 TEMA MATEMÁTICAS FINANCIERAS EJERCICIO 1 : Po u atículo que estaba ebajado u 1% hemos pagado, euos. Cuáto costaba ates de la ebaja? 1 Solució: El ídice de vaiació es: IV = 1

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos

Hotel Burj Al Arab, Dubai, Emiratos Árabes Unidos Hotel Buj Al Aab Dubai Emiato Áabe Unido Pedo ami Bofill-Gaet Poyecto de paametiación Ampliación de Matemática Intoducción Paa ete poyecto e ha ecogido como upeficie el lujoo hotel Buj al Aab de Dubai.

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO . VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

Elementos de geometría en el espacio

Elementos de geometría en el espacio Elemento de geometía en el epacio 1 Elemento de geometía en el epacio Elemento báico del epacio Lo elemento báico del epacio on: punto, denominado con leta mayúcula, po ejemplo P. ecta, denominado con

Más detalles

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial

A) Se considera el problema de contorno bidimensional constituido por la ecuación diferencial Elemetos tos bdmesoles. U vsó pelm A Se cosde el poblem de cotoo bdmesol costtdo po l eccó deecl (, e el domo, smplemete coeo ls codcoes de cotoo: (, coocd e α coocd e Recédese qe qe, s se deom l ccdte

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Maste de Cotabilidad, Auditoía y Cotol de Gestió INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Cuso 007/008 Cuso 007/008 Maste de Cotabilidad, Auditoía y Cotol de Riesgos DEPÓSITO FORWARD-FORWARD Acuedo

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

2. Medición de Índices de Refracción. Neil Bruce

2. Medición de Índices de Refracción. Neil Bruce . Medició de Ídices de Refacció Neil Buce Laboatoio de Optica Aplicada, Ceto de Ciecias Aplicadas y Desaollo Tecológico, U.N.A.M., A.P. 70-86, México, 0450, D.F. Objetivos Istumeta e el laboatoio métodos

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejeccos de Selectvdad sobe Ifeeca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Facsco Roldá López de Heo * Covocatoa de 007 Las sguetes págas cotee las solucoes de los

Más detalles

20: MEDIDA DEL CAMPO MAGNÉTICO CREADO POR CONDUCTORES

20: MEDIDA DEL CAMPO MAGNÉTICO CREADO POR CONDUCTORES áctica : MEDIDA DEL CAMO MAGNÉTICO CREADO OR CONDUCTORES OJETIVO Obseva la elació existete ete coietes elécticas y campos magéticos. Medi y aaliza el campo magético ceado e el exteio de distitos coductoes

Más detalles

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS

MEDIDAS DE FORMA: ASIMETRÍA Y CURTOSIS. MOMENTOS Julo Olva Coteo Estadístca TEMA 6 MEDIDA DE FORMA: AIMETRÍA Y CURTOI. MOMETO. Moetos de ua dstbucó Los oetos de ua dstbucó so eddas obtedas a pat de todos sus datos y de sus fecuecas absolutas. Estas eddas

Más detalles

Física 2 Biólogos y Geólogos - Curso de verano 2013

Física 2 Biólogos y Geólogos - Curso de verano 2013 Física 2 Biólogos y Geólogos - Curso de verao 2013 2.1 Dioptras SERIE 2: Dioptras y espejos curvos y plaos, letes delgadas, istrumetos ópticos Deiimos: Espacio objeto: semi-espacio de dode viee la luz

Más detalles

Capitalización, actualización y equivalencia financiera en capitalización compuesta

Capitalización, actualización y equivalencia financiera en capitalización compuesta Captalzacó, actualzacó y equvaleca facera e captalzacó compueta 5 E eta Udad aprederá a: 2 3 4 5 Decrbr lo efecto eecale de la captalzacó compueta. Reolver problema facero e captalzacó compueta. Dferecar

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

Electrostática: Definición.

Electrostática: Definición. lectcdad y Magetsmo / lectostátca efcó Los coductoes e electostátca. Campo de ua caga putual. Aplcacoes de la Ley de Gauss Itegales de supeposcó. Potecal electostátco. efcó e Itepetacó. cuacoes de Posso

Más detalles

LA LUZ Y SUS PROPIEDADES

LA LUZ Y SUS PROPIEDADES LA LUZ Y SUS PROPIEDADES.. NATURALEZA DE LA LUZ. Busca e la bibliogafía ifomació aceca de la cotovesia que matuvieo Huyges y Newto aceca de la atualeza de la luz. Co esta actividad se petede que los alumos

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

Geometría Analítica. Ejercicio nº 1.-

Geometría Analítica. Ejercicio nº 1.- Geomeía Analíica Ejecicio nº.- a Aveigua el puno iméico de A ) con epeco a B ). b Halla el puno medio del egmeno de eemo A ) B ). Ejecicio nº.- a Halla el puno medio del egmeno cuo eemo on A( ) con epeco

Más detalles

POSICIONES RELATIVAS de RECTAS y PLANOS

POSICIONES RELATIVAS de RECTAS y PLANOS POSICIONES RELATIVAS de RECTAS y PLANOS MATEMÁTICAS II 2º Bachilleato Alfono González IES Fenando de Mena Dpto. de Matemática Supongamo, po ejemplo, que queemo etudia la poición elativa de una ecta que

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

CAMPO GRAVITATORIO FCA 08 ANDALUCÍA

CAMPO GRAVITATORIO FCA 08 ANDALUCÍA CAMPO GRAVIAORIO FCA 08 ANDALUCÍA. L atélite metelógic n un medi paa btene infmación be el etad del tiemp atmféic. Un de et atélite, de 50 kg, gia aleded de la iea a una altua de 000 km en una óbita cicula.

Más detalles

Universidad de Tarapacá Facultad de Ciencias Departamento de Física

Universidad de Tarapacá Facultad de Ciencias Departamento de Física Univesidad de Taapacá Facultad de Ciencias Depatamento de Física Aplica el álgea de vectoes: Poducto escala Poducto vectoial Magnitudes físicas po su natualeza Escalaes Vectoiales Es un escala que se

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

Unidad 24: Óptica geométrica

Unidad 24: Óptica geométrica Apoo para la preparació de lo etudio de Igeiería Arquitectura Fíica (reparació a la Uiveridad) Uidad 4: Óptica geométrica Uiveridad olitécica de Madrid 3 de abril de 00 Uidad 4: Óptica geométrica 4. laiicació

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

3.5 Factores y Coeficientes de Forma

3.5 Factores y Coeficientes de Forma Autoes: Patco Covalá Vea Jame eáez Palma 3.5 Factoes y Coecetes e Foma A es el slo XIX, Towa esaolla la ea e los actoes e oma como ua espuesta a las cultaes suas el uso e los sólos e evolucó. La ea e Towa

Más detalles

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA íica P.A.U. ÓPTICA ÓPTICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza un rayo paralelo al eje

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Santiago de la Fuente Fernández. Regresión Lineal Múltiple

Santiago de la Fuente Fernández. Regresión Lineal Múltiple atago de la Fuete Feádez egesó Leal Múltple atago de la Fuete Feádez egesó Leal Múltple EGEIÓN LINEAL MÚLTIPLE egesó Leal Múltple Las téccas de egesó leal múltple pate de (k+) vaables cuattatvas, sedo

Más detalles

Complementos del tema 6 (interferencias de origen interno) RUIDO EN LOS CIRCUITOS ELECTRÓNICOS. ESTABILIDAD DE LA FRECUENCIA

Complementos del tema 6 (interferencias de origen interno) RUIDO EN LOS CIRCUITOS ELECTRÓNICOS. ESTABILIDAD DE LA FRECUENCIA Cmpemet de tema 6 (teeeca de ge te) UIDO EN OS CICUITOS EECTÓNICOS. ESTBIIDD DE FECUENCI P. D. Jua Jé Gzáez de a a Gup de Ietgacó e Itumetacó Eectóca pcada y Técca de Fmacó. TIC68 Áea de Eectóca. Dpt.

Más detalles

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO 2 ÓPTICA GEOMÉTRICA 2.. ORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO. En la imagen que e forma de un objeto en un epejo plano e invierten la izquierda la derecha, pero no la parte de arriba la parte de abajo

Más detalles

TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES

TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES TEMA 2 ARITMÉTICA MERCANTIL MATEMÁTICAS CCSSI - 1º Bach. 1 TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES E u aumeto o dismiució pocetual, el úmeo po el que hay que multiplica la

Más detalles

TEMA 5. OPERACIONES DE AMORTIZACIÓN

TEMA 5. OPERACIONES DE AMORTIZACIÓN TEMA 5 OPERAIONES DE AMORTIZAIÓN ocepto de operacó de amortzacó 2 Método de amortzacó 3 Operacoe de Prétamo e el Mercado, cálculo de tato efectvo 4 Ejercco tema 5 5 Ejercco de Repao ocepto de Operacó de

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3

Índice de materias 2.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3 Ídce de ateas.- MECÁNICA CUÁNTICA. POSTULADOS Y EJEMPLOS SENCILLOS DE APLICACIÓN...3..- FUNDAMENTOS MATEMÁTICOS DE LA MECÁNICA CUÁNTICA...3 Álgeba Leal Opeadoes ucoes popas....3.- LOS POSTULADOS DE LA

Más detalles

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA-

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica

Se entiende por sistema de fuerzas a un conjunto de fuerzas como se indica CDENADAS VECTIALES DE LS SISTEAS DE FUEZAS Se etede po sstema de fuezas a u cojuto de fuezas como se dca La esultate geeal del sstema se obtee sumado los vectoes equpoletes de cada ua de las compoetes

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 11 Figuas en el espacio Recueda lo fundamental Nombe y apellidos:... Cuso:... Fecha:... FIGURAS EN EL ESPACIO POLIEDROS REGULARES Y SEMIRREGULARES Un poliedo es egula si sus caas son... y en cada vétice

Más detalles

Problemas aritméticos

Problemas aritméticos 3 Poblemas aitméticos Antes de empeza Objetivos En esta quincena apendeás a: Recoda y pofundiza sobe popocionalidad diecta e invesa, popocionalidad compuesta y epatos popocionales. Recoda y pofundiza sobe

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa?

BLOQUE II - CUESTIONES Opción A Explica mediante un ejemplo el transporte de energía en una onda. Existe un transporte efectivo de masa? EXAMEN COMPLETO El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I Un satélite atificial de 500

Más detalles

TEMA 7: PROPIEDADES MÉTRICAS

TEMA 7: PROPIEDADES MÉTRICAS Depatamento e Matemática º Bachilleato TEMA 7: PROPIEDADES MÉTRICAS 1- HAZ DE PLANOS PARALELOS Too lo plano paalelo a un plano Ax + By + Cz + D tenán el mimo vecto nomal que el e : n A, Po lo tanto, too

Más detalles

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos

Tomando como nivel de energía cero el nivel fundamental. Dada la diferencia de energía entre los niveles en la mayoría de los casos Capíulo. La fucó d pacó ) Spaacó d la fucó d pacó S ha dmosado aom - / k [.] La ía dl l s ual a: k [.] + + + [.] + S los ados d lbad o accoa [.4] - / k - / k... [.5] ) Fucó d pacó lcóca omado como l d

Más detalles

ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES

ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES E u aumeto o dismiució pocetual, el úmeo po el que hay que multiplica la catidad iicial paa obtee la catidad fial se llama ídice de vaiació.

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

Willebrord Snel van Royen. Óptica. Karl Friedrich Gauss. Física 2º Bach

Willebrord Snel van Royen. Óptica. Karl Friedrich Gauss. Física 2º Bach Willebod Sel va Roye Kal Fiedich Gau Fíica 2º Bach IES Magallae Depatameto de Fíica y Química - 2 - Natualeza de la luz: Modelo copucula y odulatoio E al mudo itelectual giego al que e debe la pimea peguta

Más detalles

8. Movimiento Circular Uniforme

8. Movimiento Circular Uniforme 8. Movimiento Cicula Unifome En la vida cotidiana e peentan ituacione donde un objeto gia alededo de oto cuepo con una tayectoia cicula. Un ejemplo de ello on lo planeta que gian alededo del ol en obita

Más detalles

MULTISWITCH La más completa distribución de señales en una unidad compacta MICRO 12 3.0 06/2015-ES

MULTISWITCH La más completa distribución de señales en una unidad compacta MICRO 12 3.0 06/2015-ES MULTISWITCH La más completa distribución de señales en una unidad compacta MICRO 12 3.0 06/2015-ES MULTISWITCH Sencillo Flexible Compacto Ya es posible distribuir y enrutar individualmente diversas señales

Más detalles

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO

LEY FINANCIERA DE DESCUENTO SIMPLE RACIONAL. DESCUENTO BANCARIO LEY FINANIEA E ESUENTO SIMPLE AIONAL. ESUENTO BANAIO Profesor: Jua Atoo Gozález íaz epartameto Métodos uattatvos Uversdad Pablo de Olavde www.clasesuverstaras.com Ley Facera de escueto Smple acoal La ley

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Física II (Biólogos y Geólogos)

Física II (Biólogos y Geólogos) Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras

Más detalles

UNIVERSIDAD DE LA LAGUNA

UNIVERSIDAD DE LA LAGUNA ESCUEL UNIVERSIDD DE L LGUN TÉCNIC SUPERIOR DE INGENIERÍ INFORMÁTIC Tecnología de Computadoes Páctica de pogamación, cuso 2010/11 Pofeso: Juan Julian Meino Rubio Enunciado de la páctica: Cálculo de una

Más detalles

Analogía para derivar un teorema extendido de Pitágoras para N dimensiones

Analogía para derivar un teorema extendido de Pitágoras para N dimensiones Igeeía Ivestgacó y Tecología. ol. III, Núm.,, 75-84 ISSN 45-7743 FI-UNM atículo abtado alogía paa deva u teoema exteddo de Ptágoas paa N dmesoes alogy to Deve a Exteded Pytagoea Teoem to N Dmesos costa-robledo

Más detalles

Tema 4. Problemas de inferencia estadística en el modelo de regresión lineal múltiple

Tema 4. Problemas de inferencia estadística en el modelo de regresión lineal múltiple Método de egreó Grado e Etadítca y Emprea Tema 4 /3 Tema 4. Problema de fereca etadítca e el modelo de regreó leal múltple. Itervalo de cofaza y cotrate para lo coefcete de regreó... Itervalo de cofaza

Más detalles

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin. RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

T3. Adquisición de Imagen. Sensores

T3. Adquisición de Imagen. Sensores Índe T3. Adquón de Imagen. Senoe Fundamento de Vón po Computado Stema Infomáto Avanzado Medón de la luz. Radometía y fotometía. Modelo de eflexón de la luz. La funón de efletana -deonal BRDF. Reflexón

Más detalles

LENTE CONVERGENTE 2: Imágenes en una lente convergente

LENTE CONVERGENTE 2: Imágenes en una lente convergente LENTE CONVERGENTE : Imágene en una lente convergente Fundamento En una lente convergente delgada e conidera el eje principal como la recta perpendicular a la lente y que paa por u centro. El corte de eta

Más detalles

OPTIMIZACIÓN PARA INGENIEROS (Notas de clase) Instructores: Luis Zerpa Juan Colmenares

OPTIMIZACIÓN PARA INGENIEROS (Notas de clase) Instructores: Luis Zerpa Juan Colmenares OPTIMIZACIÓN PARA INGENIEROS (Notas de clase) Istuctoes: Luis Zepa Jua Colmeaes Eeo 4 Ídice Geeal. OPTIMIZACIÓN...3. Mathematical Optimizatio Poblem o Mathematical Pogam...4.. Fomulació Geeal de u Poblema

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II UED FUTD DE. EOÓIS Y ERESRIES TEÁTI DE S OERIOES FIIERS II URSO / l uevo Eme e JUIO Dí // l ho TERI UXIIR: lulo fe DURIÓ: ho. El bo X oee u pétmo hpoteo l S. Y. utí el ptl peto e el % el peo e tó el po

Más detalles

CÁLCULO INTEGRAL EJERCICIOS DE REPASO PARA EXAMEN DE PRIMER PARCIAL

CÁLCULO INTEGRAL EJERCICIOS DE REPASO PARA EXAMEN DE PRIMER PARCIAL CÁLCULO INTEGRAL EJERCICIOS DE REPASO PARA EXAMEN DE PRIMER PARCIAL - Máimos y s Aplica el citeio de tu elección, detemina las coodenadas paa los puntos máimos y/o s de las siguientes unciones: a) 18 5

Más detalles

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles