INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE"

Transcripción

1 INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos f y f. En un elipse, si se sumn ls distncis d + d se obtiene un vlor constnte sin importr l ubicción del punto p. Por es rzón es fácil trzr un elipse: se clvn un pr de lfileres en el sitio de los focos, se mrr un cordel que pse por esos dos lfileres y que quede un tnto flojo. Luego con un lápiz, como lo muestr l figur 6., se tens el cordel y se v desplzndo dicho lápiz sobre el ppel. Se obtiene un elipse porque l longitud del cordel mrrdo es siempre l mism, no import en dónde se encuentre el lápiz. Si dich longitud se le rest l distnci tmbién constnte que hy entre mbos focos, se obtiene un segmento de cordel de longitud constnte, que es l sum de ls longitudes de cd foco l lápiz. Concuerd justmente con l definición de elipse. L simbologí que se utiliz pr representr ls prtes fundmentles de l elipse es l siguiente: * L letr represent l distnci que hy desde el centro hst el extremo de l elipse por su prte más lrgd. Ver l figur 6.3. p d d f f figur 6. mover el lápiz f f figur 6.

2 Págin 06 LA ELIPSE * L letr b represent l distnci que hy desde el centro hst el extremo de l elipse por su prte más chtd o cort. * L letr c represent l distnci que hy desde el centro hst cd foco. Ls crcterístics o prtes principles de un elipse son (ver figur 6.3): * Vértices: Son los puntos extremos más lejdos del centro. * Eje myor: Es l distnci de un vértice hst el otro y equivle. * Eje menor: Es l distnci de extremo extremo medid por su prte más ngost y equivle b. Distnci focl: Es l distnci que hy de un foco l otro foco y equivle c. b eje menor f f V V ldo recto c eje myor figur 6.3 ( ) * L posición del centro, cuys coordends son h, k. Pr evitr confusiones con l distnci del centro l foco l que se le nombró con l letr c minúscul, l centro de l elipse se le sign l letr O (myúscul). * Ldo recto: Es l cuerd perpendiculr l eje myor y que ps por el foco. Hy dos posibiliddes de obtener un elipse: horizontl o verticl.

3 INSTITUTO VALLADOLID PREPARATORIA Págin 07 ( ) A prtir de ls coordends del centro h, k, de l longitud del semieje myor y de l longitud del semieje menor b se pueden obtener o deducir tods ls crcterístics nteriores, ls cules están dds en l ecución prticulr de l elipse, que de hecho son dos, según se trte de un elipse horizontl o de un elipse verticl. L ecución prticulr de l elipse es: ( x h) ( y k) b si el eje focl es horizontl o bien ( x h) ( y k) b si el eje focl es verticl en donde debe cumplirse que >b Pr sber si se trt de un elipse horizontl o un elipse verticl, bst comprr los dos denomindores de l ecución prticulr. Como > b, el denomindor myor debe ser. El eje myor es prlelo l eje de l vrible en donde está. Igul que en ls nteriores cónics que tienen términos l cudrdo, h signific el desplzmiento horizontl del centro y k el desplzmiento verticl del centro. El significdo de ls letrs y b de los denomindores están definidos en l figur 6.3. Existe un relción entre ls tres constntes, b y c, que prtir del teorem de Pitágors está dd por l fórmul = b + c de donde, despejndo cd literl, se obtiene: = b + c b = c c = b

4 Págin 08 LA ELIPSE Otr crcterístic interesnte de l elipse es que l longitud del ldo recto mide lr = b en donde ls letrs y b que precen, son ls misms definids nteriormente. Finlmente, un medid interesnte es l llmd excentricidd, denotd por l letr e. Excéntrico en este cso signific fuer del centro. Se refiere qué tn lejos del centro de l elipse se encuentrn los focos en proporción l tmño de dich elipse. Pr comprender mejor este concepto bst drse cuent que en un elipse mientrs más se lejen los focos del centro, l form de dich elipse es más lrgd (ver figur 6.4, inciso ); conforme los focos se cercn l centro, es decir, conforme el clor de c se hce más pequeño, l elipse se proxim un circunferenci (ver figur 6.4, inciso b); y finlmente, cundo los focos coinciden con el centro, o se que c = 0, l elipse se convierte en un circunferenci (ver figur 6.4, inciso c). ) b) c) figur 6.4 Anlíticmente puede verse trvés de l relción de ls constntes, b y c. Si los focos coinciden con el centro, signific que c = 0. Entonces de donde = b + c = b + 0 = b = b Si es el semieje myor y b es el semieje menor, l ser igules cundo los focos coinciden con el centro, se convierten mbos semiejes en el rdio de un circunferenci.

5 INSTITUTO VALLADOLID PREPARATORIA Págin 09 c L excentricidd se mide trvés de l proporción e =. L escl posible de medición de l excentricidd v de cero uno, es decir, 0 e <. Si e = 0 se trt de un circunferenci. Mientrs más cercno esté el vlor de e l cero, más cercn estrá l elipse de un circunferenci; por el contrrio, mientrs más se proxime e l vlor de, más lrgd estrá. 6. TRANSFORMACIONES Dr, por medio de un regl, como se hizo en el cso de l circunferenci y de l prábol, el procedimiento pr trnsformr de l ecución generl l prticulr, en el cso de l elipse result muy extenso; de mner que, por es rzón, se v mostrr dicho proceso trvés de un ejemplo. Ejemplo : L ecución generl de un elipse es ecución prticulr y esbozr su gráfic. 4x + 9y 6x + 8y = 0. Trnsformrl su Solución: Pr trtr de dr clridd l explicción, se hrá por psos l trnsformción pedid. PASO : Se grupn en el ldo izquierdo los términos que contengn ls misms vribles y se escribe en el ldo derecho l constnte sol: ( x x) ( y y) = PASO : Se fctoriz en cd grupo el coeficiente del término l cudrdo: ( x x) ( y y) = PASO 3: Se complet un trinomio cudrdo perfecto en cd grupo, ñdiendo l ldo derecho l mism cntidd gregd en el izquierdo: ( x x ) ( y y ) ( x x ) ( y y ) = = 36 NOTA: Se gregó 6 en el ldo derecho porque es el 4 que se gregó dentro del primer préntesis, el cul está multiplicdo todo por 4; de l mism form, en el segundo préntesis se gregó dentro un, pero como está multiplicdo por 9, en relidd fue 9 en totl lo que se gregó. PASO 4: Se fctorizn los dos préntesis: ( x ) ( y ) = 36

6 Págin 0 LA ELIPSE PASO 5: Se dividen mbos ldos de l iguldd entre 36 (pr que quede igul en el ldo derecho, y que sí es l form de l ecución prticulr) y se simplific: ( x ) ( y + ) = ( x ) ( y + ) 9 4 donde = 9 (por ser el denomindor myor) y b = 4 ; por lo tnto, se trt de un elipse horizontl, y que el denomindor myor está bjo l vrible x. De est ecución se deducen los vlores de: x : Se obtiene del binomio x de l ecución prticulr; h = ( ) x : Se obtiene del binomio y + de l ecución prticulr; k = ( ) ( ) x El centro está en O, ; x Si = 9 y b = 4 obtenidos prtir de los denomindores en l ecución prticulr, se deduce que = 3 y b =. Y por l relción de ls constntes, b y c, se clcul que l distnci semifocl es c = b c = (proximdmente) x L longitud del ldo recto de est elipse se clcul con l relción lr = b ( ) lr = 6. 3 (proximdmente) x L excentricidd es e = e = c 3. 3

7 INSTITUTO VALLADOLID PREPARATORIA Págin e = L figur 6.5 muestr los detlles de l elipse. Y X X b = ldo recto f O(, - ) f V - V - b = - 3 c =. - 4 Y = 3 c =. = 3 figur 6.5 Si = 3 es l distnci del centro los vértices, prtir del centro deben contrse tres uniddes l izquierd y tres l derech pr obtener ls coordends de los vértices. Son: (, ) = (, ) V 3 V ( +, ) = (, ) V 3 V 5 L longitud del eje myor es = 6; l del eje menor es b = 4. Pr obtener ls coordends de cd foco, de mner semejnte los vértices, como c = 3. es l distnci del centro cd foco, prtir del centro deben contrse.3 uniddes l izquierd y.3 l derech, esto signific que pr el foco f debe restrse. 3 mientrs que pr el foco f debe sumrse Por lo tnto, ls coordends de los focos son (., ) = (., ) f 3 f 0 3

8 Págin LA ELIPSE ( +., ) = (., ) f 3 f 4 3 Ejemplo : Trnsformr su ecución generl l ecución prticulr de l elipse ( x + 4) ( y ) 49 4 Solución: Pr eliminr los denomindores debe multiplicrse tod l iguldd por el producto de los dos denomindores, es decir, por 96. Hciéndolo, se obtiene: ( x + 4) ( y ) ( x ) ( y ) = 96 elevndo l cudrdo los binomios indicdos: ( x x ) ( y y ) ( ) = 96 hciendo ls multiplicciones indicds: 4x + 3x y 96y + 96 = 96 finlmente, escribiendo todo l lzo izquierdo y reduciendo términos semejntes se lleg : 4x + 3x y 96y = 0 4x + 49y + 3x 96y + 64 = 0 Ejemplo 3: De l siguiente elipse, hllr ls coordends de sus vértices y sus focos, ls longitudes de sus ejes myor y menor, ls coordends del centro, l longitud del ldo recto, l excentricidd y esbozr su gráfic: ( x ) ( y + ) 9 5 Solución: El denomindor myor es 5 y como está bjo el numerdor que contiene l vrible y, signific que se trt de un elipse verticl. Así que en este cso se tiene que

9 INSTITUTO VALLADOLID PREPARATORIA Págin 3 = 5, de donde = 5 b = 9, de donde b = 3 por lo tnto, l semidistnci focl es y demás h = y k =. c = b c = 5 9 = 4 L figur 6.6 es un esbozo de l gráfic, l cul es muy útil pr yudrse con ell scr los vlores de ls coordends solicitds. Pr obtener dich gráfic se mrc primero el punto correspondiente l centro de l elipse cuys coordends son h y k, es decir, O (, ) continución, ls ordend del centro k = se le greg pr rrib y pr bjo (y que se trt de un elipse verticl) el vlor clculdo de c = 4, en virtud de que l distnci del centro los focos está dd por c, obteniéndose sí ls coordends de los focos, o se f y f, 6. Igulmente, sumándole y restándole l ordend del centro el vlor (, ) ( ) de 5, se obtienen ls coordends de los vértices, o se V 3 y V, 7. = (, ) ( ) Finlmente, como el eje myor es igul, entonces su longitud es 0 y como el eje menor es igul b, su longitud es 6.. A Y 4 3 V f X c = 4 = O(, - ) -4-5 c = 4 = 5-6 f -7-8 V b = 3 b = 3 figur 6.6

10 Págin 4 LA ELIPSE Ejemplo 4: L longitud del ldo recto de un elipse mide 6/3. Hllr su ecución sbiendo que ls coordends de sus vértices son V (- 3, 6) y V (- 3, - 6). Clculr ls coordends de sus focos y esbozr l gráfic. Solución: El centro tiene que estr ubicdo l mitd de los dos vértices. Hciendo un gráfic con ls coordends de los vértices (ver figur 6.7), se deduce fácilmente que el centro está en O 30,, es decir que h = 3 y ( ) k = 0 ; demás, se trt de un elipse verticl. Por otr prte, bst medir l distnci que hy entre los dos vértices y l mitd será el vlor correspondiente de. Como desde y = hst y = 6 hy un distn- 6 ci de, entonces = 6. Con el vlor del ldo recto ddo desde el enuncido del problem y con el de = 6, se puede estblecer que b 6 lr = =, donde = 6 3 sustituyendo y despejndo, se obtiene: centro 7 V V -6-7 figur 6.7 b 6 = 6 3 ( ) ( ) 6 6 b = 3 b = 6 b = 4 Sustituyendo los vlores en l ecución prticulr, se lleg l ecución pedid: ( x h) ( y k) b ( x + 3) ( y + 0) 4 6 ( ) x + 3 y 6 36

11 INSTITUTO VALLADOLID PREPARATORIA Págin 5 L semidistnci focl es c = b c = 36 6 c 447., o se (proximdmente) De donde se deduce, gregndo pr rrib y pr bjo est cntidd prtir del centro, que ( ) ( ) ls coordends de los focos son f 3; y f 3; Finlmente, su excentricidd es e = c e = L figur 6.8 muestr l gráfic de est elipse. V f 4 3 (-3, 0) c = = c = = 6-4 f -5-6 V -7 b = 4 b = 4 figur 6.8

12 Págin 6 LA ELIPSE Ejemplo 5: Un elipse horizontl con centro en el origen tiene un excentricidd ( ) ( ) e = y ls coordends de sus focos son f ; 0 y f ; 0. Hllr l ecución de dich elipse y esbozr su gráfic. Solución: Inicilmente conviene grficr los dtos del enuncido, en este cso los focos y el centro, los cules se muestrn en l figur 6.9. Recordndo que l distnci del centro de un elipse culquier de los focos es c, se tiene entonces que c = Además, como el centro está en el origen, se desprende que h = 0 y k = 0. Por otr prte, sbiendo que l excentricidd está dd por l relción f (-3.46; 0) f (0; -3.46) centro e = c figur 6.9 conociendo los vlores de e y de c se obtiene que = de donde = = Conociendo los vlores de ls constntes = 4 y c = se clcul el de b: Por lo tnto, su ecución es b = c b = b = ( x 0) ( y 0) 4

13 INSTITUTO VALLADOLID PREPARATORIA Págin 7 x y 6 4 L gráfic se muestr en l figur 6.0: Y 3 b = X - 4 f f X - b = - = 4-3 Y = 4 figur 6.0

14 Págin 8 LA ELIPSE EJERCICIO 9 Trnsformr l form prticulr ls siguientes ecuciones de elipses: ) 4x + y + 8x + 6y - 3 = 0 ) 5x + 4y - 50x + 8y + 9 = 0 3) x + 4y + 4x + 3y + 3 = 0 4) 5x + 64y - 350x + 04y + 37 = 0 5) 9x + 6y + 6x - 3y + 60 = 0 6) x + 5y - x + 50y + 3 = 0 7) 5x + 36y + 00x + 7y = 0 8) 6x + y - 9x + 4y = 0 Trnsformr su ecución generl ls siguientes elipses: ( ) ( ) x + 5 y + 9) 0) 6 4 ( ) ( ) x 4 y + 7 ) ) 36 4 ( ) ( ) x + 8 y 4 3) 4) 9 4 ( ) ( ) x + 6 y + 5) 6) 64 ( x + ) ( y 8) 6 9 ( x + 9) ( y ) 5 49 ( x ) ( y ) 9 4 ( x + 5) ( y ) 8 9 7) Ls coordends de los vértices de un elipse son V (, ) y V (, - 5) y ls coordends de sus focos son f (, 0) y f (, - 4). Hllr su ecución. 8) Ls coordends de los vértices de un elipse son V (- 0, ) y V (6, ) y ls coordends de sus focos son f (-, ) y f (8, ). Hllr su ecución. 9) Ls coordends de los vértices de un elipse son V (- 4, 0) y V (6, 0) y ls coordends de sus focos son f (0, 0) y f (, 0). Hllr su ecución. 0) Ls coordends de los vértices de un elipse son V (-, 8) y V (-, - ) y ls coordends de sus focos son f (-, 7) y f (-, - ). Hllr su ecución. ) Ls coordends de los vértices de un elipse son V (3, 0) y V (- 7, 0) y l longitud de su ldo recto es 88/5. Hllr su ecución. ) Ls coordends de los vértices de un elipse son V (- 9, ) y V (7, ) y l longitud de su ldo recto es 88/3. Hllr su ecución. 3) Ls coordends de los vértices de un elipse son V (4, 5) y V (4, - 5) y l longitud de su ldo recto es 8/5. Hllr su ecución. 4) Ls coordends de los focos de un elipse son f (, 5) y f (, - 3) y l longitud de su eje menor es 6. Hllr su ecución. 5) Ls coordends de los focos de un elipse son f (- 0, - ) y f (0, - ) y l longitud de su eje menor es 4. Hllr su ecución.

15 INSTITUTO VALLADOLID PREPARATORIA Págin 9 6) Ls coordends de los focos de un elipse son f (- 5, 0) y f (5, 0) y l longitud de su eje menor es 8. Hllr su ecución. 7) Ls coordends del centro de un elipse son O (3, - ) y l de uno de sus focos es f (5, - ). Si l longitud de su eje menor es 0. Hllr su ecución. 8) Ls coordends del centro de un elipse son O (0, ) y l de uno de sus focos es f (5, ). Si l longitud de su eje menor es 4. Hllr su ecución. 9) Ls coordends de los focos de un elipse son f (, 5) y f (, - 3) y l longitud de su eje menor es 6. Hllr ls coordends de sus vértices. 30) Ls coordends de los focos de un elipse son f (- 0, - ) y f (0, - ) y l longitud de su eje menor es 4. Hllr ls coordends de sus vértices. 3) Ls coordends de los focos de un elipse son f (- 3, ) y f (- 3, - 7) y l longitud de su eje menor es 0. Hllr ls coordends de sus vértices. 3) Ls coordends del centro de un elipse son O (3, - ) y l de uno de sus focos es f (5, - ). Si l longitud de su eje menor es 0. Hllr ls coordends de sus vértices. 33) Ls coordends del centro de un elipse son O (3, 5) y l de uno de sus focos es f (8, 5). Si l longitud de su eje menor es 4. Hllr ls coordends de sus vértices. ( ) ( ) 34) Un elipse verticl tiene sus focos sobre l circunferenci x 3 + y = 49 y ls coordends de uno de sus vértices son V (3, 0). Hllr l ecución de dich elipse. ( ) ( ) 35) Un elipse horizontl tiene sus vértices sobre l circunferenci x + + y 4 = 8 y ls coordends de uno de sus focos son f (5, 4). Hllr l ecución de dich elipse. 36) L longitud del eje myor de un elipse es 78 y su excentricidd es e =. Sbiendo que se trt de un elipse 3 horizontl con centro en el origen, hllr su ecución. 37) Un elipse verticl tiene sus focos sobre l circunferenci ( ) x + y + = 6. Si su excentricidd es e =, hllr l ecución de dich elipse. 38) Ls coordends del centro de un elipse son O(-3, -4), l longitud de su eje menor es 40, su excentricidd es e = y l longitud de su ldo recto es lr = 3. Hllr l ecución de tl elipse si ést es horizontl ) Hllr l ecución de l elipse de centro (3, 8), uno de los focos f (8, 8) y que ps por el punto P(6, 4).

16 Págin 0 LA ELIPSE 6.3 INSTRUCCIONES PARA CONSTRUIR UNA ELIPSE CON PAPEL ) En un hoj tmño crt de ppel lbnene, trzr un circunferenci que brque l máximo l hoj. Mrcr el centro de dich circunferenci (ver figur 6.). ) Dibujr un punto entre.5 cm y cm por dentro de l circunferenci (ver figur 6.). 3) Doblr l hoj por l prte posterior, de mner que l líne de l circunferenci trzd en el pso coincid con el punto del pso (ver figur 6.). Mrcr bien el doblez. 4) Repetir el proceso nterior hciendo coincidir hor otro punto de l circunferenci del pso con el punto del pso..5 cms figur 6. 5) Continur sí hst llenr de dobleces l hoj. 6) Un vez concluid l construcción de l elipse bse de dobleces, el lumno deberá de mner intuitiv deducir cuáles son los dos focos de dich elipse. Hcer coincidir l líne con el punto figur 6.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza.

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza. Secciones cónics Un cono es l superficie que se obtiene girndo un rect lrededor de un eje que l cruz. Un sección cónic es l curv que se obtiene intersectndo un cono con un plno. CONO Los griegos comenzron

Más detalles

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN Si hor colocmos l elipse horizontl con centro en el origen, oservremos que no cmin l form ni lgun de sus crcterístics. Si tenímos como ecución

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad:

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad: MATEMÁTICA Unidd Geometrí nlític Objetivos de l unidd: Aplicrás correctmente l geometrí nlític: prábol, elipse e hipérbol l encontrr soluciones diverss problemátics del entorno. 55 Figurs cónics ests son

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

Las medias como promedios ponderados

Las medias como promedios ponderados Misceláne Mtemátic 8 (009) 1 6 SMM Ls medis como promedios ponderdos Alfinio Flores Peñfiel University of Delwre lfinio@mth.udel.edu Resumen Tres de ls medis que se usn frecuentemente en mtemátics (medi

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR

2. REPRESENTACIÓN ANALÍTICA Y GRÁFICA DE UN VECTOR 1. INTRODUCCIÓN CÁLCULO VECTORIAL Mgnitud: Es todo quello que se puede medir eperimentlmente. Ls mgnitudes físics se clsificn en esclres ectoriles. Mgnitud esclr: Es quell que iene perfectmente definid

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones

Las expresiones algebraicas provienen de fórmulas físicas, geométricas, de economía, etc. Son expresiones Definición de Polinomio Epresiones Algerics Epresión lgeric es tod cominción de números letrs ligdos por los signos de ls operciones ritmétics: dición, sustrcción, multiplicción, división potencición.

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado.

PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado. PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA Cpítulo SISTEMA DE COORDENADAS Demostrr que los puntos A ( 0,) B (,5) ; C ( 7,) D (, ) son los vértices de un cudrdo. Solución AB 9 6 5 5 BC 6 9 5 5 AD 9 6 5 5 CD

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

LAS CÓNICAS COMO LUGARES GEOMÉTRICOS

LAS CÓNICAS COMO LUGARES GEOMÉTRICOS LAS CÓNICAS COMO LUGARES GEOMÉTRICOS Elipse: lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos llmdos focos es constnte. d(x,f) + d(x,f ) = k LAS CÓNICAS COMO LUGARES GEOMÉTRICOS

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS A. EXPRESIONES ALGEBRAICAS. Cundo se quiere indicr un número no conocido, un cntidd o un expresión generl de l medid de un mgnitud (distnci, superficie, volumen, etc

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: LOGICA Y PENSAMIENTO MATEMATICO DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1

M A T E M Á T I C A S. Números Reales. Fraccionarios Positivos Negativos MIXTOS: 3 ¼ 1 M A T E M Á T I C A S Números Reles Enteros Rcionles Positivos Negtivos Nturles (,,,4,5,6... α) Primos (,,5,7,,,7) Pres (... 4,-,0,,4,6,..., ) Impres ( -...,-,-,0,,,5,..., ) Dígitos ( 0,,,,4,5,6,7,8,9

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z )

Primer octante Segundo octante Tercer octante Cuarto octante P ( X, Y, Z ) P (-X, Y, Z ) P (-X,-Y, Z ) P ( X,-Y, Z ) Cpítulo III. Álgebr vectoril Objetivo: El lumno plicrá el álgebr vectoril en l resolución de problems geométricos. Contenido: 3.1 Sistem crtesino en tres dimensiones. Simetrí de puntos. 3. Cntiddes esclres

Más detalles

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3).

ÁlgebrayGeometría. 5. Halla la ecuación de la circunferencia que pasa por (3, 0), ( 1, 0) y (0, 3). ÁlgebryGeometrí 1. ) Ddos tres puntos A, B y C en el plno demuestr que l circunferenci de diámetro AC ps por B siysólosielánguloâbc es recto. b) Ddos dos puntos A y B del plno y un rect r, determin, cundo

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

ÁLGEBRA: Propiedades para la Simplificación

ÁLGEBRA: Propiedades para la Simplificación Sludmed 016, por Prof. Edgr Loptegui Corsino ( http://www.sludmed.com/ ), se encuentr bjo un licenci CC: Cretive Commons : Atribución-No Comercil-Sin Derivds 3.0 PR: http://cretivecommons.org/licenses/by-nc-nd/3.0/pr/

Más detalles

Funciones & Cónicas. José Alfredo Martínez Valdés

Funciones & Cónicas. José Alfredo Martínez Valdés Funciones & Cónics José Alfredo Mrtínez Vldés Funciones & Cónics José Alfredo Mrtínez Vldés TABLA DE CONTENIDO Pág. Función:... 7 Dominio y rngo de un función... 7 Iguldd de funciones... 8 Funciones pres

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 6:CÓNICAS 1º BACHILLERATO ÍNDICE 1. INTRODUCCIÓN... 1.1. SUPERFICIE CÓNICA... 1.. CURVAS CÓNICAS... 5. CIRCUNFERENCIA... 6.1. ECUACIÓN COMPLETA DE UNA CIRCUNFERENCIA... 6.1.1.

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Factorizar un polinomio consiste en convertir un polinomio en un producto de expresiones algebraicas.

Factorizar un polinomio consiste en convertir un polinomio en un producto de expresiones algebraicas. Fctorizr un polinomio consiste en convertir un polinomio en un producto de epresiones lgebrics. Cso 1. Monomio como fctor común. Un polinomio tiene fctor común sí y sólo sí todos los términos del polinomio

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II)

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II) CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIEÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II)

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo

Razones trigonométricas de un ángulo agudo en un triángulo rectángulo pág.1 Medids de ángulos Ángulo es l porción del plno limitd por dos semirrects de origen común. Los ángulos se pueden medir en grdos sexgesimles o en rdines. Medids en grdos (uniddes sexgesimles): El grdo

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles