Curso Partículas Magnéticas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso Partículas Magnéticas."

Transcripción

1 El Primer Nombre En Pruebas No Destructivas Curso Partículas Magnéticas. Contenido Capítulo 1: Principios de Partículas Magnéticas. Capítulo 2: Características de campos Magnéticos. Capítulo 3: Efectos de discontinuidades y materiales. Capítulo 4: Magnetización con corriente eléctrica. Capitulo 5: Selección del método apropiado. Capitulo 6: Materiales de Inspección. Capitulo 7: Principios de Desmagnetización. Capitulo 8: Equipo de Inspección. Capitulo 9: Discontinuidades en los Materiales. Capitulo 10: Interpretación de Indicaciones. Capitulo 11: Documentos.

2 Capítulo 1: Principios de Partículas Magnéticas.

3 1. Principios de Partículas Magnéticas. i. Principios básicos El principio físico en el que se basa el método de inspección por partículas magnéticas es el Magnetismo. El principio se basa en el comportamiento de los imanes. Magnetismo es: La fuerza invisible que tiene la habilidad de desarrollar trabajo mecánico de atracción y repulsión de materiales magnetizables. La inspección por partículas magnéticas es un ensayo no destructivo que se emplea para detectar discontinuidades superficiales y subsuperficiales, en muestras que pueden ser magnetizadas. Consta de tres operaciones básicas: a) Establecer un flujo magnético adecuado, b) Aplicación de las partículas magnéticas, y c) Interpretación y evaluación de los resultados. ii. Antecedentes históricos En 1868 un Ingeniero Inglés publicó un reporte, en el cual se mencionaba la localización de discontinuidades presentes en el cañón de una pistola utilizando un compás magnético, en el que se registro un cierto flujo. En el siglo XX, en 1922, el Físico Ingles William E. Hoke observó que partículas metálicas que se encontraban sobre piezas de acero endurecido conectadas a tierra, sobre un mandril magnético, formaban patrones sobre la cara de la pieza, estos frecuentemente correspondían a sitios en donde se localizaban grietas en la superficie. Esta observación marcó el nacimiento de la inspección por partículas magnéticas. Imagen 1.- Principios de magnetismo- levitación de un imán.

4 1. Principios de Partículas Magnéticas. iii. Aplicaciones El método de inspección por partículas magnéticas es utilizado en diferentes ramas de la industria, como: metalmecánica, aeronáutica, naval, construcción, etc. Se aplica en: Inspección de materia prima; Inspección en proceso; Inspección de producto terminado; Mantenimiento de equipo y maquinaria. Se utiliza para inspección de materiales soldados, fundidos, forjados, rolados, etc. iv. Ventajas Las principales ventajas del método de inspección por partículas magnéticas son: Inspección relativamente rápida y de bajo costo, Equipo relativamente simple, provisto de controles utilizados para ajustar la corriente y un amperímetro visible para verificar la fuerza de magnetización que ha sido creada para la inspección, Equipo portátil y adaptable a muestras pequeñas o grandes, Se requiere menor limpieza que en líquidos penetrantes, Se pueden detectar discontinuidades subsuperficiales, Las indicaciones se forman directamente en la superficie de la muestra, No se requiere de lecturas electrónicas de calibración o mantenimiento excesivo, Se obtienen mejores resultados en la detección de discontinuidades llenas de algún contaminante (como carbón, escoria, etc.) y que no pueden ser detectadas en una inspección por líquidos penetrantes. Imagen 2.- Mantenimiento de equipo y maquinaria

5 1. Principios de Partículas Magnéticas. v. Limitaciones Las limitaciones del método de inspección por partículas magnéticas son: Es aplicable solamente en materiales ferromagnéticos, Se requiere un suministro de corriente eléctrica, No se pueden detectar discontinuidades localizadas a grandes profundidades, La detección de una discontinuidad depende de varios factores, Su aplicación en el campo es de mayor costo, ya que se necesita suministro de energía eléctrica, La rugosidad superficial puede distorsionar el campo, Se requiere de dos o más magnetizaciones, Generalmente, es necesario desmagnetizar después de la inspección, Se pueden generar quemadas en la superficie, al aplicar la técnica de puntas de contacto. Aunque las indicaciones son fácilmente observables, la experiencia para su interpretación y evaluación es necesaria, Capas de pintura o de algún otro recubrimiento no magnético afectan la sensibilidad del método. Imagen 3.- No se puede inspecionar grietas en otros materiales o muy profundas.

6 1. Principios de Partículas Magnéticas. vi. Teoría de los campos magnéticos 1. Campo magnético de la Tierra Si consideramos a la tierra como un imán gigante, ya que tiene un polo norte y un polo sur, la aguja de una brújula normal, la cual es simplemente una manecilla de acero magnetizada y suspendida en un eje libre para girar, es atraída por el campo magnético de la tierra, siempre indicando la misma dirección, imagen 4. Al estar magnetizada, la aguja de la brújula es atraída por los polos de la tierra y siempre apuntará hacia el polo norte, independientemente del lugar en donde se encuentre. La aguja de la brújula es un imán pequeñito y el polo sur del imán es atraído hacia el polo norte de la Tierra. Igual que la tierra tiene un polo norte y un polo sur, cada imán tiene, al menos, un polo norte y un polo sur. 2. Imantación de un material ferromagnético Los materiales ferromagnéticos están constituidos por grupos de átomos en regiones microscópicas llamados Dominios magnéticos. Estos dominios en sí son pequeños imanes dentro de la pieza, tienen una polaridad positiva y una negativa en sus extremos opuestos. Imagen 4.- Campo magnético de la tierra. Si el material no está magnetizado, tales dominios están orientados al azar, normalmente paralelos con los ejes de los cristales del material, y la componente magnética es nula, como se ilustra en la imagen 5.

7 1. Principios de Partículas Magnéticas. Cuando el material es sujeto a un campo magnético, los dominios se orientan o alinean paralelamente con el campo magnético externo, produciendo así un imán. Una vez que los dominios han sido orientados, como se muestra en la figura No. 6 el material ferromagnético se ha convertido en un imán, con un polo norte y un polo sur. Con los dominios orientados, el material ferromagnético desarrolla una fuerza total que es igual a la suma de la fuerza de todos los dominios. Ésta fuerza total es conocida como Flujo Magnético. El flujo magnético es representado por las líneas de fuerza magnética. Las líneas de fuerza magnética describen y definen la dirección de un flujo magnético, además, cuentan con una cantidad de propiedades importantes: Imagen 5.- Dominios magnéticos en un material sin magnetizar. 1. Tienen una dirección definida, salen por el polo norte, entran por el polo sur y continúan así su camino a través del imán, desde el polo sur al polo norte, 2. Son continuas y siempre forman una curva o circuito cerrado, 3. Las líneas de fuerza magnética, son individuales y jamás se cruzan ni unen entre ellas, 4. Su densidad disminuye con el aumento de distancia desde los polos, y 5. Siguen caminos de menor resistencia magnética. El espacio dentro y alrededor de un imán, en el cual actúan las líneas de fuerza, se conoce como Campo Magnético. Imagen 6.- Dominios magnéticos en un material magnetizado.

8 1. Principios de Partículas Magnéticas. 3. Polos magnéticos. Un imán tiene la propiedad de atraer materiales ferromagnéticos. Esta habilidad de atraer o repeler no es uniforme sobre toda la superficie del imán, se localiza únicamente en las áreas conocidas como polos. S N S N Consideremos la presencia de las líneas de fuerza en los imanes. El flujo magnético, o las líneas de fuerza, entran o abandonan el imán por los polos magnéticos. Por lo que, un imán podrá atraer materiales ferromagnéticos, solamente donde las líneas de fuerza salen o entren al imán, es decir, donde se encuentren localizados los polos magnéticos. Atracción La imagen 7 ilustra un imán de la forma más común, el imán de herradura, y sus polos magnéticos. S N N S 4. Ley del magnetismo. Dos imanes que se colocan de tal manera que el polo sur de uno se orienta hacia el polo norte del otro, entonces son atraídos entre sí, como se observa en la imagen??. Entonces, las leyes del magnetismo de atracción y repulsión para imanes, son las siguientes: Repulsión Imagen 7.- Leyes del magnetismo. Polos magnéticos diferentes se atraen (N> <S / S> <N). Polos magnéticos semejantes se repelen (N< >N / S< >S).

9 1. Principios de Partículas Magnéticas. 5 Unidades de medición El término flujo magnético es usado cuando se refiere a todas las líneas de fuerza en un área dada. La unidad de flujo magnético originalmente fue llamada Maxwell, siendo un Maxwell equivalente a una línea de fuerza. De acuerdo con el Sistema Internacional de Unidades, el flujo magnético se mide usando el Weber (Wb), siendo un Weber igual a 108 líneas de fuerza. El flujo magnético por unidad de área se llama densidad de flujo, por lo cual se puede definir como el número de líneas de fuerza que pasan transversalmente a través de una unidad de área. La unidad de densidad de flujo era el Gauss, siendo un Gauss igual a un Maxwell por centímetro cuadrado. La nueva unidad del Sistema Internacional para la densidad de flujo es el Tesla (T), siendo un Tesla igual a un Weber por metro cuadrado. La densidad de flujo es expresada matemáticamente como se indica a continuación: B = φ / A Imagen 8.- Líneas de fuerza y campo magnético en un imán de barra. Donde: B = Densidad de flujo, en Wb/m2 (1 Wb/m2 = 1 Tesla) (1 Tesla = 10,000 Gauss, ó 1 Gauss = 10-4 Tesla) φ = Flujo magnético, en Weber (Wb)(1 Wb = 108 líneas de fuerza) A = Área perpendicular al flujo magnético, en m2

10 1. Principios de Partículas Magnéticas. 6 Tipos de materiales magnéticos Los principios de aplicación de las pruebas por partículas magnéticas dependen del establecimiento de un campo magnético dentro de una pieza de prueba, por lo tanto, la pieza que será inspeccionada deberá estar fabricada de un material que pueda ser fuertemente magnetizado. Se puede considerar que todos los materiales tienen propiedades magnéticas, que son afectados en algún grado por los campos magnéticos. Sin embargo, la influencia de un campo magnético puede variar ampliamente en diferentes materiales, en otras palabras, son permeables aunque sea en alguna pequeña cantidad. La permeabilidad magnética (µ) de un material se define como la facilidad con la cual los materiales pueden ser magnetizados. El recíproco de la permeabilidad magnética es la reluctancia, definida como la resistencia de un material a una fuerza de magnetización, en otras palabras, podríamos decir que es la dificultad para magnetizar un material. Las propiedades magnéticas varían ampliamente entre los materiales. Estas propiedades son afectadas por la composición química, la micro estructura y el tamaño de grano. Imagen 9.- Materiales paramagnéticos. La influencia que tiene un campo magnético sobre los materiales proporciona un medio para su clasificación en diferentes grupos: Materiales paramagnéticos En general, los materiales que son atraídos por campos magnéticos son llamados paramagnéticos.

11 1. Principios de Partículas Magnéticas. Materiales no ferrosos (no magnéticos) Cuentan con una permeabilidad ligeramente mayor que la del aire (1), por lo que no pueden ser magnetizados fuertemente. Algunos materiales no magnéticos son: aluminio, platino, magnesio, molibdeno, litio, cromo, estaño y algunos aceros inoxidables. Materiales ferrosos (ferromagnéticos) Tienen una permeabilidad que es mucho mayor que la del aire. Los materiales ferrosos son los más fuertemente afectados por el magnetismo debido a que el hierro puede ser fácilmente magnetizado, y éstos materiales son llamados ferromagnéticos. Los materiales ferromagnéticos tienen las siguientes características: Son fuertemente atraídos por campos magnéticos, Son fácilmente magnetizados ya que el valor de su permeabilidad es mayor de 100, y Son capaces de retener cierta cantidad de magnetismo. Los materiales ferromagnéticos son el hierro, acero, níquel y cobalto, y muchas de sus aleaciones. Materiales diamagnéticos Imagen 10.- Materiales ferrosos. Pocos materiales son ligeramente repelidos por campos magnéticos, dichos materiales son conocidos como diamagnéticos. Son materiales que no pueden ser magnetizados debido a que el valor de su permeabilidad es menor a 1. Algunos materiales diamagnéticos son el bismuto, mercurio, oro, plata, zinc y otros.

12 1. Principios de Partículas Magnéticas. 7 Fuentes de magnetismo Imanes permanentes Los imanes permanentes son producidos por el tratamiento térmico de aleaciones, especialmente formuladas, dentro de un campo magnético fuerte. Durante el tratamiento térmico los dominios magnéticos son alineados y permanecen así después de remover el campo magnético externo. Son esenciales para la tecnología moderna, y se incluyen en aplicaciones tales como magnetos, motores, teléfonos, bocinas y muchos instrumentos eléctricos. Los ejemplos más comunes de utilizados para la fabricación de imanes permanentes incluyen aleaciones de aluminio, níquel y cobalto (alnico); cobre, níquel y cobalto (cunico); cobre, hierro y níquel (cunife); y cobalto y molibdeno (comol). Campo magnético de la Tierra El Planeta Tierra es, por él mismo, un enorme imán, con un polo norte y un polo sur ligeramente desplazados de su eje; este desplazamiento resulta en una ligera desviación entre el norte geográfico y el norte magnético. Como en un imán, la Tierra es circundada por líneas de fuerza, llamadas en ocasiones campo terrestre, las cuales pueden causar problemas en la magnetización y desmagnetización de objetos ferromagnéticos. El campo terrestre es reducido, y se encuentra en el orden de 0.03 mt (0.3 Gauss). El movimiento de objetos ferromagnéticos a través del campo terrestre puede inducir una ligera magnetización. Esto puede ser un problema en los aviones, cuando algunos componentes magnetizados puedan afectar los compases usados en la navegación. De la misma forma, la desmagnetización puede ser difícil si ciertos objetos, usualmente flechas, no se orientan en dirección este-oeste durante el proceso de desmagnetización. Imagen 11.- Imanes permanentes.

13 1. Principios de Partículas Magnéticas. Magnetismo mecánico inducido El trabajo en frío de algunos materiales ferromagnéticos, por operaciones de conformado o durante el servicio, puede magnetizar los objetos. Cuando se ha inducido magnetización mecánicamente, podría ser necesario aplicar el proceso de desmagnetización a un objeto. La desmagnetización de objetos magnetizados mecánicamente puede ser complicada. Cuando los objetos se encuentran cerca de componentes ferromagnéticos. Desensamblar es normalmente impráctico por lo que se debe utilizar yugos portátiles o cables para habilitar una bobina y, además, al desmagnetizar pueden magnetizarse los objetos adyacentes por lo que deben realizarse operaciones secuenciales de desmagnetización. Electroimanes Los campos magnéticos son generados dentro y alrededor de conductores eléctricos en los que fluye corriente eléctrica. Imagen 12. Imagen 12.- ejemplo de un Electroimán.

14 Capítulo 2: Características de Campos Magnéticos.

15 2. Características de Campos Magnéticos. i. Imanes tipo barra Si enderezamos un imán de herradura, tendríamos como resultado un imán tipo barra, como se ilustra en la imagen 13. El imán de barra tiene las mismas características que el imán de herradura. ii. Imanes tipo anillo Si al imán de herradura lo doblamos y sus extremos los cerramos, formando casi un círculo cerrado, este se comporta de manera idéntica al imán de herradura. Los polos magnéticos aún existen y las líneas de fuerza salen y entran por los polos. Cuando los extremos del imán son doblados y fundidos para formar un anillo, en lugar de tener un imán circular abierto, se tendrá un imán circular cerrado. Las líneas de fuerza existen pero quedan contenidas completamente dentro del anillo, ya que no existen polos magnéticos, por lo tanto, este imán no atrae materiales ferromagnéticos. Imagen 13.- Imán tipo barra.

16 Capítulo 3: Efectos de discontinuidades en materiales.

17 3. Efectos de discontinuidades en materiales. i. Discontinuidades superficiales Supongamos que el imán tipo anillo completo tiene una grieta en la superficie externa, creándose inmediatamente un polo norte y un polo sur en los bordes de la discontinuidad. Ésta grieta interrumpe el flujo uniforme de las líneas de fuerza dentro del imán, por lo que algunas de ellas se verán forzadas a salir del imán. Las líneas de fuerza que se ven forzadas a salir del imán, como resultado de la grieta, se conocen como fugas de flujo. El campo magnético creado por las fugas de flujo es llamado campo de fuga. Por lo tanto, si se espolvorean partículas magnéticas sobre el citado imán, éstas serán atraídas por los polos creados por la grieta, produciendo una indicación, por la concentración de partículas en la zona de la grieta. Una grieta en el imán de barra producirá un efecto similar, por lo que también causará fugas de flujo, como se observa en la imagen 14. Imagen 14.- Grieta en una imán de barra. Las líneas de fuerza en el fondo de la grieta tienden a seguir el camino de menor resistencia magnética y permanecen en el imán. Aquellas líneas de fuerza que saltan por encima y a través de la grieta, causan fugas de flujo (campos de fuga), debido a la formación de polos norte y sur originados por la grieta. Si ahora, también consideramos un imán de barra con un corte en el centro, imagen 15, también se tendrán fugas de flujo. El imán con el corte en el centro se comporta de la misma forma que el imán de barra con la grieta. En cualquier imán, los materiales como el hierro y el acero serán atraídos hacia sus polos magnéticos. Imagen 15.- Ranura en un iman de barra. Cuando se detecta una discontinuidad abierta a la superficie, tal como una grieta, se forman indicaciones angostas y bien definidas.

18 3. Efectos de discontinuidades en materiales. ii. Superficies onduladas Si ahora observamos una irregularidad superficial, tal como una superficie ondulada, en la zona de la superficie irregular ondulada, las líneas de fuerza permanecen dentro del imán. Como ya se mencionó, las líneas de fuerza tienden a seguir el camino de menor resistencia magnética, por lo cual permanecen dentro del imán. Como resultado, no se crean polos magnéticos por lo que no existen fugas de flujo. iii. Discontinuidades subsuperficiales Supongamos ahora que tenemos otro imán, que contiene una grieta subsuperficial. Con ésta grieta subsuperficial algunas de las líneas de fuerza pasan por encima y por debajo de ella. Algunas pasan a través de la grieta y, si la discontinuidad esta cerca de la superficie, algunas son forzadas a salir a la superficie, provocando fugas de flujo, como ilustra la imagen 16. Si espolvoreamos partículas magnéticas, se producirá una acumulación de partículas donde se encuentran las fugas de flujo. Imagen 16.- Discontinuidad subsuperficial. Cuando se detecta una discontinuidad subsuperficial normalmente se forman indicaciones anchas y difusas. El tamaño y la intensidad de la indicación dependen de: la proximidad de la discontinuidad con la superficie, el tamaño y orientación de la discontinuidad, la intensidad y distribución del flujo magnético.

19 3. Efectos de discontinuidades en materiales. iv. Fuerza de un campo de fuga La distorsión o fuerza de un campo de fuga, producido por una discontinuidad, depende de varios factores indicados a continuación: 1.- El número de las líneas de fuerza; éste factor es afectado por varias características de la propia discontinuidad: a) El ancho de la discontinuidad (la distancia entre sus polos); b) La longitud de la discontinuidad; c) La profundidad de la discontinuidad; d) La forma de la discontinuidad; e) La orientación de la discontinuidad. La discontinuidad debe estar orientada a 90, y hasta 45, con respecto a la dirección del flujo magnético. 2.- La condición de la superficie. 3.- La fuerza del flujo magnético generado, el cual es controlado por el amperaje utilizado para generar el campo magnético. La fuerza del campo de fuga determina directamente el número de partículas magnéticas que pueden ser atraídas para formar una indicación. v. Formación de indicaciones Cuando las partículas magnéticas son atraídas al sitio donde se localiza una fuga de flujo, ellas producen una indicación que es visible para el ojo humano, bajo condiciones de iluminación adecuada. La formación de las indicaciones depende de las características de las líneas de fuerza. Cuando las partículas son atraídas hacia las fugas de flujo y se acercan a los polos magnéticos, más líneas de flujo fluyen hacia ellas. Esto concentra las líneas de flujo a través de los caminos de baja reluctancia que forman las partículas de material ferromagnético. Esta es la acción principal que provoca que las partículas sean recolectadas por las fugas de flujo y subsecuentemente formen indicaciones de discontinuidades. Ya que las partículas magnéticas son solamente atraídas y se mantienen donde las líneas de fuerza salen y entran de la superficie de la pieza inspeccionada, no se producen indicaciones verdaderas a menos que las líneas de fuerza crucen una discontinuidad.

20 Capítulo 4: Magnetización con Corriente Eléctrica.

21 4. Magnetización con Corriente Eléctrica. i. Campo circular 1. Campo alrededor de un conductor Cuando una corriente eléctrica circula por un conductor, se crea un campo magnético circular, como se muestra en la imagen 17. El campo magnético alrededor de un conductor existe a todo lo largo del conductor por el que fluye corriente eléctrica. Cuando el conductor tiene una configuración uniforme, la densidad de flujo o número de líneas de fuerza por unidad de área, es uniforme a lo largo del conductor y es directamente proporcional a la intensidad de la corriente eléctrica, y disminuye con el incremento de distancia desde el conductor. Variando la intensidad de la corriente eléctrica en el conductor, el número de líneas de fuerza variará en el campo magnético. Al incrementar la fuerza de magnetización (la intensidad de la corriente eléctrica) se incrementa el número de las líneas de fuerza, resultando en un incremento de la densidad del campo magnético. Y en el caso contrario, al reducir la fuerza de magnetización se reduce la densidad del campo magnético. La magnetización circular utiliza los principios del establecimiento de un campo magnético por inducción. Debido a que el cobre y el aluminio son materiales no magnéticos, las líneas de fuerza no permanecerán en el material. En su lugar, el campo magnético se establece alrededor del material. Una característica de los campos magnéticos circulares es que las líneas de fuerza forman circuitos completos sin que existan polos magnéticos. Campo Magnético Imagen 17.- Campo magnético alrededor de un conductor. Corriente eléctrica

22 4. Magnetización con Corriente Eléctrica. 2. Regla de la mano derecha La forma más sencilla para determinar la dirección de las líneas de fuerza, alrededor de un conductor recto en el que fluye corriente eléctrica y en cual se conoce el sentido del flujo de corriente, es la regla de la mano derecha, ver la imagen 18. Esta ayuda simple requiere imaginar que el conductor se empuña con la mano derecha, con el dedo pulgar apuntando en la dirección del flujo de corriente eléctrica (de positivo a negativo) y los dedos restantes, cerrados alrededor del conductor, estarán indicando la dirección y el sentido en los que fluyen las líneas de fuerza. + Raramente es de importancia práctica el sentido actual del campo magnético, lo más importante del concepto es que la dirección del campo magnético tiene una relación perpendicular con la dirección del flujo de corriente. La regla de la mano derecha funciona idénticamente para materiales magnéticos y no magnéticos. La única diferencia entre los dos, es que el campo magnético se forma fuera del material no magnético, y en el material magnético el campo permanece en su interior. 3. Magnetización circular inducida en materiales Cuando fluye una corriente eléctrica a través de un material ferromagnético, el campo magnético se establece dentro del material. Las líneas de fuerza permanecen dentro de él, porque es permeable y las conduce fácilmente. También en este caso el campo magnético se encuentra a 90 con respecto a la dirección del flujo de corriente eléctrica. Campo magnético Imagen 18.- Regla de la mano derecha. Corriente Eléctrica

23 4. Magnetización con Corriente Eléctrica. En la práctica, la magnetización circular se realiza de dos formas: a) Pasando corriente eléctrica directamente a través de la pieza Piezas largas cilíndricas sólidas Por ejemplo, en la inspección de una barra de material ferromagnético, se conoce como magnetización entre cabezales y produce un campo magnético circular. Cuando una barra es magnetizada entre cabezales, el campo magnético es más fuerte cerca de la superficie de la barra. El campo se incrementa desde cero, en el centro de la barra, hasta un máximo en la superficie. F u e r z a d e l c a m p o F1 Conductor ferromagnético por el que fluye corriente alterna. R 2R 3R La imagen 19 muestra la distribución gráfica del campo magnético generado en una barra de acero redonda. La intensidad o fuerza del campo magnético es referida, a menudo, como la densidad de flujo. F1 = Campo en la superficie del conductor. R = Radio del conductor. En la gráfica anterior se puede observar que la intensidad del campo (fuerza), es cero en el centro de la barra. La densidad de flujo se incrementa gradualmente hasta alcanzar su máximo valor (F1) en la superficie de la barra. También, se puede observar que inmediatamente fuera de la superficie de la barra, la fuerza del campo decrece rápidamente. La mayor pérdida es inmediata y el remanente es imperceptible. Imagen 19.- Distribución del campo magnético. Piezas de forma irregular Si consideramos una barra de acero cuadrada, cuando circula una corriente a través de ella, en su interior será establecido un campo magnético circular, ver la imagen 20. imagen 20.- Barra cuadrada.

24 4. Magnetización con Corriente Eléctrica. b) Pasando corriente eléctrica a través de un conductor central Piezas tubulares Cuando se inspeccionan tubos pasando corriente eléctrica a través de ellos, el flujo magnético se eleva hacia la superficie externa, con un flujo casi imperceptible en la superficie interna. Pero, la superficie interna puede ser tan importante como la superficie externa para detectar discontinuidades. Conductor central Campo magnético Con un campo magnético creado alrededor de un conductor, es posible inducir un campo satisfactorio en un tubo, tanto en la superficie externa como en la superficie interna. Recordemos que en un conductor en el que fluye una corriente eléctrica se crea un campo magnético en su alrededor, con las líneas de fuerza que giran alrededor del conductor, y lo hacen en sentido contrario a las manecillas del reloj. Esta forma de inspección se lleva a cabo insertando una barra de cobre, o de algún otro material conductor, a través del componente y pasando la corriente eléctrica a través de la barra, ver la imagen 21. Este método es llamado magnetización con conductor central. Alrededor del conductor central se crea un campo magnético circular que se induce en la pieza. Debido a que la densidad de flujo es máxima en la superficie del conductor, el campo magnético inducido en la pieza será el máximo. Utilizando el conductor central, se establecerá el flujo magnético en las superficies interna y externa de la pieza. La densidad de flujo es máxima en la superficie interna y dependiendo del espesor de pared, algo menor en la superficie externa como se ilustra en la imagen 22. (+) (-) Imagen 21.- Conductor central en la inspección de un tubo. F u e r z a d e l c a m p o F2 F1 R 2R 3R F1 = Campo en la superficie del conductor. F2 = Campo en la superficie interna de la pieza. Imagen 22.- conductor central en la inspección de un tubo.

25 4. Magnetización con Corriente Eléctrica. 4. Métodos de magnetización circular La magnetización circular induce un campo magnético dentro de las piezas en tres formas: Por inducción directa, que se conoce como magnetización entre cabezales, Inducción directa por medio de electrodos, Inducción indirecta, conocida como magnetización con conductor central. Campo magnético a) Magnetización entre cabezales (por placas de contacto) En este método de magnetización las placas de contacto introducen la corriente en la pieza inspeccionada, como a un conductor, y se crea un campo circular a su alrededor, ver la imagen 23. Cabezal fijo Cabezal movil La inspección debe ser realizada de tal manera que las superficies de la pieza no sean dañadas físicamente por la presión ejercida, o bien, por el calor producido por un arco eléctrico o alta resistencia en los puntos de contacto. Para asegurar que la resistencia al paso de corriente sea lo más baja posible y evitar quemadas en la superficie de la pieza, los puntos de contacto deben ser lo más grandes posible. (+) Corriente electrica Discontinuidad (-) La magnitud de la corriente utilizada depende de las dimensiones transversales (el diámetro) de la pieza. Imagen 23.- Magnetización entre cabezales. b) Electrodos (puntas de contacto) Los electrodos, o puntas de contacto, son conductores de corriente, los cuales se utilizan para magnetizar áreas localizadas. Las puntas usadas son típicamente barras de cobre de 3/4 de diámetro y de 6 a 8 de longitud, montadas en soportes o manerales individuales o duales, como se observa en la imagen 24 y pueden contar con puntas de contacto de cobre o aluminio intercambiables, y un interruptor integrado.

26 4. Magnetización con Corriente Eléctrica. Debe tenerse mucha precaución debido a la posibilidad de producir quemaduras por arco en las piezas inspeccionadas, específicamente en los puntos de contacto, por lo cual las puntas de contacto deben mantenerse limpias. Con esta técnica se produce un campo circular alrededor de las puntas. Existen algunas variables de la técnica para su aplicación: utilizando imanes o pinzas. Las puntas se conectan a la fuente de corriente mediante cables que normalmente son flexibles de calibre 00 con cubierta de hule. Hasta donde sea práctico, los cables deben ser lo más cortos posible. Puntas de contacto ( - ) La magnitud de la corriente utilizada depende del espesor de la pieza inspeccionada y de la separación entre las puntas. ( + ) Se considera que la magnetización es más efectiva cuando las puntas están separadas de 15 a 20 cm (6 a 8 pulgadas), pero pueden usarse con separaciones de 7.6 a 20 cm (3 a 8 pulgadas). Discontinuidad c) Magnetización con conductor central Para la inspección de piezas cilíndricas huecas, por ejemplo tubos o anillos, se utiliza un conductor central que induce un campo circular. La posición del conductor puede ser diferente, y es muy importante: a) Si el conductor se coloca al centro de la pieza, el campo es simétrico alrededor. b) Si el conductor se coloca adyacente a la superficie interna de la pieza, el campo es más fuerte en la pared cercana al conductor. Campo magnético Imagen 24.- Puntas de contacto con manerales individuales. Para la inspección de tubos pequeños es preferible que el conductor sea colocado al centro, para que el campo sea uniforme para la detección de las discontinuidades que existen en cualquier punto sobre las superficies del tubo. Sin embargo, en el caso de tubos, anillos o recipientes a presión de diámetros grandes, la corriente necesaria para producir campos magnéticos con la fuerza adecuada para la inspección de la circunferencia completa, podría ser excesivamente grande.

Capítulo 3. Magnetismo

Capítulo 3. Magnetismo Capítulo 3. Magnetismo Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este

Más detalles

Lección 2: Magnetismo

Lección 2: Magnetismo : Magnetismo : Magnetismo Introducción Esta lección describe la naturaleza del magnetismo y el uso de los imanes en varios componentes eléctricos para producir y controlar la electricidad. Objetivos Al

Más detalles

Medir el valor de la permeabilidad del vacío μ o

Medir el valor de la permeabilidad del vacío μ o Experimento 9 MAGNETISMO Objetivo Medir el valor de la permeabilidad del vacío μ o Teoría Estamos familiarizados con las fuerzas de atracción y rechazo que sufren los imanes entre sí. La mayoría hemos

Más detalles

TEMA 4 ELECTROMAGNETISMO

TEMA 4 ELECTROMAGNETISMO TEMA 4 ELECTROMAGNETISMO IV.1 Magnetismo e imanes IV.2 Electroimanes IV.3 Flujo magnético IV.4 Fuerza magnética IV.5 Inducción electromagnética IV.6 Autoinducción Cuestiones 1 IV.1 MAGNETISMO E IMANES

Más detalles

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total

Más detalles

UNIVERSIDAD PARA LOS. Física Aplicada a Procesos Naturales MAYORES. Sesión 3. El campo magnético

UNIVERSIDAD PARA LOS. Física Aplicada a Procesos Naturales MAYORES. Sesión 3. El campo magnético Física Aplicada a Procesos Naturales UNIVERSIDAD PARA LOS MAYORES Sesión 3 El campo magnético 1 Física Aplicada a Procesos Naturales Imanes naturales UNIVERSIDAD PARA LOS MAYORES Desde la antigüedad (Thales

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

8.2.1 Campo magnético creado por un conductor cuando es atravesado por una corriente eléctrica

8.2.1 Campo magnético creado por un conductor cuando es atravesado por una corriente eléctrica ELECTROTECNIA.- 1CI1M 8.2 Electromagnetismo MAGNETISMO Y ELECTROMAGNETISMO Los imanes producen un campo magnético considerable, pero para ciertas aplicaciones éste resulta todavía muy débil. Para conseguir

Más detalles

MARCOS OMAR CRUZ ORTEGA 08/12/2009

MARCOS OMAR CRUZ ORTEGA 08/12/2009 Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4

Más detalles

Aquellos que nos permiten inspeccionar el 100 % de la muestra, obteniendo datos del estado total o parcial de la misma sin

Aquellos que nos permiten inspeccionar el 100 % de la muestra, obteniendo datos del estado total o parcial de la misma sin END. Fundamentos T- 1 Qué son los E.N.D.? Aquellos que nos permiten inspeccionar el 100 % de la muestra, obteniendo datos del estado total o parcial de la misma sin destruir ni alterar sus características.

Más detalles

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A)

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A) Flujo magnético Φ El campo magnético se representa a través de las líneas de fuerza. La cantidad de estas líneas se le denomina flujo magnético. Se representa por la letra griega Φ; sus unidades son weber

Más detalles

QUE ES LA CORRIENTE ALTERNA?

QUE ES LA CORRIENTE ALTERNA? QUE ES LA CORRIENTE ALTERNA? Se describe como el movimiento de electrones libres a lo largo de un conductor conectado a un circuito en el que hay una diferencia de potencial. La corriente alterna fluye

Más detalles

Fig. 1. Partes fundamentales de un disco duro

Fig. 1. Partes fundamentales de un disco duro LECTURA Y ESCRITURA DE INFORMACIÒN EN UN DISCO DURO UNIVERSIDAD DISTRITAL FCO. JOSÉ DE CALDAS TENDENCIAS EN DIDÁCTICA DE LA FÍSICA LICENCIATURA EN FÍSICA SERGIO CUELLAR 20021135020 MARCELA P. GONZÁLEZ

Más detalles

Tema 21 Propiedades magnéticas de los materiales.

Tema 21 Propiedades magnéticas de los materiales. Tema 21 Propiedades magnéticas de los materiales. El magnetismo es el fenómeno por medio del cual los materiales ejercen fuerzas de atracción o de repulsión sobre otros materiales. Muchos de los aparatos

Más detalles

Motor de Inducción RESUMEN

Motor de Inducción RESUMEN Motor de Inducción RESUMEN Una vez que la civilización comenzó a crecer, las necesidades de la misma se aumentaron, causando que los adelantos científicos fueran necesarios, y hasta en un punto indispensable;

Más detalles

Unidad Nº 9 Inducción magnética

Unidad Nº 9 Inducción magnética Unidad Nº 9 Inducción magnética Inducción magnética 9.1 - Se coloca una bobina de alambre que contiene 500 espiras circulares con radio de 4 cm entre los polos de un electroimán grande, donde el campo

Más detalles

3. Motores de corriente continua

3. Motores de corriente continua 3. Motores de corriente continua 1. Principios básicos Tipos de máquinas eléctricas Generador: Transforma cualquier clase de energía, normalmente mecánica, en eléctrica. Transformador: Modifica alguna

Más detalles

Capítulo II. Motores

Capítulo II. Motores Capítulo II. Motores En la actualidad, son ampliamente utilizados en nuestra vida cotidiana, desde utensilios en el hogar como lo son licuadoras, batidoras, procesadores de alimentos, extractor de jugos,

Más detalles

ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO

ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO ALUMNO: AUTOR: Prof. Lic. CLAUDIO NASO 5-5.1- Conceptos básicos 5.1.1- Imanes Naturales: Seguramente, desde que se conoce el hierro, se conocen los fenómenos magnéticos, que justamente deben su nombre

Más detalles

Como en cualquier problema de ingeniería, hay límites y requisitos que debes cumplir.

Como en cualquier problema de ingeniería, hay límites y requisitos que debes cumplir. Science Lab Desafíos de Ingeniería Desafíos anteriores Este Desafío de Ingeniería de SEED consiste en construir el mejor electroimán que puedas. Tu electroimán será evaluado por el peso que pueda levantar,

Más detalles

Museo de Instrumentos Científicos para la enseñanza de las ciencias

Museo de Instrumentos Científicos para la enseñanza de las ciencias Museo de Instrumentos Científicos para la enseñanza de las ciencias Recuperación del patrimonio histórico del Instituto Dante Alighieri de la ciudad de Rosario Argentina 2 BALANZA GRANATARIA Es un tipo

Más detalles

TÉCNICAS EXPERIMENTALES EN METALURGIA

TÉCNICAS EXPERIMENTALES EN METALURGIA TÉCNICAS EXPERIMENTALES EN METALURGIA Unidad temática nº 10: Ensayos no destructivos. Introducción Una prueba no destructiva es el examen de un objeto efectuado de cualquier forma que no impida su utilidad

Más detalles

FÍSICA DE 2º DE BACHILLERATO EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN

FÍSICA DE 2º DE BACHILLERATO EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN TEMA : EL CAMPO MAGNÉTICO 2.1 INTRODUCCIÓN Desde siglos antes de Cristo se conocía que algunos minerales de hierro, como la magnetita (Fe 3 O 4 ), atraían pequeños trozos de hierro. Esta propiedad se llamó

Más detalles

Electromagnetismo e inducción magnética

Electromagnetismo e inducción magnética Electromagnetismo e inducción magnética Experiencia N o 8 La electricidad y el magnetismo están estrechamente relacionados, pues la corriente eléctrica manifiesta un efecto magnético. El electromagnetismo

Más detalles

Revisión de material de END desarrollado por AENDUR, complementado y editado por Tec. Mec. Miguel Eyheralde.

Revisión de material de END desarrollado por AENDUR, complementado y editado por Tec. Mec. Miguel Eyheralde. 1 1 Métodos y técnicas Podemos clasificar las pruebas no destructivas basándonos en la posición en donde se localizan las discontinuidades que pueden ser detectadas por estas, por lo que podemos clasificarlas

Más detalles

Construcción de un motor eléctrico Eduardo Alberto Bellini, Escuela Técnica Nº 33 D.E. 19 Ebellini@buenosaires.edu.ar

Construcción de un motor eléctrico Eduardo Alberto Bellini, Escuela Técnica Nº 33 D.E. 19 Ebellini@buenosaires.edu.ar Resumen Construcción de un motor eléctrico Eduardo Alberto Bellini, Escuela Técnica Nº 33 D.E. 19 Ebellini@buenosaires.edu.ar En este trabajo se presenta un proyecto de fabricación de un motor eléctrico

Más detalles

Imanes Permanentes en Generadores de Energía

Imanes Permanentes en Generadores de Energía Imanes Permanentes en Generadores de Energía Dr. Roberto Morales Caporal Coordinador de la Comunidad de Energías Renovables del CUDI Profesor-Investigador del Instituto Tecnológico de Apizaco Apizaco,

Más detalles

Bobinas de trabajo de calentamiento por inducción

Bobinas de trabajo de calentamiento por inducción Bobinas de trabajo de calentamiento por inducción La bobina de trabajo, también conocida como inductor, es el componente del sistema de calentamiento por inducción que determina el grado de eficacia y

Más detalles

1.- INSTRUMENTOS DE MEDIDA DIRECTA Los instrumentos de medida directa son de muy variadas formas, precisión y calidad. He aquí los más importantes.

1.- INSTRUMENTOS DE MEDIDA DIRECTA Los instrumentos de medida directa son de muy variadas formas, precisión y calidad. He aquí los más importantes. METROLOGÍA 1.- INSTRUMENTOS DE MEDIDA DIRECTA 1.1. METRO 1.2. REGLA GRADUADA 1.3. CALIBRE O PIE DE REY 1.4. MICRÓMETRO 2.- VERIFICACIÓN DE ÁNGULOS 2.1. TIPOS 2.2. INSTRUMENTOS DE MEDIDA DIRECTA 3.- APARATOS

Más detalles

DEPARTAMENTO DE SERVICIOS INDUSTRIALES DE OASA

DEPARTAMENTO DE SERVICIOS INDUSTRIALES DE OASA 1 2 DEPARTAMENTO DE SERVICIOS INDUSTRIALES DE OASA 1. ASESORIAS 2. INSPECCIONES 3. IMPARTICION DE CURSOS Y/O ENTRENAMIENTOS EN SOLDADUR 4. IMPARTICION DE CURSOS Y/O ENTRENAMIENTOS DE SEGURIDAD EN LA SOLDADURA

Más detalles

MATERIALES MAGNETICOS

MATERIALES MAGNETICOS MATERIALES MAGNETICOS Los materiales magnéticos son importantes para el área de la ingeniería eléctrica. En general hay dos :ipos principales: materiales magnéticos blandos y magnéticos duros. Los blandos

Más detalles

CICLO DE HISTÉRESIS DE MATERIALES FERROMAGNÉTICOS

CICLO DE HISTÉRESIS DE MATERIALES FERROMAGNÉTICOS CICLO DE HISTÉRESIS DE MATERIALES FERROMAGNÉTICOS INTRODUCCIÓN Es un hecho experimental que, al aplicar un campo magnético sobre un material, éste se perturba. Se dice que el material se imana. Si no existen

Más detalles

Bases Físicas del Medio Ambiente. Campo Magnético

Bases Físicas del Medio Ambiente. Campo Magnético ases Físicas del Medio Ambiente Campo Magnético Programa X. CAMPO MAGNÉTCO.(2h) Campo magnético. Fuerza de Lorentz. Movimiento de partículas cargadas en el seno de un campo magnético. Fuerza magnética

Más detalles

UNIDAD 10 Características magnéticas de los materiales

UNIDAD 10 Características magnéticas de los materiales UNIDAD 1 Características magnéticas de los materiales 1.1 CUESTIONES DE AUTOEVALUACIÓN 1. Cual de las siguientes características es un inconveniente para un material de núcleos de máquinas de corriente

Más detalles

Medición de Susceptibilidad Magnética χ de Materiales

Medición de Susceptibilidad Magnética χ de Materiales Medición de Susceptibilidad Magnética χ de Materiales Marco Antonio Escobar y Mario Alatorre Laboratorio de Propiedades Magnéticas de Materiales Centro Nacional de Metrología Contenido: - El concepto de

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

Introducción al Diseño de Generadores con Imanes Permanentes

Introducción al Diseño de Generadores con Imanes Permanentes Introducción al Diseño de Generadores con Imanes Permanentes RESUMEN En este artículo se presentan los resultados del Modelaje de Generadores con Imanes Permanentes para ser usados en el desarrollo de

Más detalles

TEMA 08. ENSAYOS NO DESTRUCTIVOS.

TEMA 08. ENSAYOS NO DESTRUCTIVOS. Félix C. Gómez de León Antonio González Carpena TEMA 08. ENSAYOS NO DESTRUCTIVOS. Curso de Resistencia de Materiales y cálculo de estructuras. Índice. Introducción a los END. Presentación de los seis métodos

Más detalles

Proyecto: GENERADOR ELECTRICO- INDUCCIÓN ELECTROMAGNÉTICA.

Proyecto: GENERADOR ELECTRICO- INDUCCIÓN ELECTROMAGNÉTICA. Proyecto: GENERADOR ELECTRICO- INDUCCIÓN ELECTROMAGNÉTICA. Asignatura: Física III Año 2009 Universidad Nacional de Tucumán Facultad de ciencias exactas y Tecnología Departamento de Física PROMEI Sistema

Más detalles

Unidad Didactica. Motores Asíncronos Monofásicos

Unidad Didactica. Motores Asíncronos Monofásicos Unidad Didactica Motores Asíncronos Monofásicos Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION

Más detalles

Qué diferencia existe entre 110 ó 220 volts?

Qué diferencia existe entre 110 ó 220 volts? Qué diferencia existe entre 110 ó 220 volts? La diferencia en cuestión es el voltaje, como mejor es la 220v, ya que para una potencia determinada, la intensidad necesaria es menor, determinada por la siguiente

Más detalles

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR Máquinas Eléctricas Las máquinas eléctricas son convertidores electromecánicos capaces de transformar energía desde un sistema eléctrico a un sistema mecánico o viceversa Flujo de energía como MOTOR Sistema

Más detalles

Laboratorio orio de Operaciones Unitarias I

Laboratorio orio de Operaciones Unitarias I Laboratorio orio de Operaciones Unitarias I 1 República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio

Más detalles

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff Fisica III -10 - APENDICES - APENDICE 1 -Conductores -El generador de Van de Graaff - APENDICE 2 - Conductores, dirección y modulo del campo en las proximidades a la superficie. - Conductor esférico. -

Más detalles

1. OBJETO 2. ALCANCE. Código: PIL-CL-01. Versión No: 01

1. OBJETO 2. ALCANCE. Código: PIL-CL-01. Versión No: 01 Página: 1 de 21 1. OBJETO Fija las condiciones de inspección y garantiza el control de calidad y el cumplimiento de los requerimientos de aplicación del examen de inspección mediante Líquidos Penetrantes.

Más detalles

UNIDAD 1 Máquinas eléctricas

UNIDAD 1 Máquinas eléctricas Página1 UNIDAD 1 Máquinas eléctricas 1.1 Introducción MÁQUINA Una máquina es un conjunto de elementos móviles y fijos cuyo funcionamiento posibilita aprovechar, dirigir, regular o transformar energía o

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 APARATOS DE MEDIDA ANALOGICOS Esencialmente el principio de funcionamiento

Más detalles

6. Máquinas eléctricas.

6. Máquinas eléctricas. 6. Máquinas eléctricas. Definiciones, clasificación y principios básicos. Generadores síncronos. Campos magnéticos giratorios. Motores síncronos. Generadores de corriente continua. Motores de corriente

Más detalles

OTRAS APLICACIONES CON FIBRAS ÓPTICAS

OTRAS APLICACIONES CON FIBRAS ÓPTICAS APLICACIONES El campo de aplicación de las fibras ópticas es muy amplio y aumenta día a día. Algunas de las aplicaciones más importantes son: - Telecomunicaciones: En este apartado cabe incluir la red

Más detalles

Contenido del módulo 3 (Parte 66)

Contenido del módulo 3 (Parte 66) 3.1 Teoría de los electrones Contenido del módulo 3 (Parte 66) Localización en libro "Sistemas Eléctricos y Electrónicos de las Aeronaves" de Paraninfo Estructura y distribución de las cargas eléctricas

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA TRABAJO ESTRUCTURADO MANERA INDEPENDIENTE. Previo a la obtención del Título de:

UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA TRABAJO ESTRUCTURADO MANERA INDEPENDIENTE. Previo a la obtención del Título de: UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE INGENIERÍA CIVIL Y MECÁNICA TRABAJO ESTRUCTURADO MANERA INDEPENDIENTE Previo a la obtención del Título de: INGENIERO MECÁNICO TEMA: ENSAYOS NO DESTRUCTIVOS POR

Más detalles

INTRODUCCION. Generadores de CC. Dinamos

INTRODUCCION. Generadores de CC. Dinamos INTRODUCCION Los Motores y generadores eléctricos, son un grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa, con medios electromagnéticos. A una máquina

Más detalles

VATÍMETRO PARA MEDIDA DE LAS CARACTERÍSTICAS MAGNÉTICAS DE LOS NÚCLEOS DE TRANSFORMADORES Y MATERIALES BOBINADOS.

VATÍMETRO PARA MEDIDA DE LAS CARACTERÍSTICAS MAGNÉTICAS DE LOS NÚCLEOS DE TRANSFORMADORES Y MATERIALES BOBINADOS. VATÍMETRO PARA MEDIDA DE LAS CARACTERÍSTICAS MAGNÉTICAS DE LOS NÚCLEOS DE TRANSFORMADORES Y MATERIALES BOBINADOS. El vatímetro proporciona medidas de precisión en tiempo real para las pérdidas en chapas

Más detalles

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

SOLUCION A FALLAS MAS FRECUENTES EN SOLDADURA CON PROCESO G.M.A.W.

SOLUCION A FALLAS MAS FRECUENTES EN SOLDADURA CON PROCESO G.M.A.W. SOLUCION A FALLAS MAS FRECUENTES EN SOLDADURA CON PROCESO M.I.G. Y COMO SOLUCIONARLAS PROBLEMA CAUSA SOLUCIÓN No enciende el arco Falso contacto en la tierra Ajustar la pinza de tierra al metal base El

Más detalles

3. ENSAYOS NO DESTRUCTIVOS EN SOLDADURAS (END)

3. ENSAYOS NO DESTRUCTIVOS EN SOLDADURAS (END) 3. ENSAYOS NO DESTRUCTIVOS EN SOLDADURAS (END) 1 Introducción Son una serie de ensayos cuya finalidad es conocer/evaluar el estado de los materiales y soldaduras en obras sobre canalizaciones de acero,

Más detalles

PRÁCTICA 5: Electromagnetismo II. Motores eléctricos

PRÁCTICA 5: Electromagnetismo II. Motores eléctricos PRÁCTICA 5: Electromagnetismo II. Motores eléctricos 1 Introducción Un Motor Eléctrico es una máquina que convierte energía eléctrica en energía mecánica, es decir, a partir de corrientes eléctricas producen

Más detalles

ELEL10. Generadores de CC. Dinamos

ELEL10. Generadores de CC. Dinamos . Dinamos los generadores de corriente continua son maquinas que producen tensión su funcionamiento se reduce siempre al principio de la bobina giratorio dentro de un campo magnético. Si una armadura gira

Más detalles

CAPITULO 1. Motores de Inducción.

CAPITULO 1. Motores de Inducción. CAPITULO 1. Motores de Inducción. 1.1 Introducción. Los motores asíncronos o de inducción, son prácticamente motores trifásicos. Están basados en el accionamiento de una masa metálica por la acción de

Más detalles

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba.

Un par de puntas de prueba que comunican el instrumento con el circuito bajo prueba. INSTRUMENTACIÓN ELÉCTRICA Medición de tensión con diferentes instrumentos de medida MULTÍMETROS ANALOGOS De todas las herramientas y equipos que un electricista pueda poseer en su banco o en su maletín

Más detalles

Experimento 1 E = q o LÍNEAS DE FUERZA Y LÍNEAS EQUIPOTENCIALES. Objetivos. Teoría

Experimento 1 E = q o LÍNEAS DE FUERZA Y LÍNEAS EQUIPOTENCIALES. Objetivos. Teoría Experimento 1 LÍNEAS DE FUERZA Y LÍNEAS EQUIPOTENCIALES Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.

Más detalles

SOLDADURA SOLDADURA DE FUSIÓN POR ARCO ELÉCTRICO

SOLDADURA SOLDADURA DE FUSIÓN POR ARCO ELÉCTRICO SOLDADURA DEFINICIÓN Es la unión sólida de dos materiales o parte de un material mediante al fusión de sus bordes con calor proveniente de una fuente eléctrica o gaseosa, según el equipo que se emplee

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA 9 NDUCCÓN ELECTROMAGNÉTCA 9.. FLUJO MAGNÉTCO. Por qué es nulo el flujo magnético a través de una superficie cerrada que rodea a un imán? Las líneas de campo magnético son cerradas. En el caso de un imán,

Más detalles

PROFESOR: ING. EUMAR LEAL

PROFESOR: ING. EUMAR LEAL UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGIA COMPLEJO ACADEMICO EL SABINO ASIGNATURA: INSTRUMENTACION Y CONTROL DE PROCESOS INDUSTRIALES SENSORES DE PRESIÓN PROFESOR: ING.

Más detalles

ENSAYOS NO DESTRUCTIVOS: ULTRASONIDOS

ENSAYOS NO DESTRUCTIVOS: ULTRASONIDOS ENSAYOS NO DESTRUCTIVOS: Los ensayos mediante U.S. permiten la medida de espesores reales en servicio, espesores de películas protectoras, de pinturas, de recubrimientos, así como la localización y medida

Más detalles

CAPÍTULO II MÉTODOS DE MEDICIÓN DE LA CONDUCTIVIDAD TÉRMICA

CAPÍTULO II MÉTODOS DE MEDICIÓN DE LA CONDUCTIVIDAD TÉRMICA CAPÍTULO II MÉTODOS DE MEDICIÓN DE LA CONDUCTIVIDAD TÉRMICA. MÉTODOS ESTACIONARIOS Entre los métodos de medición de la conductividad térmica adquirieron la mayor difusión los métodos estacionarios. Su

Más detalles

Cómo llega la electricidad a nuestras casas?

Cómo llega la electricidad a nuestras casas? Cómo llega la electricidad a nuestras casas? Nosotros utilizamos la electricidad a diario sin ponernos a pensar en cómo es que llega hasta nuestros hogares. La producción y la distribución de la electricidad

Más detalles

ELECTRICIDAD Y MAGNETISMO COMBISOL CEIP EL SOL (MADRID)

ELECTRICIDAD Y MAGNETISMO COMBISOL CEIP EL SOL (MADRID) ELECTRICIDAD Y MAGNETISMO I. LA ELECTRICIDAD La linterna o la televisión necesitan energía para funcionar. La forma de energía que utilizan es la electricidad. 1. La electricidad estática Normalmente los

Más detalles

Definimos así a la región del espacio donde se manifiestan acciones magnéticas.

Definimos así a la región del espacio donde se manifiestan acciones magnéticas. Unidad N 1 - TRANSFORMACION DE LA ENERGIA CAMPO MAGNETICO: Definimos así a la región del espacio donde se manifiestan acciones magnéticas. ELECTROMAGNETISMO Ley de Biot Savart En todo conductor recorrido

Más detalles

Soldador DISEÑOS CURRICULARES CON ENFOQUE POR COMPETENCIAS LABORALES

Soldador DISEÑOS CURRICULARES CON ENFOQUE POR COMPETENCIAS LABORALES Soldador DISEÑOS CURRICULARES CON ENFOQUE POR COMPETENCIAS LABORALES Créditos EQUIPO TÉCNICO Dirección de Diseño y Contenido Pedagógico DISEÑO Y DIAGRAMACIÓN Dirección de Diseño y Contenido Pedagógico

Más detalles

INDICE 1. La Naturaleza del Diseño Mecánico 2. Materiales en el Diseño Mecánico 3. Análisis de Tensiones

INDICE 1. La Naturaleza del Diseño Mecánico 2. Materiales en el Diseño Mecánico 3. Análisis de Tensiones INDICE 1. La Naturaleza del Diseño Mecánico 1 1.1. Objetivos del capitulo 2 1.2. Ejemplos de diseño mecánico 4 1.3. Conocimientos necesarios para el diseño mecánico 7 1.4. Funciones y especificaciones

Más detalles

Norma ASTM A-956.- Método Estándar para Prueba de Dureza Equotip en Metales

Norma ASTM A-956.- Método Estándar para Prueba de Dureza Equotip en Metales info Norma ASTM A-956.- Método Estándar para Prueba de Dureza Equotip en Metales 1. Alcance 1.1 Este método de prueba contiene información sobre la determinación de la dureza Equotip en acero, acero forjado,

Más detalles

ENSAYOS NO DESTRUCTIVOS

ENSAYOS NO DESTRUCTIVOS Ensayos no destructivos 1/11 ENSAYOS NO DESTRUCTIVOS 1.- Ensayos magnéticos. 2.- Ensayos eléctricos. 3.- Ensayos por líquidos penetrantes. 4.- Ensayos estructurales: 4.1.- Ensayos micrográficos: 4.2.-

Más detalles

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián

Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián Integrantes: Luna Sánchez Omar Daniel Hernández Pérez Morgan Adrián GENERADORES DE CORRIENTE ALTERNA Ley de Faraday La Ley de inducción electromagnética ó Ley Faraday se basa en los experimentos que Michael

Más detalles

Electrotecnia General Tema 17 TEMA 17 APARATOS DE MEDIDA

Electrotecnia General Tema 17 TEMA 17 APARATOS DE MEDIDA TEMA 17 APARATOS DE MEDIDA 17.1. DEFINICIÓN. Un aparato de medida es un sistema que permite establecer la correspondencia entre una magnitud física que se pretende medir, con otra susceptible de ser percibida

Más detalles

Medición del ciclo de histéresis de un material ferromagnético

Medición del ciclo de histéresis de un material ferromagnético Medición del ciclo de histéresis de un material ferromagnético Leandro Carballo (a) y Ramón Gómez (b) Laboratorio de Física II, Curso 007 Facultad de Ingeniería y Ciencias Exactas y Naturales Universidad

Más detalles

Ensayos NO Destructivos

Ensayos NO Destructivos Ensayos NO Destructivos Ensayos Destructivos vs NO Destructivos Características positivas de los ensayos Destructivos Proveen datos cuantitativos, precisos y confiables de la pieza ensayada Proveen datos

Más detalles

Universidad Nacional experimental Francisco de Miranda Área de Tecnología Complejo Académico Punto Fijo Departamento de Física y Matemáticas

Universidad Nacional experimental Francisco de Miranda Área de Tecnología Complejo Académico Punto Fijo Departamento de Física y Matemáticas Universidad acional experimental Francisco de Miranda Área de Tecnología Complejo Académico Punto Fijo Departamento de Física y Matemáticas IDUCTACIA LOGO Inductancia Magnética. Interacción entre campos

Más detalles

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA Según la norma DIN 17014, el término deformación se define como el cambio dimensional y de forma de un pieza del producto de

Más detalles

La Soldadura por Puntos

La Soldadura por Puntos La Soldadura por Puntos 1 Es un procedimiento de soldadura autógena sin metal de aportación donde se utiliza como fuente calorífica una corriente eléctrica para llevar un volumen de material a la temperatura

Más detalles

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.1.- Elementos que componen una estructura metálica de tipo industrial. Una estructura de tipo industrial está compuesta (Fig. I.1) por marcos

Más detalles

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm EL PARACAIDISTA Webs.uvigo.es/cudav/paracaidismo.htm 1. Un avión vuela con velocidad constante en una trayectoria horizontal OP. Cuando el avión se encuentra en el punto O un paracaidista se deja caer.

Más detalles

Campo magnetico e inductores

Campo magnetico e inductores Campo magnetico e inductores Marcos Flores Carrasco Departamento de Física mflorescarra@ing.uchile.cl Tópicos Campo Magnético Ley de inducción de Faraday Inductor Asociacion de inductores Circuitos RL

Más detalles

Medida del recubrimiento de hormigón y localización de barras

Medida del recubrimiento de hormigón y localización de barras González,E.yAlloza,A.M. Medida del recubrimiento de hormigón y localización de barras FUNDAMENTO El recubrimiento actúa como una barrera física entre la armadura y el ambiente al que se encuentra expuesta

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que

Más detalles

FRPMST221.1: Preparar equipos, accesorios, herramientas y consumibles para soldar manualmente por

FRPMST221.1: Preparar equipos, accesorios, herramientas y consumibles para soldar manualmente por Norma de competencia laboral en soldadura Area ocupacional: Fabricación y reconstrucción de productos metálicos soldados (tubería) Nivel ocupacional: II TITULO DE LA NORMA FRPMST221: Soldar manualmente

Más detalles

FLUJO LUMINOSO. Figura 16. Curva de sensibilidad del ojo humano.

FLUJO LUMINOSO. Figura 16. Curva de sensibilidad del ojo humano. FLUJO LUMINOSO La mayoría de las fuentes de luz emiten energía electromagnética distribuida en múltiples longitudes de onda. Se suministra energía eléctrica a una lámpara, la cual emite radiación. Esta

Más detalles

Módulo de Aprendizaje 2: Introducción a la Electricidad. Serie Básica 101

Módulo de Aprendizaje 2: Introducción a la Electricidad. Serie Básica 101 Módulo de Aprendizaje 2: Introducción a la Electricidad Serie Básica 101 Temario Comenzaremos con una presentación general para que conozca los aspectos principales de estos dispositivos y sus partes.

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

Conceptos de Electricidad Básica (1ª Parte)

Conceptos de Electricidad Básica (1ª Parte) Con este artículo sobre la electricidad básica tenemos la intención de iniciar una serie de publicaciones periódicas que aparecerán en esta página Web de forma trimestral. Estos artículos tienen la intención

Más detalles

DISEÑO DE ELEMENTOS DE MAQUINAS SERIE DE EJERCICIOS No.1 SEMESTRE 2009-2

DISEÑO DE ELEMENTOS DE MAQUINAS SERIE DE EJERCICIOS No.1 SEMESTRE 2009-2 DISEÑO DE ELEMENTOS DE MAQUINAS SERIE DE EJERCICIOS No.1 SEMESTRE 2009-2 1.- Para las secciones mostradas en la figura 1, determine la localización de su centroide y calcule la magnitud del momento de

Más detalles

INSTRUMENTOS MECÁNICOS Características y funcionamiento

INSTRUMENTOS MECÁNICOS Características y funcionamiento INSTRUMENTOS MECÁNICOS Características y funcionamiento Estos indicadores basan su funcionamiento en la conversión directa, por medios mecánicos, de un determinado efecto físico, en un movimiento que servirá

Más detalles

Apéndice B Construcción de Bobinas

Apéndice B Construcción de Bobinas Apéndice B Construcción de Bobinas B.1 Características de una Bobina. El diseño de los inductores se basa en el principio de que un campo magnético variable induce un voltaje en cualquier conductor en

Más detalles

ELEMENTOS DE MANIOBRA

ELEMENTOS DE MANIOBRA Circuito eléctrico. Circuito eléctrico. Circuito eléctrico Un circuito eléctrico es un conjunto de operadores o elementos que, unidos entre sí, permiten una circulación de electrones (corriente eléctrica).

Más detalles

Práctica de Ultrasonido

Práctica de Ultrasonido Universidad Nacional de Luján 1. Objetivo Realizar el ensayo no destructivo de medición de espesores mediante un equipo digital de ultrasonido. Reconocer las características particulares del quipo. Uso

Más detalles

Apuntes del Curso de Diseño en Acero INTRODUCCION. 7.1. Conectores Mecánicos

Apuntes del Curso de Diseño en Acero INTRODUCCION. 7.1. Conectores Mecánicos INTRODUCCION. Uno de los aspectos importantes en el diseño de elementos estructurales lo constituye el diseño de sus conexiones. El diseñador cuenta con varias formas para unir piezas metálicas. Conectores

Más detalles

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que

Más detalles