GEOMETRIA DEL TEOREMA DE LA FUNCIÓN IMPLÍCITA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GEOMETRIA DEL TEOREMA DE LA FUNCIÓN IMPLÍCITA"

Transcripción

1 GEOMETRIA DEL TEOREMA DE LA FUNCIÓN IMPLÍCITA E. SÁEZ En general los textos de Cálculo, por ejemplo en [1,2,3,4], introducen el Teorema de la Función Implícita bajo el punto de vista del Análisis y su demostración usa fuertemente el Teorema de la transformación Inversa. En estas notas se pretende comprender el Teorema de la Función Implícita bajo el punto de vista de la idea geométrica que involucra dicho Teorema. Supongamos una ecuación en coordenadas cartesianas de la forma E(x,y,z)=0. ElprimermiembrodelaecuaciónseinterpretacomounafunciónEatresvariables, que supondremos diferenciable en su dominio de definición, o bien, supondremos que la función E admite derivadas parciales continuas. En este caso diremos que la funciónees declasec 1 y escribiremossimplemente E C 1. Una interpretación geométrica de las soluciones de la ecuación E(x,y,z)=0, es que forman el Nivel Cero de la función E a tres variables en dom(e) R 3, más exactamente es el conjuntodepuntos E 1 (0) enr 3 definidopor: E 1 (0)={(x,y,z) E(x,y,z)=0} NótesequelanotaciónE 1 (0),pordefinicióndesignaelconjuntodesolucionesenR 3 de la ecuación E(x,y,z)=0, equivalentemente es el conjunto de las preimágenes del valorcerodelafuncióneyno debeinterpretarsecomouna funcióninversadee. La gráfica del nivel cero E 1 (0) enr 3 puede tener varias componentes conexas (Ramas)ysermuycomplicada,porejemplounacomponenteconexapuedeseruna superficiecomo enlafig. 1 E 1 (0) E Niveles 0 Q Fig. 1 Departamento de Matemática, UTFSM e mail: eduardo.saez@usm.cl. 1

2 2 E. SÁEZ Comentario: Nótese que la superficie de la Fig. 1, no es la gráfica de una función a dos variables, definida en algun dominio D R 2 y que contenga del punto Q, en elplano. ElpuntoQtienealmenosdosimágenesdiferentesenlasuperficiede nivele 1 (0). En estos apuntes nos interesa estudiar. Bajo que condiciones?, partes de una superficiedenivele 1 (0),eslagráficadealgunafunciónadosvariables. Estaesla idea geométrica del Teorema de la Función Implícita. Definición 1. Sea la ecuación E(x,y,z)=0, entonces z= f(x,y) definida en un conjunto abierto D R 2, es una función definida implícitamente por la ecuación, si y sólo si, E(x,y, f(x,y)) 0 en D Comentario: Geométricamente la definición anterior dice que la función f, es definida implícitamente por la ecuación, si la gráfica de f es parte de la superficie de nivel E 1 (0). Definición2. UnpuntoPdeunniveldiferenciableE 1 (0),esRegular sielvectorgradiente E no se anula en el punto, E(P) 0. En caso contrario P es es un punto singular del nivel. Comentario: SielnivelE 1 (0)esunasuperficiequeseautointersectatransversalmenteyP esunpuntodelaintersección,entonces E(P)= 0,puesgeométricamenteelvectorgradiente, existe por la diferenciabilidad, es único y es perpendicular a dos superfices diferentes por dicho punto. Elúnicovectorque tieneesta propiedades elvectornulo. Supongamos que la función a tres variables E, es diferenciable y está definida en un dominio Ω R 3, obien,e :Ω R, E C 1 (1) Consideremos un punto P, arbitrario pero fijo tal que: i) P E 1 (0) E ii) (P) 0 Lapropiedad i),dice que Pes unpuntodel nivelcerode E. La propiedad ii), dice que la tercera componente del vector gradiente de E es no nula en el punto P, esto implica que el nivel cero de E es una superficie Regular en el punto P, pues E(P) 0. Además, Geométricamente el vector gradiente en el punto, no es paralelo alplano. La figura siguiente muestra ejemplos de puntos donde se satisfacen ambas propiedades de (1).

3 FUNCIÓN IMPLÍCITA 3 E 1 (0) P 1 E Niveles 0 P 2 H Fig. 2 Sielvectorgradiente E(H) 0yesparaleloalplano,entoncesesinmediatoquela segunda propiedad de(1) no se cumple, pues la tercera componente del vector gradiente de Een elpuntoes nula,es decir, E (H)=0. EnlospuntosP 1,P 2 E 1 E (0)delaFig. 3, (P 1) 0 E (P 2)yadiferenciadelpunto H las dos propiedades de (1) se cumplen. Esto permite considerar por ejemplo, las superficie S 1,S 2 E 1 (0), suficientemente pequeñas, alrededor de cada uno de los puntos P 1,P 2 cuyas proyeccionesd 1,D 2 alplanosondominiosdefunciones f 1 : D 1 R, f 2 : D 2 R, respectivamente,tales que gr(f 1 ),gr(f 2 ) E 1 (0) E 1 (0) P 1 S1 E Niveles 0 P 2 S 2 S 1 S 2 D 1 D 2 Fig. 3 El argumento geométrico anterior justifica:

4 4 E. SÁEZ Teorema 1. SeaΩ R 3 un subconjunto abierto, una función E :Ω R de clase C 1 i) P 0 E 1 (0) y P 0 Ω un punto tal que; E ii) (P. Entonces, existe una única función 0) 0 implícita de clase C 1, z= f(x,y), definida en una vecindad V del punto (x 0,y 0 ) enr 2, tal que,gr(f) E 1 (0). Dem. Teorema 1. El Teorema tiene tres afirmaciones sobre la función implícita: i) Existencia ii) Diferenciabilidad iii) Unicidad i) Existencia. De las propiedades del enunciado, que son exactamente las propiedades en (1) se tiene que P 0 es un punto regular, esto significa por la introducción, que parte de la superficie de nivel E 1 (0), suficientemente pequeña alrededor del punto P 0 es la gráfica de una función implícita tal que gr(f) E 1 (0),loquejustificalaexistencia delafunción implícita. ii) Diferenciabilidad. Como la función E es diferenciable por hipótesis, entonces cualquier parte del nivel E 1 (0) es diferenciable, en particular la superficie gr(f) E 1 (0) con f función implícita, pues E(x,y,z)=z f(x,y) de donde f es diferenciable pues E es diferenciable. iii) Unicidad. ComoP 0 esunpuntoregular,estosignificaquelocalmenteenuna vecindadsuficientementepequeñadep 0 enr 3 lasuperficiedenivele 1 (0)no sepuedeautointersectarenalgúnsubconjuntoquecontengaelpuntop 0,pues en caso contrario el gradiente E(P 0 )= 0 y P 0 es un punto singular, lo que es contradictorio con las hipótesis. Luego existe una vecindad suficientemente pequeña de P 0 enr 3 que tiene la propiedad de aislar sólo una parte de la superficiedenivele 1 (0) en dichavecindad,loquedemuestralaunicidad. Comentario. En textos más avanzado, el Teorema (1) se generaliza a funciones E que dependen de n-variables, n 2. PREGUNTA: Bajo las hipótesis del Teorema 1. Cómo obtener la primera Derivada Parcial de una función implícita? RESPUESTA: ConsideremosunsubconjuntoabiertoΩ R 3 y unafunción i) P 0 E 1 (0) E :Ω R, C 1 tal que P 0 Ω es un punto donde; E ii) (P. Entonces, existe 0) 0 una única función implícita de clase C 1, z= f(x,y). En una vecindad del punto P 0 se satisfacelaidentidade(x,y, f(x,y)) 0. PorlaRegladelaCadena,derivandoparcialmente

5 la identidadrespectode la variable xse tiene: FUNCIÓN IMPLÍCITA 5 E x +E z x 0, de donde, x E x E z Análogamente, por la Regla de la Cadena derivando parcialmente la identidad respecto de la variable yse tiene: E y +E z y 0, de donde, y E y E z EJERCICIO: Bajo las hipótesis que la función E es de clase C 2 en el Teorema 1. Cómo obtener la segunda Derivada Parcial de una función implícita? RESPUESTA: Por la Regla de la Cadena, derivando parcialmente por ejemplo, la identidad parala primera derivada,e x +E z x E xx +2E xz x +E zz 0,respectode la variable xse obtiene: ( x ) 2+Ez 2 z x2 0, de dondees inmediato: 2 z x 2 2E xe xz E z +E xx E 2 z+e 2 xe zz E 3 z Análogamente para las restantes segundas derivadas parciales. Ejercicios 1.- Considerela ecuaciónx 3 y+ y 2 xy 5 1=0 i) Demuestre que la ecuación define implícitamente, una función de la forma y= f(x) alrededordelpunto (1,1). ii) Cuáleselvalordelapendientedelafunciónimplícita f,enelpunto(1,1)?. iii) Comoes la concavidadde f alrededordelpunto (1,1)?. iv) Haga unbosquejodela gráficade f enunavecindaddelpunto (1,1). 2.- Considerela ecuaciónx 3 yz 3 +z 2 y 2 xzy 5 1=0 1) Demuestre que la ecuación define implícitamente, una función de la forma z= f(x,y) alrededordelpunto (1,1,1). ii) Seac,lacurvainterseccióndelplanox=1conlagráficadelafunción f. Cuál esla pendientede la curvacen elplanox=1,enelpunto(1,1,1)?. iii) Como es la concavidad de c, en el plano x=1, alrededor del punto (1,1,1)?. iv) Haga un bosquejo de la gráfica de c, en el plano x=1, en una vecindad del punto(1,1,1). Bibliografía 1.- Watson Fulks, Cálculo Avanzado. Limusa-Wiley, S. A Serge Lang, Cálculo II. Fondo Educativo Interamericano, S. A Elon Lages Lima, Curso de Análise, vol. 2 Projeto Euclides CNPq-Brasil, 1981

6 6 E. SÁEZ 4.- Walter Rudin, Principios de Análisis Matemático. McGRAW-Hill BOOK COM- PANY

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS

ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS ECUACIONES DIFERENCIALES PARCIALES CUASILINEALES PRIMER ORDEN, NOCIONES BÁSICAS E. SÁEZ Una Ecuación Diferencial Partial (E.D.P.) de Primer Orden, en dos variables, es simplemente una expresión de la forma

Más detalles

Variedades Diferenciables. Extremos Condicionados

Variedades Diferenciables. Extremos Condicionados Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

Campos conservativos. f(x) = f (x) = ( f x 1

Campos conservativos. f(x) = f (x) = ( f x 1 Capítulo 1 Campos conservativos En este capítulo continuaremos estudiando las integrales de linea, concentrándonos en la siguiente pregunta: bajo qué circunstancias la integral de linea de un campo vectorial

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

DELTA DE DIRAC. NOCIONES BÁSICAS

DELTA DE DIRAC. NOCIONES BÁSICAS DELTA DE DIRAC. NOCIONES BÁSICAS E. SÁEZ Consideremos la gráfica de la función h ǫ ( a) definida por la Fig. 1: 1 ǫ,a R, ǫ > 0. a ǫ a a+ ǫ 2 2 Fig. 1 Formalmente, dado a R, ǫ > 0, la función definida por

Más detalles

http://www.virtual.unal.edu.co/cursos/ciencias/2001008/lecciones/cap02/02_02_01.tex

http://www.virtual.unal.edu.co/cursos/ciencias/2001008/lecciones/cap02/02_02_01.tex http://www.virtual.unal.edu.co/cursos/ciencias/2001008/lecciones/cap02/02_02_01.tex Lección 1 - Problemas Problemas CAPÍTULO 2 FUNCIONES VECTORIALES Lección 2.2. Curvas enr n Una aplicación F : I R n,

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Optimización sin restricciones Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Optimización sin restricciones 1 / 32 Formulación del problema

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

Primer Parcial MATE1207 Cálculo Vectorial (Tema B) 1

Primer Parcial MATE1207 Cálculo Vectorial (Tema B) 1 Universidad de los Andes Departamento de Matemáticas Primer Parcial MATE1207 Cálculo Vectorial (Tema B) 1 Instrucciones: Lea cuidadosamente y conteste cada pregunta en la hoja asignada. Escriba con bolígrafo

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.

Más detalles

Caracterización de los campos conservativos

Caracterización de los campos conservativos Lección 5 Caracterización de los campos conservativos 5.1. Motivación y enunciado del teorema Recordemos el cálculo de la integral de línea de un gradiente, hecho en la lección anterior. Si f : Ω R es

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

4. FUNCIONES DE VARIAS VARIABLES

4. FUNCIONES DE VARIAS VARIABLES 4. FUNCIONES DE VARIAS VARIABLES INDICE 4 4.1. Definición de una función de dos variables...2 4.2. Gráfica de una función de dos variables..2 4.3. Curvas y superficies de nivel....3 4.4. Límites y continuidad....6

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

forma explícita forma implícita Por ejemplo cuando: a) representa la forma implícita a una. representa implícitamente a

forma explícita forma implícita Por ejemplo cuando: a) representa la forma implícita a una. representa implícitamente a FUNCIONES IMPLÍCITAS Profesora Claudia Durnbeck Una curva C contenida en ó puede estar definida por una ecuación: forma explícita forma implícita En muchos casos se puede pasar de una forma a otra, pero

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace

Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ecuaciones Diferenciales Tema 2. Trasformada de Laplace Ester Simó Mezquita Matemática Aplicada IV 1 1. Transformada de Laplace de una función admisible 2. Propiedades básicas de la transformada de Laplace

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

1. Teorema del Valor Medio

1. Teorema del Valor Medio 1. l Valor Medio Uno de los teoremas más importantes del cálculo diferencial de funciones reales de una variable real es el l Valor Medio, del que se obtienen consecuencias como el Taylor y el estudio

Más detalles

C 4 C 3 C 1. V n dσ = C i. i=1

C 4 C 3 C 1. V n dσ = C i. i=1 apítulo 2 Divergencia y flujo Sea V = V 1 i + V 2 j + V 3 k = (V 1, V 2, V 3 ) un campo vectorial en el espacio, por ejemplo el campo de velocidades de un fluido en un cierto instante de tiempo, en un

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Matemáticas II CURVAS

Matemáticas II CURVAS CURVAS En este tema introduciremos nuevos conceptos relacionados con la curva y sus parametrizaciones. Definiciones.- Sea γ : I = [a,b] R n. Se dice que la curva es cerrada si γ(a) = γ(b). Se dice que

Más detalles

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES

APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES PROFESOR: CHRISTIAN CORTES D. I) LOS NUMEROS REALES. Designaremos por R, al conjunto de los números reales. En R existen

Más detalles

Práctica de Aplicaciones Lineales

Práctica de Aplicaciones Lineales practica5.nb 1 Práctica de Aplicaciones Lineales Aplicaciones lineales y matrices Las matrices también desempeñan un papel muy destacado en el estudio de las aplicaciones lineales entre espacios vectoriales

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

SEMANAS 07 Y 08 CLASES 05 Y 06 VIERNES 25/05/12 Y 01/06/12

SEMANAS 07 Y 08 CLASES 05 Y 06 VIERNES 25/05/12 Y 01/06/12 CÁLCULO IV (7) SEMANAS 7 Y 8 CLASES 5 Y 6 VIERNES 5/5/1 Y 1/6/1 1 Observación Las propiedades de una función real de una variable real se reflejan en su gráfica Pero para w = f(), con w complejos, no es

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

CAPÍTULO II. 4 El grupo afín

CAPÍTULO II. 4 El grupo afín CAPÍTULO II 4 El grupo afín En geometría clásica, antes de la aparición de los espacios vectoriales, se hablaba de puntos en lugar de vectores. Para nosotros serán términos sinónimos salvo que, cuando

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

Aplicaciones Lineales y Multilineales Continuas

Aplicaciones Lineales y Multilineales Continuas Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. SISTEMAS PLANOS. TEOREMA DE POINCARÉ-BENDIXSON. La aplicación de Poincaré Recordemos que un subconjunto H de R n es una subvariedad de codimensión uno (o una

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

Problemas de Álgebra Lineal Espacios Vectoriales

Problemas de Álgebra Lineal Espacios Vectoriales Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

4.1 El espacio dual de un espacio vectorial

4.1 El espacio dual de un espacio vectorial Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo

Más detalles

2. Vector tangente y gráficas en coordenadas polares.

2. Vector tangente y gráficas en coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Análisis III. Joaquín M. Ortega Aramburu

Análisis III. Joaquín M. Ortega Aramburu Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................

Más detalles

Funciones de varias variables

Funciones de varias variables Capítulo 2 Funciones de varias variables 1. Definiciones básicas En este texto consideraremos funciones f : A R m, A R n. Dichas funciones son comúnmente denominadas como funciones de varias variables,

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como

Más detalles

SOBRE LOS CICLOS LÍMITE ALGEBRAICOS DE LOS SISTEMAS CUADRÁTICOS ABOUT THE ALGEBRAIC LIMIT CYCLES OF THE QUADRATIC SYSTEMS

SOBRE LOS CICLOS LÍMITE ALGEBRAICOS DE LOS SISTEMAS CUADRÁTICOS ABOUT THE ALGEBRAIC LIMIT CYCLES OF THE QUADRATIC SYSTEMS Vol. 5, Nº 1 (2014): 23-28 100-100 Artículo Original SOBRE LOS CICLOS LÍMITE ALGEBRAICOS DE LOS SISTEMAS CUADRÁTICOS ABOUT THE ALGEBRAIC LIMIT CYCLES OF THE QUADRATIC SYSTEMS Sabino Acosta Delvalle 1 1

Más detalles

ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA

ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA 1. Hipótesis empleadas Las hipótesis que supondremos en este capítulo son: Material elástico lineal. Estructura estable La estructura es cargada lentamente. La

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS Fundamentos de la Matemática 1 Operaciones Binarias Dado un conjunto A, A, decimos que es una operación binaria en A si, y sólo si, : A A A es una función. Investigar si los siguientes son ejemplos de

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

INTEGRAL LAPSO 2 008-2 751-1/ 6

INTEGRAL LAPSO 2 008-2 751-1/ 6 INTEGRAL LAPSO 8-751 - 1/ 6 Universidad Nacional Abierta CÁLCULO III ( 751 ) Vicerrectorado Académico Integral Área de Matemática Fecha 1/1/8 Lapso 8 MOELO E RESPUESTAS OBJ 1 PTA 1 a. etermine el dominio

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

Conjuntos, Relaciones y Grupos. Problemas de examen.

Conjuntos, Relaciones y Grupos. Problemas de examen. Conjuntos, Relaciones y Grupos. Problemas de examen. Mayo 2006 1. La función f es definida por (a) Halle el recorrido exacto, A, de f. f : R R donde f(x) = e senx 1. (b) (i) Explique por qué f no es inyectiva.

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

Funciones de Varias Variables

Funciones de Varias Variables Funciones de Varias Variables 1. Funciones de dos Variables Sea Ω un subconjunto del plano x, y, esto es Ω R 2. Una función real f de dosvariablesesunareglaqueasociaacadaparordenado (x,y) Ω unúniconúmeroreal

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Aplicaciones lineales

Aplicaciones lineales Capítulo 4 Aplicaciones lineales 4.1. Introduccción a las aplicaciones lineales En el capítulo anterior encontramos la aplicación de coordenadas x [x] B que asignaba, dada una base del espacio vectorial,

Más detalles

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria.

Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Estructuras Algebraicas Una estructura algebraica es un objeto matemático consistente en un conjunto no vacío, con por lo menos una operación binaria. Operación Binaria Se conoce una operación binaria

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

Teorema de Green. 6.1. Curvas de Jordan

Teorema de Green. 6.1. Curvas de Jordan Lección 6 Teorema de Green En la lección anterior, previa caracterización de los campos conservativos, hemos visto que un campo irrotacional puede no ser conservativo. Tenemos por tanto una condición fácil

Más detalles

Bienvenidos a los concertos para violin entre el álgebra y la Geometría.

Bienvenidos a los concertos para violin entre el álgebra y la Geometría. Bienvenidos a los concertos para violin entre el álgebra y la Geometría. Capitulo 17 Atención Esta guía no pretender ser una sustituta del libro de texto del curso. Lo que busca es presentar las herramientas

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad 1 Funciones de varias variables Observación 1.1 Conviene repasar,enestepunto,lodadoeneltema8paratopología en R n : bolas,

Más detalles

Algebra Lineal y Geometría.

Algebra Lineal y Geometría. Algebra Lineal y Geometría. Unidad nº7: Transformaciones Lineales. Algebra Lineal y Geometría Esp. Liliana Eva Mata 1 Contenidos. Transformación lineal entre dos espacios vectoriales. Teorema fundamental

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA

CALCULO AVANZADO. Campos escalares. Límite y continuidad UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA UCA FACULTAD DE CIENCIAS FISICOMATEMATICAS E INGENIERIA CALCULO AVANZADO SEGUNDO CUATRIMESTRE 8 TRABAJO PRÁCTICO 4 Campos escalares Límite continuidad Página de Cálculo Avanzado http://www.uca.edu.ar Ingeniería

Más detalles

ESTRUCTURAS ALGEBRAICAS 1

ESTRUCTURAS ALGEBRAICAS 1 ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia

Más detalles

Lección 2. Puntos, vectores y variedades lineales.

Lección 2. Puntos, vectores y variedades lineales. Página 1 de 11 Lección 2. Puntos, vectores y variedades lineales. Objectivos. En esta lección se repasan las nociones de punto y vector, y se identifican, via coordenadas, con los pares (ternas,...) de

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles