MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO."

Transcripción

1 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ACTIVIDADES PARA EL VERANO

2 MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Eectúe Sol -9/ - Eectúe Sol - Eectúe 8 - Eectúe 7 Sol - Eectúe 6- Eectúe 7 7- Eectúe y simpliique b b b b Sol 6 b 8- Eectúe y simpliique b b Sol Eectúe y simpliique Sol 0 0- Eectúe y simpliique 7 9 Sol Eectúe y simpliique Sol 0

3 - Eectúe y simpliique Eectúe y simpliique 80 - Eectúe y simpliique ( ) ( ) Sol - Eectúe y simpliique b b Sol 6 b 6- Eectúe y simpliique Sol Eectúe y simpliique 6 ( ) 8- Eectúe y simpliique ( ) ( ) 6 9- Eectúe y simpliique Eectúe y simpliique 8 ( ) - Eectúe y simpliique - Eectúe y simpliique b b b - Rcionlice Sol - Rcionlice Sol - Rcionlice Sol 6- Rcionlice

4 7- Rcionlice y y Sol y y 8- Resuelv 7( ) ( ) 9- Resuelv 0- Resuelv < Resuelv l ecución 6 y escrib otr que teng por soluciones los cudrdos de ls soluciones de l ecución dd Sol y ; En l ecución c 0, determine el vlor de c pr que ls dos soluciones sen igules Sol 6 - Un grupo de chicos y chics port dinero prtes igules pr ir de vije Si hubier persons más, les corresponderí poner,6 euros cd uno, y si hubier menos, pondrín 7,6 euros Cuánts persons hy y cuánto cuest el vije? Sol 7 y,0 - Cuáles son los números pr los que su triple super su doble en más de ocho uniddes? Sol >8 - Divid en dos prtes, de modo que l dividir l myor entre l menor se obteng de cociente y 6 de resto Sol y 6- L sum de ls áres de dos cudrdos es cm y su dierenci 6 cm Clcule el perímetro de los cudrdos Sol 80 y 8 cm 7- Ls supericies de dos cudrdos sumn 7 cm y el producto de sus digonles es 70 Cuál es l longitud de sus ldos? Sol y 7 cm 8- L sum de ls tres cirs de un número es seis; si se intercmbin l cir de ls centens y l de ls decens, el número ument en novent uniddes, pero si se intercmbin l de ls decens y l de ls uniddes, el número ument en nueve uniddes Clcule dicho número Sol 9- Un pís compr 0000 brriles de petróleo tres suministrdores distintos que lo venden 8, 7 y dólres el brril, respectivmente

5 L ctur totl sciende 6 millones de dólres Si del primer suministrdor recibe el 0 % del totl del petróleo comprdo, qué cntidd h comprdo cd suministrdor? Sol 6000, 600 y Hlle un número de dos cirs sbiendo que su vlor es igul l cuádruplo de l sum de sus cirs, y que si se invierte el orden de ls cirs ument en 6 uniddes Sol 8 - En un residenci de estudintes se comprn semnlmente 0 heldos de distintos sbores vinill, chocolte y nt El presupuesto destindo pr est compr es de 0 euros y el precio de cd heldo es de euros el de vinill, euros el de chocolte y 6 euros el de nt Conocidos los gustos de los estudintes, se sbe que entre heldos de chocolte y de nt se hn de comprr el 0 % más que de vinill Clcule el número de heldos de cd sbor que se comprn l semn Sol 0,0,0 - En un clse de persons hn probdo ls Mtemátics el 80 % de ls chics y el 60 % de los chicos Clcule el número de lumns y lumnos que tiene l clse si el número de chics que hn probdo es el mismo que el de chicos Sol y 0 - Un rectángulo tiene cm de perímetro y sus digonles miden cm Clcule su supericie Sol 60 cm - Clcule el áre de un rectángulo de perímetro 6 cm y digonl 0 cm - Un pís import 000 vehículos mensules de ls mrcs X, Y y Z l precio de 7000, 9000 y 000 euros respectivmente Si el totl de l importción sciende 9 millones de euros, y de l mrc X se import el 0 % de l sum de ls otrs dos mrcs, se pide A) Plntee el problem con un sistem de ecuciones B) Resuélvlo utilizndo el método de Guss Sol 6000, 0000 y Clcule el sueldo bruto mensul de un person que h percibido, euros después de hberle descontdo un % en concepto de impuesto Sol 69

6 7- Un comercinte compr por 9000 pts dos objetos y los vende por 9800 pts Si en l vent de uno de ellos gnó el 0 % y en l del otro perdió el 8 %, qué cntidd pgó por cd objeto? Sol y Se reúnen 0 persons entre hombres, mujeres y niños Se sbe que entre los hombres y el triple de ls mujeres eceden en 0 l doble de niños Tmbién se sbe que entre los hombres y ls mujeres duplicn l número de niños Hlle el número de hombres, mujeres y niños que se reunieron Sol 0, 0 y 0 9- Encuentre tres números de sum 06 y tles que el segundo es cutro veces el primero, y el tercero es 6 uniddes myor que l tercer prte de l sum de los dos primeros Sol, 60 y 0- Hlle l digonl de un pist de tenis de metros cudrdos de áre y 76 metros de perímetro - En el mercdo, Pedro se h gstdo,6 por l compr de ptts, mnzns y nrnjs que estbn, respectivmente, /Kg,, /Kg y, /Kg Cuántos kilos h comprdo de cd limento si entre todos hn pesdo 9 Kg y, demás, se h llevdo Kg más de nrnjs que de mnzns? - Qué número hy que ñdir los denomindores de / y / pr que l sum de ls rcciones obtenids se igul 9 veces su producto? Sol 7 - Hlle el número cuy mitd más su ríz cudrd se Sol6 - Tres migos invierten 0000, 0000 y 0000 pr brir un negocio Trs inlizr el primer ejercicio económico y l reprtir los beneicios, el segundo obtiene 00 más que el primero Clcule los beneicios del negocio - Un mili tiene unos ingresos mensules de 0 por los sueldos de l mdre, el pdre y el hijo Si l mdre gn el doble que el hijo, y el pdre de lo que recibe l mdre; cuánto gn cd uno de los miembros de l mili? 6- Un grupo de jóvenes orgniz un ecursión cuyo coste es de 0 euros Aprecen jóvenes más y entonces pg euro menos cd uno Cuántos jóvenes ueron de ecursión y cuánto pgó cd uno?

7 7- Hlle dos números pres consecutivos cuyos cudrdos sumen 8- Pr cubrir el suelo de un hbitción se dispone de dos tipos de bldoss A ( dm) y B ( dm) Eligiendo el tipo A se necesitrín 0 bldoss menos que si se eligier el tipo B Clcule l supericie de l hbitción 9- Un individuo invirtió 6060,7 reprtidos en tres empress y obtuvo 70, de beneicios Clculr l inversión relizd en cd empres, sbiendo que en l empres A hizo el doble de inversión que en l B y C junts y que los beneicios de ls empress ueron del % en l empres A, 0 % en l B y 0 % en l C 60- Sbiendo que log 0, 0 clcule, utilizndo ls propieddes de los logritmos, el vlor de l epresión log 0, 0 6- Sbiendo que log 0, 0 clcule 0, 0 log 6- Sbiendo que log 0, 0 clcule 0, log log 6 6- Aplicndo l deinición de logritmo hlle en 6- Aplicndo l deinición de logritmo hlle en 7 6- Hlle el vlor de si se cumple que log log log 66- Qué relción eiste entre y b si se cumple que log logb 67- Resuelv l ecución Resuelv l ecución log log Resuelv l ecución log log 70- Resuelv l ecución?

8 log log( 7) 7- Resuelv el sistem log( y ) log( y ) log 6 7- El % de los coches de un empres son de color zul, el 0% rojos y el resto, que son, son verdes Cuántos vehículos tiene l empres? 7- Mrí h ido unos lmcenes de jrdinerí y h comprdo un mcet, un mes de terrz y un juego de herrmients El tiesto h supuesto el 0% de l cuent mientrs que l mes de terrz h supuesto el % Si el juego de herrmients costb 8, A cuánto scendí l cuent totl? 7- Cuánto dinero producen 000 l 6% de interés en un ño? Y si tenemos que retirr el dinero tres meses nte del plzo que nos entregn l prte proporcionl? 7- A qué rédito nul se invirtieron 0 si l cbo del ño se hn producido 0 de interés? 76- A qué rédito nul estb sometid un operción bncri por l que 0 se convirtieron l cbo de ños en 6? 77- Ingreso en un bnco 0000 y se comprometen pgrme un % nul bonndo los intereses semestrlmente Cuánto dinero tengo l cbo de cinco ños? 78- Clcul cunto scenderá l nulidd que hy que pgr pr mortizr un crédito de 0000 en 0 ños l 6% nul 79- Elbor l tbl de mortizción nul de un crédito bncrio de 8000 l,% durnte 0 ños

9 MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Compruebe el teorem del resto en ( ) ( ) Sol R - Fctorice P ( ) 6 Sol P ( ) ( )( )( ) - Fctorice Q ( ) Sol Q ( ) ( ) ( ) - Fctorice R ( ) Sol R ( ) ( )( ) - Fctorice ( ) 0 S 6- Fctorice T ( ) 7- Fctorice ( ) U 8- Simpliique l rcción 9 Sol 9- Son equivlentes ls rcciones y? Sol Sí 0- Fctorice el polinomio P( ) 6 8 A continución, hlle y b pr que P ( ) ( ) ( ) b Sol ( ) ( )( 6) P 6, b 0 - Ddo el polinomio P ( ), hlle P (0), P (), P () y P () Sol,, -8 y 8 - Determine el vlor de m pr que P ( ) m se divisible por Sol m - Determine m y n pr que el polinomio P ( ) m 7 n se divisible por ( ) y se 9 el resto de dividirlo por ( )

10 - Determine m y n pr que el polinomio n m P ) ( se divisible por ) ( y por ) ( - Hlle mcd y mcm de los polinomios ) ( A y 6 8 ) ( B Sol ( ) y ( ) ( ) 6- Clcule 0 6 Sol 7- Clcule Sol Clcule 6 Sol 7 9- Eectúe y simpliique 6 Sol 8 0- Eectúe y simpliique 9 Sol ( ) ( ) ( ) - Eectúe y simpliique - Eectúe y simpliique - Eectúe y simpliique - Eectúe y simpliique ( ) - Eectúe y simpliique 6- Dds ls unciones ) ( y ) ( g, se pide ) )( ( g o y ) )( ( go

11 7- Clcule los siguientes límites ) lim ( ) b) lim 8- Clcule los siguientes límites ) lim b) 6 9 lim 9- Determin y b pr que el polinomio se divisible por - y por 0- Clcul y simpliic ) b) - Dds ls unciones ) Determin su dominio b) (g)() y su dominio c) - Clcul l unción invers de cd unción y comprueb que son inverss - Representr gráicmente ls siguientes unciones - ) b) Desrroll y epres en unción de los logritmos de p,q y r c) Oper y simpliic - Determin y b pr que el polinomio se divisible por - y l división de este polinomio por teng como resto - 6- Clcul y simpliic ) b)

12 7- Dds ls unciones ) Determin su dominio b) (g)() y su dominio c) 8- Clcul l unción invers de cd unción y comprueb que son inverss 9- Representr gráicmente ls siguientes unciones 0- ) b) Desrroll y epres en unción de los logritmos de p,q y r c) Resuelve - Hll los siguientes límites - Hll el mcm y el mcd de los polinomios y - Clcul y simpliic ) b) - Dds ls unciones ) Determin su dominio b) (g)() y su dominio c) 6- Clcul l unción invers de cd unción y comprueb que son inverss

13 7- Representr gráicmente ls siguientes unciones 8- )Resuelve b) Hll el vlor de si se cumple 9- ) Determin m y n pr que l división del polinomio entre - se ect, y l división de este polinomio por teng como resto - b) Clcul y simpliic 0- Dds ls unciones ) Determin su dominio b) (g)() y su dominio c) - Clcul l unción invers de cd unción y comprueb que son inverss - Representr gráicmente ls siguientes unciones

14 MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Determine el vlor de p pr que se continu l unción p ) p ( si si < 0 0 Represente gráicmente l unción - Utilizndo l deinición de derivd y dd ( ) (, clcule ) - Derive y simpliique ls siguientes unciones ) ) ln sen ( b) ( ) c) h( ) d) g m( ) e - Determine l ecución de l rect tngente l curv dd por ( ) en el punto de bcis - Estudie l monotoní y determine los etremos de l unción ( ) 6 6- Determine el vlor de p pr que se continu l unción p ) ( si si < Represente gráicmente l unción 7- Hlle ls tngentes l curv dd por y prlels l rect y 8- Dd l unción m ( ) m hlle el vlor de m pr que 9- Hlle l tngente l curv dd por ( ) en los puntos de ordend 0- Derive y simpliique ls siguientes unciones ) ( ) ln g( ) b) h( ) c) ( ) d) m( ) e

15 - Derive y simpliique ls siguientes unciones ) ( ) ( )( ) b) ( ) c) ) ln 7 ( sen ( d) ) - Determine los etremos reltivos de l unción ( ) Derive y simpliique ls siguientes unciones - ( ) ( ) - ( ) - ( ) - ( ) sen 6- ( ) tg sec cosec 7- ) sen ( 8- ( ) sen cos 9- ( ) tg sen cos 0- ( ) - ) ln ( - ( ) - ln ( ) - ( ) - ( ) 6- ( ) sen cosec 7- ( ) ln 8- ( ) ( )( ) 9- ( ) ( )( )( ) 0- ( ) ( )( ) - ( ) - ( ) 7 - ( ) - ( ) ln - ( ) sen 6- ( ) sen 7- ( ) sen 8- ( ) sen 9- ) ln( sen ) ( ) - ( ) - ( ) cos ( ) ( 0- ( ) tg - ( ) ( ) 6 ( ) ( ) - ( ) - ( ) ( ) 6- ( )

16 7- ( ) 8- ( ) 9- ( ) ( ) ( ) 0- ( ) ln - ( ) ln - ( ) e e - ( ) - ) e e e e ( ) ( - ( ) 6- ( ) 7- ( ) cos 8- ( ) sec 9- ) lnsen ( 0- ( ) ln cos - Trs un estudio demográico se h determindo que el número de hbitntes de un poblción, en los próimos ños, vendrá ddo por l unción ( ), donde es el número de ños trnscurridos de hor en delnte Clcule l vrición medi de l poblción entre y, sí como l vrición instntáne trnscurridos cinco ños - Un bcteri h inectdo un número de persons ddo por l unción ( ) 0, siendo el número de dís trnscurridos desde que se detect l enermedd Clcule l vrición medi del número de persons inectds entre el tercer y el quinto dí - Compruebe que no eiste ningún vlor de que nule l primer derivd de l unción e ) e (, y que pr 0 se nul l derivd segund 6- Determine el vlor, que pr, tom l derivd de l unción ( ) ( )ln e ln 7- Se consider l unción ( ) ( 7 8) Hlle su derivd desrrollndo primermente l potenci y luego plicndo l regl de l cden Se obtiene el mismo resultdo? 8- En qué punto de l curv de l unción ( ) ln l pendiente de l tngente vle?

17 9- Hlle l ecución de l rect tngente l curv ( ) ln prlel l rect y 0- Utilizndo l deinición de derivd y dd ( ), clcule () - Derive y simpliique ls siguientes unciones ) ) tg sen ( b) ) ln ( ) sen d) ( c) g ( ) - Hlle ls dimensiones que hcen máimo el volumen de un piscin de bse cudrd si l supericie totl recubrir es de 9 metros cudrdos

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

Sistemes d equacions (Gauss)

Sistemes d equacions (Gauss) Sistemes d equcions (Guss) Ejercicio nº.- Dos kilos de nrnjs, más un kilo de plátnos, más dos kilos de mngos, vlen, euros. Dos kilos de nrnjs, más dos kilos de plátnos, más de mngos, vlen euros. Tres kilos

Más detalles

EJERCICIOS DE LA ASIGNATURA DE ALGEBRA

EJERCICIOS DE LA ASIGNATURA DE ALGEBRA EJERCICIOS DE LA ASIGNATURA DE ALGEBRA 1 INTRODUCCION Estimdo estudinte, el prendizje de est rm de l mtemátic, requiere que se dominen completmente los siguientes conocimientos y procedimientos prendidos

Más detalles

3. Resuelve y simplifica: 6. Resuelve y simplifica: Nombre y apellidos : Materia: MATEMATICAS (PENDIENTES) Curso: 2º ESO.

3. Resuelve y simplifica: 6. Resuelve y simplifica: Nombre y apellidos : Materia: MATEMATICAS (PENDIENTES) Curso: 2º ESO. Nombre y pellidos : Mteri: MATEMATICAS PENDIENTES) Curso: º ESO ª entreg Fech: INSTRUCCIONES: Pr est primer entreg deberás trbjr losejercicios del l que quí te djuntmos pr ello debes yudrte de tu cuderno

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas:

Apellidos: Nombre: Curso: 1º Grupo: C Día: 10 - XI- 14 CURSO Resuelve las siguientes ecuaciones y comprueba las soluciones obtenidas: EXAMEN DE MATEMÁTICAS ALGEBRA Apellidos: Nombre: Curso: º Grupo: C Dí: - XI- 4 CURSO 4-5. Hll el vlor de log log ), 4 log log b) log4 6 -log -log log 7 4 6. Clcul x pr que se cumpl: ) log 6,45,5 b) 5 +,58.

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando:

1 Agrupa aquellos monomios de los que siguen que sean semejantes, y halla su suma: , cuando: Agrup quellos monomios de los que siguen que sen semejntes, y hll su sum: m, bn y, m, bm, b my, m, n by, mb Son semejntes el º, el º y el º, su sum es: Tmbién lo son el º y el º: bn y 0 Lo mismo ocurre

Más detalles

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie CURSOSO CURSOSO MATEMÁTICASESPECIALESCAD MóduloIV: Continuiddyderivbilidd MTeresUleciGrcí RobertoCnogrMcKenzie DeprtmentodeMtemáticsFundmentles FcultddeCiencis Curso de Mtemátics Especiles Introducción

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES

MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión

Más detalles

Los números enteros y racionales

Los números enteros y racionales Los números enteros y rcionles Objetivos En est quincen prenderás : Representr y ordenr números enteros Operr con números enteros Aplicr los conceptos reltivos los números enteros en problems reles Reconocer

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero. TEMA 2: actividades º E.S.O. TEMA : ctividdes. Sc del rdicndo l myor cntidd posible de fctores: 0 0 0 800.. Epres como rdicl:. Simplific los siguientes rdicles: 8. Ps estos números de notción científic form ordinri:, 0 =,

Más detalles

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ

TEMA 1. VECTORES Y MATRICES 1.3. TRAZA Y DETERMINANTE DE UNA MATRIZ TEM. VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ . VECTORES Y MTRICES.. TRZ Y DETERMINNTE DE UN MTRIZ... Concepto de Trz.... Propieddes de l trz.... Determinnte de un mtriz.... Cálculo de determinntes

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

7Soluciones a los ejercicios y problemas PÁGINA 161

7Soluciones a los ejercicios y problemas PÁGINA 161 7Soluciones los ejercicios y problems ÁGIN 161 ág. 1 RTI Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m m 11,6 cm 8 m m 60

Más detalles

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9

( )( ) 0 1,1 1, 5 2 2, 3. 1 Resuelve las siguientes inecuaciones: a) 2x + 4 > x +6 b) - x + 1 < 2x + 4 c) x + 51 > 15x + 9 1 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 < x + 4 c) x + 51 > 15x + 9 x < x > -1 c) x < 4 Resuelve ls siguientes inecuciones: x + 4 > x +6 - x + 1 > x + 4 c) 5x + 10 < 1x - 4 x > x < -

Más detalles

5 2 B) C) o 16 1 C) 2 D) 16 E)-2. Sesión Si una progresión geométrica tiene primer término 243 y el quinto término es

5 2 B) C) o 16 1 C) 2 D) 16 E)-2. Sesión Si una progresión geométrica tiene primer término 243 y el quinto término es Sesión.- Si un progresión geométric tiene primer término y el quinto término es entonces l rzón r es igul : Unidd I Progresiones y series. D. Progresión geométric..- L poblción de un ciudd h umentdo de

Más detalles

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION

MATEMATICAS 3º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION MATEMATICAS º ESO EJERCICIOS DE RECUPERACION DE LA 1ª EVALUACION FRACCIONES Ejercicio 1: resuelve l siguiente operción psndo cd número deciml frcción previmente: ' '1'6 '1 0'15 Ejercicio : simplific ls

Más detalles

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- Escrie un número que cumpl: ) Pertenece N y I. ) Pertenece R pero no Q. c) No pertenece R. d) Pertenece Q pero no N. ) IMPOSIBLE

Más detalles

La presentación de los ejercicios debes hacerla en un cuaderno, copiando los enunciados, desarrollando el ejercicio y resaltando los resultados.

La presentación de los ejercicios debes hacerla en un cuaderno, copiando los enunciados, desarrollando el ejercicio y resaltando los resultados. COLEGIO RAIMUNDO LULIO CENTRO CATÓLICO - CONCERTADO Frnciscnos T.O.R. DEPARTAMENTO DE CIENCIAS Cód. 80607 Asigntur TRABAJO DE RECUPERACIÓN PARA SEPTIEMBRE CURSO 0 0 MATEMÁTICAS B Nombre Curso º ESO Ddo

Más detalles

IES. SIERRA DE LAS VILLAS Departamento de Matemáticas

IES. SIERRA DE LAS VILLAS Departamento de Matemáticas Informe pr lumnos pendientes de Mtemátics º de E.S.O. IES. SIERRA DE LAS VILLAS Deprtmento de Mtemátics Nombre:.. Alumno/ de º de E.S.O. tendrá que relizr l prueb extrordinri de Mtemátics, en el mes de

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 9 EJERCICIOS Ls relciones de proporcionlidd 1 Indic, entre los siguientes pres de mgnitudes, los que son directmente proporcionles, los que son inversmente proporcionles y los que no gurdn

Más detalles

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1

IES CINCO VILLAS TEMA 8 ALGEBRA Página 1 SOLUCIONES MÍNIMOS CURSO º ESO TEMA 8 ALGEBRA Ejercicio nº.- Epres de form lgeric los siguientes enuncidos mtemáticos: ) El triple de sumr siete un número, n. El número siguiente l número nturl. c) El

Más detalles

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX.

MERCA. Empresa dedicada a la compra-venta de ordenadores y servicios de programación. Período contable: 1 er trimestre de 20XX. MERCA Ejercicios Contbilidd Tem 9 Empres dedicd l compr-vent de ordendores y servicios de progrmción. Período contble: 1 er trimestre de 20XX. ACTIVO ACTIVO NO CORRIENTE INMOVILIZADO MATERIAL PATRIMONIO

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ;

1.- Obtener, sin calculadora, el valor de x en las siguientes expresiones: (5 ) = = = 5, por tanto 2x=-3/2 y x=-3/4 = ; RESOLUCIÓN DE LOS EJERCICIOS BÁSICOS DEFINICIÓN DE LOGARITMO.- Obtener, sin clculdor, el vlor de en ls siguientes epresiones: ) (/) = 7/; 7/= / =(/) =(/) -, por tnto =- b) = ; ( ) = = =, por tnto =-/ y

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q.

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q. ejerciciosyeamenes.com POLINOMIOS 1. Si P()= - +1 y Q()= -+, opera: a) P-Q b) P+Q c) P+Q P.Q Sol: a) P-Q= -6 +-1 b) P+Q= 1 - -6+7 c) P+Q= -+ P.Q= 1 5-1 +17 - -+. Si P()= - -+1, Q()= -+1 y R()= -6 +6-1,

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

LA FUNCIÓN LOGARÍTMICA

LA FUNCIÓN LOGARÍTMICA LA FUNCIÓN LOGARÍTMICA.- Definición.- Se denomin ritmo en bse de un número, l eponente que es preciso elevr pr que resulte. debe ser un número positivo y distinto de l unidd. Pr epresr que y es el ritmo

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

DESIGUALDADES < d < En el campo de los números reales tenemos una. Un momento de reflexión muestra que una

DESIGUALDADES < d < En el campo de los números reales tenemos una. Un momento de reflexión muestra que una DESIGUALDADES 7 60 < d < 7 70 En el cmpo de los números reles tenemos un propiedd de orden que se costumbr designr con el símbolo (

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9 Números reles E S Q U E M A D E L A U N I D A D.. Los números rcionles págin.. Los números irrcionles págin. Números y expresiones decimles págin. El conjunto de los números reles págin 8 4.. Orden y desiguldd

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

1.- Simplificar las siguientes fracciones: h) 28/36 i) 84/126 j) 54/96 k) 510/850 l) 980/140

1.- Simplificar las siguientes fracciones: h) 28/36 i) 84/126 j) 54/96 k) 510/850 l) 980/140 ACTIVITATS DE N ESO PER A ESTIU ACTIVIDADES CON NÚMEROS ENTEROS º ESO. Reliz ls siguientes operciones. + + + d + + b + + 6 e + 6 c + f 6 + + + 6. Reliz ls siguientes operciones. ( + + ( + + ( + d + ( +

Más detalles

MATEMÁTICAS-FACSÍMIL N 13

MATEMÁTICAS-FACSÍMIL N 13 MTEMÁTIS-FSÍMIL N 13 1. Ddos los siguientes números rcionles, tres quintos y siete novenos, ordendos de menor myor, cuál de los siguientes rcionles puede interclrse entre ellos? ) 6/ 5 ) 3/ ) 4/5 D) 5/4

Más detalles

Nombre: Carnet Sección: TERCER EXAMEN PARCIAL MA-1111 (40%) Conteste las siguientes preguntas justificando detalladamente sus respuestas.

Nombre: Carnet Sección: TERCER EXAMEN PARCIAL MA-1111 (40%) Conteste las siguientes preguntas justificando detalladamente sus respuestas. Universidd Simón Bolívr. Deprtmento de Mtemátics Purs Aplicds. MA-.Tipo A Nombre: Crnet Sección: TERCER EXAMEN PARCIAL MA- (0% Conteste ls siguientes pregunts justiicndo detlldmente sus respuests..- (

Más detalles

MATEMÁTICAS-FACSÍMIL N 9

MATEMÁTICAS-FACSÍMIL N 9 MTEMÁTIS-FSÍMIL N 9. b b b ) - b ) b - ) b D) E) 6 cm ( b) =. El triángulo está inscrito en l mitd de l circunferenci. Si h c = cm y el ldo = 5cm. El rdio de l circunferenci es: ) cm ) 6 cm ) 6 cm O D)

Más detalles

1) Reduce a común denominador y ordena de menor a mayor las fracciones siguientes: 1 : 4. 1 c)

1) Reduce a común denominador y ordena de menor a mayor las fracciones siguientes: 1 : 4. 1 c) Pendientes ºESO Ejercicios de Frcciones ) Reduce común denomindor orden de menor mor ls frcciones siguientes,,,,, ) Efectú simplific ls siguientes epresiones 0 e) f) 0 ) En el instituto, / de los lumnos

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

ÁREA DE MATEMÁTICAS Asignatura : ALGEBRA BANCO DE PREGUNTAS Curso NOVENO Bimestre CUARTO Fecha

ÁREA DE MATEMÁTICAS Asignatura : ALGEBRA BANCO DE PREGUNTAS Curso NOVENO Bimestre CUARTO Fecha ÁREA DE MATEMÁTICAS Asigntur : ALGEBRA BANCO DE PREGUNTAS Curso NOVENO Bimestre CUARTO Fech 12.09.2011 Elboró Prof. MAURICIO CARDENAS SILFREDO CARRIONI GRECY SANDOVAL Revisó Prof. LUIS GONZALEZ 2011: Cien

Más detalles

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619

E-mail: grupociencia@hotmail.com 405 4466 Web-page: www.grupo-ciencia.jimdo.com 945 631 619 1. En el prlelogrmo mostrdo en l figur M N son puntos medios. Hlle = ++ en función de 3 + D + C +3. En l figur muestr los vectores de inscritos en un cudro de 6m de ldo. Determine el vector unitrio del

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

12. Los polígonos y la circunferencia

12. Los polígonos y la circunferencia l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

1. Se entregará escrito a mano en un cuaderno u hojas sueltas, con el nombre y. 2. Sólo se realizarán las actividades indicadas por el profesor.

1. Se entregará escrito a mano en un cuaderno u hojas sueltas, con el nombre y. 2. Sólo se realizarán las actividades indicadas por el profesor. Actividdes de refuerzo pr º E. S. O. Opción A -- I. E. S. Sbinr NORMAS DE REALIZACIÓN DEL TRABAJO:. Se entregrá escrito mno en un cuderno u hojs suelts, con el nombre pellidos en tods ls hojs en tl cso..

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b)

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b) Clse-06 Números rcionles expresdos en form deciml: Todo número rcionl con b 0 se puede trnsformr form deciml l dividir b el numerdor por su denomindor. En form deciml los siguientes rcionles quedn escritos

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

MATRICES. MATRIZ INVERSA. DETERMINANTES.

MATRICES. MATRIZ INVERSA. DETERMINANTES. DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?

Más detalles

Prueba Matemática Coef. 1: Logaritmos A

Prueba Matemática Coef. 1: Logaritmos A Centro Educcionl Sn Crlos de Argón. Sector: Mtemátic. Prof.: Ximen Gllegos H. Nivel: NM - 4 Prueb Mtemátic Coef. : Logritmos A Nombre: Curso: Fech. Porcentje de Logro Idel: 00% Porcentje Logrdo: Not: Unidd:

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN:

TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los números rcionles: Se crcterizn porque pueden epresrse: En form de frcción, es decir, como cociente de dos números enteros: Q,

Más detalles

Una magnitud es cualquier propiedad que se puede medir numéricamente.

Una magnitud es cualquier propiedad que se puede medir numéricamente. Etueri Clses Prticulres Online Tem 4. Proporcionlidd Mgnitudes Un mgnitud es culquier propiedd que se puede medir numéricmente. Ejemplos: longitud, cpcidd de un recipiente, peso, Rzón L rzón es el cociente

Más detalles

PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS TERCER CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA.

PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS TERCER CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA. Colegio Colón Huelv PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS TERCER CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 0-0 NOMBRE GRUPO Doñ Rosrio Nieto Romero D. Mrcos

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles