Matemáticas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "euresti@itesm.mx Matemáticas"

Transcripción

1 al Método al Método Matemáticas

2 al Método En esta lectura daremos una introducción al método desarrollado por George Bernard Dantzig (8 de noviembre de de mayo de 2005) en Este método se basa en la conversión del problema con restricciones con desigualdades en un problema cuyas restricciones son ecuaciones lineales. Es un método matricial.

3 al Método 1.1 Un modelo de PL se dice que está en su forma estándar si cada restricción es una igualdad y las restricciones de signo para cada variable son del tipo mayor o igual que cero. Muchos de nuestros modelos recién construidos no están en su forma matricial. No está en la forma estándar: sujeto a Max z = 3 x + 2 y 2 x + y 100 x + y 80 x 40 x 0 y 0

4 al Método El algoritmo para resolver modelos de programación lineal requiere que el modelo esté en su forma estándar. Lo que se hace es convertir el modelo a la forma estándar. Esto se logra introduciendo nuevas variables, algunas de las cuales reemplazarán a las variables originales. Para cada restricción del tipo se introduce una nueva variable de holgura (slack variable) s i que se suma al primer miembro y la desigualdad se convierte en igualdad; se añade la restricción de signo a la nueva variable s i 0. Para cada restricción del tipo se introduce una nueva variable de exceso (excess variable) e i que se resta al primer miembro y la desigualdad se convierte en igualdad; se añade la restricción de signo a la nueva variable e i 0.

5 al Método Continuando con la conversión: Para cada variable x i que tiene restricción de signo del tipo 0, se cambian todas las apariciones de x i en el modelo por la expresión x i donde x i es una nueva variable con restricción de signo x i 0. Para cada variable x i que no tiene restricción de signo se cambian todas las apariciones de ella en el modelo por la expresión x i x i donde x i y x i son dos nuevas variables con restricción de signo x i 0 y x i 0. Las conversión se realiza en dos fases: en la primera se convierten las desigualdades y en la segunda se aplican las reglas para las variables que en el modelo original tiene signo no positivo o no tienen restricción de signo.

6 al Método Convierta a la forma estándar: sujeto a Max z = 3 x + 2 y 2 x + y 100 : R 1 x + y 80 : R 2 x 40 : R 3 y 0 : R 4

7 al Método En la primera fase (después de aplicar las reglas relacionadas con restricciones del tipo o ) queda: sujeto a Max z = 3 x + 2 y 2 x + y + s 1 = 100 x + y e 1 = 80 x + s 1 = 40 con x sin restricción de signo, y 0, s 1 0, e 1 0, y s 2 0.

8 al Método Para la segunda fase obtenemos: sujeto a Max z = 3 x 3 x 2 y 2 x 2 x y + s 1 = 100 x x y e 1 = 80 x x + s 1 = 40 con x 0, x 0, y 0, s 1 0, e 1 0, y s 2 0.

9 Solución básica al Método 1.2 Una solución básica (SB) a un sistema de ecuaciones A x = b con m ecuaciones y con n incógnitas, es decir m n (n m) es una solución al sistema que se obtiene haciendo cero n m variables y que resulta en un sistema con solución única. A una variable de decisión que deliberadamente se hace cero se le llama variables no básica (VNB) y mientras que a aquélla que se conserva dentro del nuevo sistema se le llama variable básica (VB).

10 al Método En términos de Algebra Lineal, este concepto equivale a seleccionar m columnas de A y que éstas formen una base para R m. Las columnas no seleccionadas corresponden a aquellas variables que se hacen cero deliberadamente. Una vez seleccionadas las columnas el nuevo sistema con el mismo vector de constantes debe resolverse. La solución obtenida se llama solución básica. En términos de matrices, tiene el significado que las variables que no se hacen cero deliberadamente forman una matriz invertible. El proceso para obtener una solución factible corresponde a tomar de A columnas para formar una matriz cuadrada que resulte invertible.

11 Determine las soluciones básicas al sistema: al Método x 1 + x 2 = 3 x 2 + x 3 = 1 En este caso: m = 2 =número de ecuaciones y n = 3 =número de incógnitas. Por tanto, las soluciones básicas se obtienen haciendo cero n m = 3 2 = 1 variable. Siendo n = 3 el número de variables, tenemos: ( n n m ) = n! m! (n m)! = ( 3 1 ) 3! = 1! (3 1)! = es decir, que en nuestro sistema se tienen 3 posibles soluciones básicas. Observe que da lo mismo seleccionar qué variables serán básicas (qué columnas se conservarán) o qué variables serán no básicas (columnas se borrarán).

12 Revisemos cada alternativa: VNBs = {x 1 }. Haciendo x 1 = 0 el sistema original queda: + x 2 = 3 x 2 + x 3 = 1 dando como solución : x 1 = 0, x 2 = 3 y x 3 = 2. VNBs = {x 2 }. Haciendo x 2 = 0 el sistema original queda: + x 1 = 3 + x 3 = 1 dando como solución : x 1 = 3, x 2 = 0 y x 3 = 1. VNBs = {x 3 }. Haciendo x 3 = 0 el sistema original queda: + x 1 + x 2 = 3 x 2 = 1 dando como solución : x 1 = 2, x 2 = 1 y x 3 = 0.

13 Determine las soluciones básicas al sistema: x x 2 + x 3 = 1 2 x x 2 + x 3 = 3 En este ejemplo hay 3!/(1! (3 1)!) = 3 posibles soluciones básicas. VNBs = {x 1 }. Haciendo x 1 = 0 el sistema original queda: + 2 x 2 + x 3 = x 2 + x 3 = 3 dando como solución : x 1 = 0, x 2 = 1 y x 3 = 1. VNBs = {x 2 }. Haciendo x 2 = 0 el sistema original queda: + x 1 + x 3 = x 1 + x 3 = 3 dando como solución : x 1 = 2, x 2 = 0 y x 3 = 1. al Método

14 VNBs = {x 3 }. Haciendo x 3 = 0 el sistema original queda: x x 2 = 1 2 x x 2 = 3 este sistema es inconsistente. Por tanto, no hay solución básica correspondiente a VNBs = {x 3 }.

15 Solución básica al Método 1.3 Una solución básica factible (SBF) a un sistema de ecuaciones A x = b m n (n m) es una solución básica con valores no negativos para las variables de decisión.

16 Determina las soluciones básicas factibles del sistema estándar correspondiente a la región que definen las restricciones x 1 + x x 1 + x 2 60 y x 1, x 2 0. La forma estándar es: x 1 + x 2 + s 1 = 40 2 x 1 + x 2 + s 2 = 60 y cumpliendo x 1, x 2, s 1, s 2 0. Y en la forma estándar n = 4 (número de variables) y m = 2 (número de ecuacion es), y por consiguiente el número de posibles soluciones básicas es: ( n m ) = 4! 2! (4 2)! = = 6 al Método

17 En este caso desaparecemos 4 2 variables para obtener las SB: VNBs = {x 1, x 2 } VB = {s 1 = 40, s 2 = 60} A(0,0) VNBs = {x 1, s 1 } VB = {x 2 = 40, s 2 = 20} B(0,40) VNBs = {x 1, s 2 } VB = {x 2 = 60, s 1 = 20} C(0,60), no es solución básica factible VNBs = {x 2, s 1 } VB = {x 1 = 40, s 2 = 20} D(40,0), no es solución básica factible VNBs = {x 2, s 2 } VB = {x 1 = 30, s 1 = 10} E(30,0) VNBs = {s 1, s 2 } VB = {x 1 = 20, x 2 = 20} F(20,20) C(0, 60) B(0, 40) F (20, 20) A(0, 0) E(30, 0) D(40, 0) Figura : Relación entre SBFs y extremos de la RF

18 al Método Un punto clave que relaciona la parte geométrica con la parte algebraica es el siguiente resultado teórico: Teorema La región factible a un modelo lineal corresponde a un conjunto convexo, y a cada extremo de la región le corresponde una SBF de su forma estándar y a cada SBF le corresponde un extremo de la región factible.

19 SBF Adyacentes al Método 1.4 Para un modelo PL con m restricciones, dos soluciones básicas factibles se dicen ser soluciones básicas factibles adyacentes si acaso tienen m 1 variables básicas en común.

20 al Método Determine las SBFs y encuentre sus relaciones de adyacencia al siguiente PL: sujeto a: Maximice z = 4 x x 2 x 1 + x 2 + s 1 = 40 2 x 1 + x 2 + s 2 = 60 y cumpliendo x 1, x 2, s 1, s 2 0.

21 Este problema tiene como FBS: VNBs = {x 1, x 2 } VB = {s 1 = 40, s 2 = 60} A(0,0) VNBs = {x 1, s 1 } VB = {x 2 = 40, s 2 = 20} B(0,40) VNBs = {x 2, s 2 } VB = {x 1 = 30, s 1 = 10} E(30,0) VNBs = {s 1, s 2 } VB = {x 1 = 20, x 2 = 20} F(20,20) Son adyacentes: A(0,0) y B(0,40), A(0,0) y E(30,0), B(0,40) y F(20,20), y E(30,0) y F(20,20). B(0, 40) F (20, 20) A(0, 0) E(30, 0)

22 Algoritmo El algoritmo procede de la siguiente manera: 1. Convierta el modelo PL a su forma estándar. 2. Obtenga una SBF a la forma estándar. 3. Determine si la SBF es óptima: Si hay una variable no básica cuyo aumento hace que el valor actual de la función a maximizar suba, entonces la solución actual no es óptima. 4. Si la SBF no es óptima, determine la variable no-básica que debería convertise en básica (la de mayor impacto en la función objetivo) y cuál variable básica debería convertise en una no-básica (la que impone una restricción mayor a la variable de mayor impacto). Con la selección anterior y usando operaciones elementales de renglón determine una SBF nueva adyacente a la anterior. 5. Reinicie con el paso 3 con la nueva SBF. al Método

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012 Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes

Más detalles

Investigación Operacional I EII 445

Investigación Operacional I EII 445 Investigación Operacional I EII 445 Programación Lineal Método Simple Gabriel Gutiérrez Jarpa. Propiedades Básicas de Programación Lineal Formato Estándar Un problema de programación lineal es un programa

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma

Más detalles

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD 4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD El problema de programación lineal se puede considerar como modelo de asignación de recursos, en el que el objetivo es maximizar los ingresos o las utilidades,

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL. Adriel R. Collazo Pedraja

APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL. Adriel R. Collazo Pedraja APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL Adriel R. Collazo Pedraja 2 INTRODUCCIÓN Este trabajo tiene como propósito proveer ayuda al estudiante para que pueda comprender y manejar más efectivamente

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal

Unidad 5 Utilización de Excel para la solución de problemas de programación lineal Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene

Más detalles

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T11: Métodos Kernel: Máquinas de vectores soporte {jdiez, juanjo} @ aic.uniovi.es Índice Funciones y métodos kernel Concepto: representación de datos Características y ventajas Funciones

Más detalles

Números Reales DESIGUALDADES DESIGUALDADES. Solución de desigualdades. 2x + 4 < 6x +1 6x + 3 8x 7 x 2 > 3x 2 5x + 8. INECUACIONES o DESIGUALDADES

Números Reales DESIGUALDADES DESIGUALDADES. Solución de desigualdades. 2x + 4 < 6x +1 6x + 3 8x 7 x 2 > 3x 2 5x + 8. INECUACIONES o DESIGUALDADES Números Reales INECUACIONES o DESIGUALDADES DESIGUALDADES Una desigualdad en una variable es una expresión donde se establece una relación entre dos cantidades. Las relaciones de orden son: ,, Ejemplos:

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Métodos Iterativos para Resolver Sistemas Lineales

Métodos Iterativos para Resolver Sistemas Lineales Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas, CCIR/ITESM 17 de julio de 2009 Índice 3.1. Introducción............................................... 1 3.2. Objetivos................................................

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías

EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION. M. En C. Eduardo Bustos Farías EL MÉTODO SIMPLEX ALGEBRAICO: MINIMIZACION M. En C. Eduardo Bustos Farías 1 Minimización El método simplex puede aplicarse a un problema de minimización si se modifican los pasos del algoritmo: 1. Se cambia

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg

Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg PreUnAB Inecuaciones y Sistemas de Inecuaciones Lineales con una Incógnita Clase # 11 Agosto 2014 Intervalos Reales Orden en R Dados dos números reales a y b, se dice que a es menor que b, a < b, si b

Más detalles

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13 Carlos Ivorra Índice 1 Introducción a la optimización 1 2 Programación entera 18 3 Introducción a la programación lineal 24 4 El método símplex

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

Optimización y la Programación Lineal: Una Introducción

Optimización y la Programación Lineal: Una Introducción Reporte de Investigación 2007-07 Optimización y la Programación Lineal: Una Introducción Responsables: Marchena Williams Ornelas Carlos Supervisor: Francisco M. González-Longatt Línea de Investigación:

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Dualidad y Análisis de Sensibilidad

Dualidad y Análisis de Sensibilidad Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Dualidad y Análisis de Sensibilidad Marcel Goic F. 1 1 Esta es una versión bastante

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

VECTORES COORDENADOS (R n )

VECTORES COORDENADOS (R n ) VECTORES COORDENADOS (R n ) Cómo puede ser representado un número Real? Un número real puede ser representado como: Un punto de una línea recta. Una pareja de números reales puede ser representado por

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Optimización sin restricciones Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Optimización sin restricciones 1 / 32 Formulación del problema

Más detalles

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Soluciones básicas factibles y vértices Introducción al método símplex. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Soluciones básicas factibles y vértices Introducción al método símplex Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema PLs en formato estándar Vértices y soluciones

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

INECUACIONES: DESIGUALDADES. 3. Usa métodos para solucionar desigualdades lineales y cuadráticas.

INECUACIONES: DESIGUALDADES. 3. Usa métodos para solucionar desigualdades lineales y cuadráticas. FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Matemáticas Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICIADORES DE LOGRO INECUACIONES: DESIGUALDADES

Más detalles

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales. Por ejemplo el intervalo [-5,3]

Más detalles

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V. Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL x x x1 n θ y y ȳ1 n 1 n x1 n ȳ1 n Carlos Arce S. William Castillo E. Jorge González V. 2003 Algebra Lineal Carlos Arce S., William Castillo

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Capítulo VI DESIGUALDADES E INECUACIONES

Capítulo VI DESIGUALDADES E INECUACIONES Capítulo VI DESIGUALDADES E INECUACIONES 6.1 DEFINICIONES: a. Desigualdad: Se denomina desigualdad a toda expresión que describe la relación entre al menos elementos escritos en términos matemáticos, y

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

Tema 5: Dualidad y sensibilidad de los modelos lineales.

Tema 5: Dualidad y sensibilidad de los modelos lineales. ema 5: Dualidad y sensibilidad de los modelos lineales. Objetivos del tema: Introducir el concepto de Sensibilidad en la Programación Lineal Introducir el concepto de Dualidad en la Programación Lineal

Más detalles

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS TEMA 12: MODELADO CON VARIABLES BINARIAS 1.- MOTIVACIÓN 2.- INTRODUCCIÓN 3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS 5.- MODELADO

Más detalles

Tema 3. El metodo del Simplex.

Tema 3. El metodo del Simplex. Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Universidad de Manizales

Universidad de Manizales Universidad de Manizales INTRODUCCIÓN A LA PROGRAMACIÓN LINEAL JULIAN GONZÁLEZ LÓPEZ ALVARO SALAS SALAS UNIVERSIDAD DE MANIZALES INTRODUCCIÓN A LA PROGRAMACIÓN LINEAL JULIÁN GONZÁLEZ LÓPEZ Profesor Asociado

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Unidad 2 Modelos de optimización

Unidad 2 Modelos de optimización Unidad 2 Modelos de optimización Objetivos Al nalizar la unidad, el alumno: Construirá modelos matemáticos de optimización. Resolverá problemas prácticos con el método gráfico. Matemáticas para negocios

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

Programación lineal (+ extensiones). Ejemplos.

Programación lineal (+ extensiones). Ejemplos. Departamento de Matemáticas. ITAM. 2012. Forma estándar de un PPL PPL minimizar x c T x sujeta a Ax = b, x 0, en donde x 0 indica x i 0, i = 1, 2,..., n. c es el vector de costos. c R n. A es una matriz

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

INTERPRETACION ECONOMICA DEL ANALISIS DE SENSIBILIDAD

INTERPRETACION ECONOMICA DEL ANALISIS DE SENSIBILIDAD ESCOLA UNIVERSITÀRIA D ESTUDIS EMPRESARIALS DEPARTAMENT D ECONOMIA I ORGANITZACIÓ D EMPRESES INTERPRETACION ECONOMICA DEL ANALISIS DE SENSIBILIDAD Dunia Durán Juvé Profesora Titular 1ª Edición de 1995:

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

UNIDAD 6. Programación no lineal

UNIDAD 6. Programación no lineal UNIDAD 6 Programación no lineal En matemática Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas a un conjunto de restricciones sobre un conjunto

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

SOLUCIÓN DE INECUACIONES DE UNA VARIABLE

SOLUCIÓN DE INECUACIONES DE UNA VARIABLE SOLUCIÓN DE INECUACIONES DE UNA VARIABLE Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que satisfacen la inecuación. Terminología: ax + b > cx + d Primer miembro Segundo

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2014/2015 MATEMÁTICAS II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad La siguiente relación de objetivos,

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Planificación de la Producción y Optimización Lineal

Planificación de la Producción y Optimización Lineal MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/~mamaeusch/ Planificación de la Producción y Optimización Lineal Horst W. Hamacher Este proyecto ha sido desarrollado

Más detalles

Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la herramienta SOLVER de Excel y el modelo Matricial.

Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la herramienta SOLVER de Excel y el modelo Matricial. UNIVERSIDAD DE ORIENTE NÚCLEO DE MONAGAS POST GRADO EN CIENCIAS ADMINISTRATIVAS MENCIÓN FINANZAS FINANZAS INTERNACIONALES Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Ministerio de Educación Nuevo Bachillerato Ecuatoriano. Programación lineal

Ministerio de Educación Nuevo Bachillerato Ecuatoriano. Programación lineal Ministerio de Educación Nuevo Bachillerato Ecuatoriano Programación lineal Con el fin de motivar a sus estudiantes, un profesor de Matemática decide proporcionarles dos paquetes de golosinas: uno con 2

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

Capítulo 5 Método Simplex

Capítulo 5 Método Simplex Capítulo 5 Método Simplex Cj 5-2 3 0 -M 0 0 V.B. b X1 X2 X3 X4 X5 X6 X7 5 X1 13/9 1 0 0-4/15 4/15 7/45 4/45 NO 3 X3 14/9 0 0 1 1/15-1/15 2/45 14/45 70/3-2 X2 1/3 0 1 0-3/15 3/15-2/15 1/15 NO Zj - Cj 101/9

Más detalles

ÁLGEBRA LINEAL - Año 2012

ÁLGEBRA LINEAL - Año 2012 UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS ÁLGEBRA LINEAL - Año 0 Notas de Cátedra correspondientes a la UNIDAD SIETE PROGRAMACIÓN LINEAL * INECUACIONES Se denomina inecuación a

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

1. Breve resumen de optimización sin restricciones en varias variables.

1. Breve resumen de optimización sin restricciones en varias variables. MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones

Más detalles

Tema 1: Preliminares

Tema 1: Preliminares Métodos Numéricos: Resumen y ejemplos Tema 1: Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, versión 1.7 1. Desigualdades

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e

3. LA DFT Y FFT PARA EL ANÁLISIS FRECUENCIAL. Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e 3. LA DFT Y FFT PARA EL AÁLISIS FRECUECIAL Una de las herramientas más útiles para el análisis y diseño de sistemas LIT (lineales e invariantes en el tiempo), es la transformada de Fourier. Esta representación

Más detalles

Tema 7: Capital, inversión y ciclos reales

Tema 7: Capital, inversión y ciclos reales Tema 7: Capital, inversión y ciclos reales Macroeconomía 2014 Universidad Torcuato di Tella Constantino Hevia En la nota pasada analizamos el modelo de equilibrio general de dos períodos con producción

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Capítulo 6 MATRICES Y DETERMINANTES 6.. Introducción Las matrices y los determinantes son herramientas del álgebra que facilitan el ordenamiento de datos, así como su manejo. Los conceptos de matriz y

Más detalles

CAPITULO 4: OPTIMIZACIÓN

CAPITULO 4: OPTIMIZACIÓN CAPITULO 4: OPTIMIZACIÓN Optimización es el proceso de hallar el máimo o mínimo relativo de una función, generalmente sin la auda de gráficos. 4.1 Conceptos claves A continuación se describirá brevemente

Más detalles

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia...

http://saeti.itson.mx/otrosusuarios/plandosmilnueveconsprogamplioimpma.asp?materia... Page 1 of 7 Departamento: Dpto Matematica Nombre del curso: ALGEBRA LINEAL Clave: 003866 Academia a la que pertenece: Algebra Lineal Requisitos: Requisito de Algebra Lineal: Calculo I, Fundamentos de Matem

Más detalles

CAPÍTULO II. 3 El grupo lineal

CAPÍTULO II. 3 El grupo lineal CAPÍTULO II 3 El grupo lineal Como ya se advirtió en el capítulo precedente, los grupos de transformaciones juegan un importante papel en el estudio de la geometría. En esta sección nos ocuparemos de aquellas

Más detalles

SOLUCION DE MODELOS EMPRESARIALES POR COMPUTADORA

SOLUCION DE MODELOS EMPRESARIALES POR COMPUTADORA Tema 2 SOLUCION DE MODELOS EMPRESARIALES POR COMPUTADORA 2.1 SOFTWARE PARA SOLUCION DE MODELOS PL Programas típicos para resolver problemas de Programación Lineal: - QSB - SOLVER - GLP QSB (Quantitative

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Técnicas Clásicas de Optimización. Parte I: Programación Lineal y No Lineal

Técnicas Clásicas de Optimización. Parte I: Programación Lineal y No Lineal Técnicas Clásicas de Optimización. Parte I: Programación Lineal y No Lineal María Merino Maestre Facultad de Ciencia y Tecnología Departamento de Matemática Aplicada y Estadística e Investigación Operativa

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles