OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z"

Transcripción

1 San Blas, 4, entreplanta OPCIÓN A m + y + z = 0 E.-a) Discutir, en función del valor de m, el sistema de ecuaciones y my + mz = resolverlo para m = b) Para m = añadir una ecuación al sistema del apartado a) para obtener: en un caso un sistema compatible determinado y en otro caso un sistema incompatible. a) Teorema de Rouché-Frobeniüs: matriz de coeficientes y, A, la matriz ampliada. A m 0 = 0 m m A rga = rga = nº incógnitas S. C. D. rga = rga < nº incógnitas S. C. I. rga < rga S. I. calculo un menor m m 0 rga = = rga < nº inc S. C. I. rga = m 0 m m = 0 Habrá que estudiarlo rga = ( F nula) 0 0 m = 0 A = 0 S. I rga = = 0 0 siendo A la Nota: El rango de una matriz es el orden (tamaño) del mayor menor ( determinante ) distinto de cero. Para m = tenemos un S.C.I. = + y + z = 0 y= λ + z = λ y = λ y z = z = + λ z = λ + y + z = 0 0 b) Para m = A = y + z = 0 Para que sea compatible determinado tiene que cumplirse: rga = rga = = nº inc por lo que basta con añadir una fila a la matriz ampliada que sea linealmente independiente: 0 + y + z = 0 A = 0 y + z = z = 0 Matemáticas II. Propuesta /06

2 San Blas, 4, entreplanta Para que sea incompatible, el rango de A tiene que ser (tiene que ser mayor que el rango de A que, para m = ya hemos visto que vale ). Añado una fila a A que sea linealmente dependiente, por ejemplo, suma de las otras dos filas, pero que dicha relación no se cumpla en la ampliada: 0 + y + z = 0 A = 0 y + z = + y + z = F = F + F ւ F F + F y + z = E..- a) Determinar la posición relativa de la recta r y + z = π 5 y + z = 4 y z b) Dadas las rectas r = = 5 contiene a r y es paralelo a r. y y el plano + y z = r, calcula el plano que y + z = a) Ya que nos dan la ecuación de la recta en forma general, formamos un ssitema con las tres ecuaciones: S. C. D. Solución única SECANTES S. C. I. infinitas soluciones RECTA CONTENIDA EN PLANO S. I. sin solución RECTA PARALELA AL PLANO y + z = y + z = calculo los rangos por el método de Gauss 5 y + z = 4 F F F F F 5F rga = sistema incompatible: RECTA PARALELA AL PLANO rga = b) Para calcular el plano que me piden necesito dos vectores directores (o un vector normal) y un punto. Como vectores directores utilizaré los de r (ya que está contenida) y de r (al ser paralela, su vector director también lo es). Como punto, cualquiera de r servirá. Matemáticas II. Propuesta /06

3 San Blas, 4, entreplanta Ar r ur (,0,0 ) = (,,5 ) i j k De r solo necesito su vector director así que lo más cómodo será: v = = i j k =,,,, y z El plano pedido es: π 5 = 6 + y + z = y z = 0 simplifico E..- Dada la función f ( ) = e, estudiar: derivabilidad, crecimiento y decrecimiento, etremos relativos y asíntotas. El dominio de la función es R siendo continua (es una función eponencial) en dicho dominio. Además es par ya que f ( ) = f ( ) Empezamos quitando el valor absoluto: < 0 e < 0 = f ( ) = 0 e 0 > como para < 0 por ser una función = DERIVABILIDAD: Es derivable tanto para 0 eponencial. Solo habrá que estudiarlo en 0 Calculo la derivada: 0 4e < 0 f ( 0 ) = 4e = 4 f ( ) = + 0 4e 0 f 0 = 4e = 4 f 0 f 0 + NO ES DERIVABLE ya que la función derivada no es continua CRECIMIENTO, DECRECIMIENTO Y EXTREMOS: Estudio el signo de la función derivada: 4e 0 4e 0 : creciente f ( ) = < > 4e 0 4e < 0 : decreciente En = 0 cambia de creciente a decreciente luego tenemos un máimo,0 : CRECIENTE ( ) lo que sea Nota: e es SIEMPRE mayor que 0 0, : DECRECIENTE MÁXIMO: 0, Matemáticas II. Propuesta /06

4 San Blas, 4, entreplanta ASÍNTOTAS: Al ser el dominio R, no tiene asíntotas verticales. Asíntotas horizontales: lim f = lim e = e = 0 A. HORIZONTAL y = 0 cuando. 0 Cuando no hace falta calcularla ya que, al ser una función PAR, tendrá la misma asíntota A.H. y = 0 cuando ± E..-a) Calcular lim e + 0 b) Consideramos la función f ( ) = + m + con m 0. Calcular el valor de m para que el área del recinto limitado por a gráfica de la función f ( ), el eje OX y las rectas = 0 y = sea 0. a) + 0 lim e = 0 e = 0( e ) = 0 Ind. f ( ) g ( ) = + 0 e e L Hopital lim lim lim = = e = e = = y = b) Supongo que la función no corta al eje OX entre g f 8m A = ( + m + ) d = + m + = = 0 m = 4 Compruebo mi suposición : ( ) : Matemáticas II. Propuesta /06

5 San Blas, 4, entreplanta OPCIÓN B E..-a) Sea A una matriz cuadrada de orden y tal que A =. Tiene inversa la matriz 4 A? Calcular 5A 5A y a + 6 b) Para qué valores del parámetro ael rango de la matriz es? a a) Una matriz cuadrada tiene inversa si y solo si su determinante es distinto de 0 A = A = = 6 0 Tiene inversa 4 4 ( )4 ( ) : α A = A A A = A A A = A α α veces 5 5A = 5 A = 5 = ( ) ( ) A α veces n : α A = α A siendo n el orden de A ( ) : A A I A A I A A A = = = = A ( 5A) = = = 5A ( ) ( ) 5 A 50 b) Rango= orden del mayor menor distinto de 0. Para que el rango de esta matriz sea, su determinante ha de ser igual a 0. a + 6 a = = a( a + ) = a + a = 0 a a = 4 E..- a) Hallar la ecuación del plano perpendicular al plano π y + 4z 5 = 0 y que contiene a los puntos (,0,0) y ( 0,,0 ) b) Dos caras de un cubo están contenidas en los planos π y + z = 0 y π y + z + 5 = 0. Calcular el volumen de dicho cubo. a) Para calcular un plano se necesitan dos vectores directores (o un vector normal) y un punto. Al ser π perpendicular al plano que me piden, su vector normal es paralelo a dicho plano. El otro vector director viene dado por los puntos contenidos. Y, por último, como punto me valdrá cualquiera de los dos puntos anteriores. Matemáticas II. Propuesta /06

6 San Blas, 4, entreplanta π y + 4z 5 = 0 n =,, 4,, ( 0,,0 ) (,0,0) (,,0 ) : ( 0,, 0) AB = = Punto y z α 0 = 4 y z = 4y z + 4 = 0 b) Vemos que los planos que me dan son paralelos (mismo vector normal). Eso significa que las caras que están contenidas en dichos planos son opuestas: la distancia entre los planos será la arista del cubo dist ( π, π ) D D = = n V = a = = 7 u 5 6 = = u = arista E..- Hallar la ecuación de la recta que pasa por (,) y forma con los ejes coordenados un triángulo de área mínima en el primer cuadrante. Primero calculo la ecuación de todas las rectas que pasan por (,): = y= y = m + n = m + n n = m ( ) y = m + m La base del triángulo viene dada por el punto de corte de la recta con el eje OX mientras que la altura es el punto de corte con el eje OY BASE: ALTURA: Corte OX y = 0 m m 0 = m + ( m) = = = base m m Corte OY = 0 y = m0 + m y = m = altura Matemáticas II. Propuesta /06

7 San Blas, 4, entreplanta A m m y m m + m = = = = m m ( m) ( m )( m) Para calcular el área mínima, igualo su derivada a 0: m + = 0 ( m ) m ( m m ) m + m + + m + A m = = = = 0 m 4m m m = no tiene sentido porque necesito una pte negativa m = Compruebo que m=- es un mínimo (y también que m= es un máimo, por si no me hubiese dado cuenta de que la pendiente tenía que ser negativa). Lo hago a partir de la segunda derivada: A m m 4m m = : máimo A ( m) = = 4 4m m A ( ) = : mínimo m= y = m + m y = + Entonces, la recta queda E.4.- Se considera la parábola y = + a) Calcula las rectas tangentes a dicha parábola en sus puntos de intersección con el eje OX b) Calcular el área delimitada por la gráfica de dicha parábola y las rectas tangentes obtenidas en el apartado a) a) Calculo los puntos de corte de la parábola con el eje OX: = 0 + = + = 0 = La ecuación de la recta tangente en a viene dada por: y = f ( a) + f ( a)( a) f ( 0) = 0 En = 0 y = f ( ) = + f ( 0) = f ( ) = 0 En = y = ( ) = + 4 f ( ) = + f ( ) = b) Los puntos de corte de las rectas con la parábola son los puntos de tangencia: Calculo ahora el punto de corte entre ambas rectas: y = = = 4 = y = + 4 = 0 = Matemáticas II. Propuesta /06

8 San Blas, 4, entreplanta El área total está formada por dos áreas que, por simetría, son iguales: A = A + A = A ( ) ( ) A d 4 d d = = + = A A A = ( ) d = = u. a. Si no nos diésemos cuenta de la simetría, bastaría con calcular las dos integrales por separado: ( ) A d 4 d d 4 4 d = = + + = = + + = = u. a. 8 7 Matemáticas II. Propuesta /06

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y Pruebas de Aptitud para el Acceso a la Universidad. JUNIO 99. Matemáticas II. OPCIÓN A X Y 5. Las matrices X e Y son las soluciones del sistema de ecuaciones matriciales. Se pide hallar X Y 0 X e Y [ punto]

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 011 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Septiembre 206) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dada la función f(x) = (6 x)e x/3, se pide: a) ( punto). Determinar su dominio, asíntotas y cortes

Más detalles

a a a 1 1 a a a 2 0 a rg A rg B rg A rg B

a a a 1 1 a a a 2 0 a rg A rg B rg A rg B Pruebas de Aptitud para el Acceso a la Universidad. JUNIO 997. Matemáticas II. OPCIÓN A a y z 0. Discutir el sistema y az según los valores del parámetro a [,5 puntos]. Resolverlo en los casos en y que

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 01 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

OPCIÓN A. E2.-a) Consideramos los puntos P(-1,-4,0), Q(0,1,3), R(1,0,3). Hallar el plano π que contiene a los puntos P, Q y R

OPCIÓN A. E2.-a) Consideramos los puntos P(-1,-4,0), Q(0,1,3), R(1,0,3). Hallar el plano π que contiene a los puntos P, Q y R San Blas, 4, entreplanta. 983 3 7 54 OPCIÓN A E.-a) Sea M =. Estudiar, en función del parámetro a, cuando M posee 3 a inversa (,5 puntos) b) Siendo A =, calcular A y A 3 7 (,75 puntos) a) Eiste M ( M )

Más detalles

MATEMÁTICAS II SEPTIEMBRE 2016 OPCIÓN A

MATEMÁTICAS II SEPTIEMBRE 2016 OPCIÓN A Ejercicio. (Calificación máxima: puntos) Dada la función f(x) = (6 x)e x, se pide: MATEMÁTICAS II SEPTIEMBRE 6 OPCIÓN A a) ( punto) Determinar su dominio, asíntotas y cortes con los ejes. b) (punto) Calcular

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos) Isaac Musat Hervás 22 de mayo de 2013 Capítulo 5 Año 2004 5.1. Modelo 2004 - Opción A Problema 5.1.1 2 puntos) a) 1 punto) Calcular

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1. [2 5 puntos] Calcula lim x 0 siendo Ln(1 + x) el logaritmo neperiano de 1 + x. Ln(1 + x) sen x, x sen x Ejercicio 2. Sea f : R R la función definida por f(x) = e x/3. (a) [1 punto]

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular

Más detalles

Observaciones del profesor:

Observaciones del profesor: INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a los cuatro ejercicios de una de las dos opciones (A o B) que se le ofrecen. Nunca deberá contestar a unos ejercicios de una opción y a otros

Más detalles

, donde denota la matriz traspuesta de B.

, donde denota la matriz traspuesta de B. Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

EvAU 2018 Opción A. Comunidad de Madrid. 2x (m + 1)y + z = 1. x + (2m 1)y + (m + 2)z = 2 + 2m, 1 m 0. 2 m m 1 m + 2

EvAU 2018 Opción A. Comunidad de Madrid. 2x (m + 1)y + z = 1. x + (2m 1)y + (m + 2)z = 2 + 2m, 1 m 0. 2 m m 1 m + 2 } EvAU 28 Opción A Comunidad de Madrid } Ejercicio. Dado el sistema de ecuaciones + my m + )y + z se pide: + 2m )y + m + 2)z 2 + 2m, a) Discutir el sistema en función del parámetro m. b) Resolver el sistema

Más detalles

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2012, Andalucía

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2012, Andalucía Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de, Andalucía Pedro González Ruiz 3 de septiembre de. Opción A Problema. Sea la función continua f : R R definida

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2 IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

OPCIÓN A. El sistema homogéneo tiene infinitas soluciones cuando la matriz de los coeficientes tenga rango 3 y para ello: x y

OPCIÓN A. El sistema homogéneo tiene infinitas soluciones cuando la matriz de los coeficientes tenga rango 3 y para ello: x y OPCIÓN A 1. Hallar los valores del parámetro a para que el sistema de ecuaciones soluciones [1,5 puntos]. Resolverlo en cada uno de esos casos [1 punto]. z 0 a y z 0 (a 1)y az 0 admita infinitas El sistema

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

Opción de examen n o 1

Opción de examen n o 1 Septiembre-206 PAU Cantabria-Matemáticas II Opción de examen n o. a) Según el enunciado, se tiene: A B = C Ö è Ö è a b 2 c b c a = Ö è 0 Al igualar las matrices obtenidas se llega a: 2 + a + b = 2c + +

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 10/11/11 EXAMEN: 1º. b) Comprueba aplicando las propiedades de los determinantes, la siguiente identidad:

EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 10/11/11 EXAMEN: 1º. b) Comprueba aplicando las propiedades de los determinantes, la siguiente identidad: EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 10/11/11 EXAMEN: 1º 1) Un tren transporta 520 viajeros y la recaudación del importe de sus billetes asciende a 3150. Calcula cuántos viajeros han pagado el importe

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

Examen de Matemáticas II (Modelo 2013) Selectividad-Opción A Tiempo: 90 minutos. 2x 2 + 3x x 1. si x < 0. a si x = 0.

Examen de Matemáticas II (Modelo 2013) Selectividad-Opción A Tiempo: 90 minutos. 2x 2 + 3x x 1. si x < 0. a si x = 0. Examen de Matemáticas II (Modelo 2013) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dada la función se pide: f(x) = 2x 2 + 3x x 1 si x < 0 a si x = 0 e 1/x si x > 0 (1 punto). Determinar

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2004 Sea f : R R la función definida por f(x) = 2 x. x. (a) [0 75 puntos] Esboza la gráfica de f. (b) [1 punto] Estudia la derivabilidad de f en x = 0. (c) [0

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

Matemáticas II Hoja 9: Derivadas y Aplicaciones. Representación de Funciones.

Matemáticas II Hoja 9: Derivadas y Aplicaciones. Representación de Funciones. Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 9: Derivadas y Aplicaciones Representación de Funciones Ejercicio 1: (Continuación del Ejercicio 1 de la Hoja 8) + 1 a 1 e < 0 0 Para

Más detalles

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1 Ejercicio n º 1 de la opción A de junio de 2005 [2'5 puntos] De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD

PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : (0,+ ) R la función definida por f(x) = 3x + 1 x. (a) [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (puntos donde

Más detalles

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A

DÍAZ BALAGUER. CENTRO DE ESTUDIOS. MATEMÁTICAS II Corrección examen PAU. Junio OPCIÓN A Corrección examen PAU. Junio 6. OPCIÓN A a) Si x { }, vemos que la función está perfectamente definida y por tanto es continua, x { } Así pues, el único problema que podría existir es en x =. Para que

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

CUESTIONES TEÓRICAS. Matemáticas II Curso

CUESTIONES TEÓRICAS. Matemáticas II Curso CUESTIONES TEÓRICAS Matemáticas II Curso 2013-14 1. Definición de función continua: Una función es continua en un punto a si existe el valor de la función en dicho punto, el límite de la función cuando

Más detalles

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables.

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables. Matemáticas II Curso 0/4 Opción A (ª evaluación) Ejercicio. (Puntuación máima: puntos) Estudia las características de la función = ln = ( 0, + ) ( + ) f Dom f y = ln ; con los datos obtenidos representa

Más detalles

TRABAJO DE SEPTIEMBRE Matemáticas 1º Bachillerato

TRABAJO DE SEPTIEMBRE Matemáticas 1º Bachillerato Trabajo de Verano 04 º BACHILLERATO TRABAJO DE SEPTIEMBRE Matemáticas º Bachillerato. Página Trabajo de Verano 04 º BACHILLERATO BLOQUE I: CÁLCULO TEMA (UNIDAD DIDÁCTICA 9): Propiedades globales de las

Más detalles

IES Fco Ayala de Granada Septiembre de 2017 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2017 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 07 (Modelo 6) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio opción A, Septiembre 07 (modelo 6) [ 5 puntos] Una imprenta recibe el encargo de realizar una

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2007 [2 5 puntos] Determina la función f : R R sabiendo que f (x) = x 2 1 y que la recta tangente a la gráfica de f en el punto de abscisa x = 0 es la recta y

Más detalles

Profesores de Enseñanza Secundaria. MATEMÁTICAS. ANDALUCÍA 2018

Profesores de Enseñanza Secundaria. MATEMÁTICAS. ANDALUCÍA 2018 ANDALUCÍA 8 PROBLEMA Dados la matriz A R, el vector b R, α R y el subespacio F de R A =, b = y F + = α + + = α a) Discutir y resolver cuando sea compatible el sistema AX=b con X R. b) Sea E el espacio

Más detalles

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II PRINCIPADO DE ASTURIAS MODELO CURSO 009-00 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio a) Como se trata de un sistema cuadrado, calculamos

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS II Nuevo currículo Teto para los Alumnos Nº páginas CRITERIOS GENERALES DE EVALUACIÓN DE LA PRUEBA: Se observarán fundamentalmente los

Más detalles

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k}

Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. R es una cuaterna { O,i, j, k} Geometría afín del espacio MATEMÁTICAS II 1 1 SISTEMA DE REFERENCIA. ESPACIO AFÍN Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. Definición: Un sistema de referencia

Más detalles

MATEMÁTICAS II (PAUU XUÑO 2011)

MATEMÁTICAS II (PAUU XUÑO 2011) MATEMÁTICAS II (PAUU XUÑO 0) OPCIÓN A. a) Sean C, C, C 3 las columnas primera, segunda y tercera, respectivamente, de una matriz cuadrada M de orden 3 con det (M ) = 4. Calcula enunciando las propiedades

Más detalles

EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUE: ANÁLISIS

EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUE: ANÁLISIS EJERCICIOS DE SELECTIVIDAD / COMUNIDAD DE MADRID MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II BLOQUE: ANÁLISIS. Septiembre( 00 / OPCIÓN B / EJERCICIO ) (puntuación máima puntos) Se considera

Más detalles

MATEMÁTICAS II 2005 OPCIÓN A

MATEMÁTICAS II 2005 OPCIÓN A MATEMÁTICAS II 2005 OPCIÓN A Ejercicio 1: De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el punto de abscisa

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014 Opción A Ejercicio 1 opción A, modelo Junio Incidencias 014 Sea f la función definida por f(x) = 1 + ln(x) para x > 0 (ln denota el logaritmo x neperiano). (a) [1 75 puntos] Determina el punto de la gráfica

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2007 Sea f : R R la función definida por f(x) = (x - 3)e x. [1 punto] Calcula los extremos relativos de f (puntos donde se obtienen y valores que se alcanzan).

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

m m 7m 7 0 m 1, m m

m m 7m 7 0 m 1, m m 5 4 La matriz de los coeficientes es A 4 m El único menor de orden de A es: 5 4 0 y la matriz ampliada B 0 4 m m 5 4 5m 6 4 4 58m 7m 7 0 m, m 4 m Tenemos entonces: Para m y m : rga rgb nº de incógnitas

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

1 1 m m m 1 1 m 1 m 2 1 m m 1 m 1 m 1 m 2 1 m 2 m m 1 m 1 0 m

1 1 m m m 1 1 m 1 m 2 1 m m 1 m 1 m 1 m 2 1 m 2 m m 1 m 1 0 m a) La matriz de los coeficientes es m A m m m m y la matriz ampliada B m m. Estudiemos sus rangos según los posibles valores de m : En la matriz A, el mayor rango posible es 3: m m m m m m m m m m m m

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES º BACHILLERATO EXAMEN DE MATRICES Y DETERMINANTES 8 7 m + Ejercicio. Considera las matrices A m (a) [,5 puntos] Determina, si existen, los valores de m para los que A I A (b) [ punto] Determina, si existen,

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2008 Sea f : R R la función definida por f(x) = (3x 2x 2 )e x. [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento de f. [1 punto] Calcula

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores

Más detalles

[2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. Solución

[2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. Solución Ejercicio n º 1 de la opción A de junio de 2008 [2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. La recta x = a es una asíntota vertical (A.V.) de la función

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B =

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B = S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 8 - IV 4 CURSO 03-4 a) Duración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 13/11/14 EXAMEN: 1º. ( Resuélvelo por el método de Gauss )

EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 13/11/14 EXAMEN: 1º. ( Resuélvelo por el método de Gauss ) EVALUACION: 1ª CURSO: 2º B.C.T. FECHA: 13/11/14 EXAMEN: 1º 1) a) Un especulador adquiere tres objetos de arte por un precio de 20 monedas de oro. Vendiéndolas espera obtener unas ganancias del 20 %, del

Más detalles

Para calcular B, sustituimos A en la segunda ecuación y despejamos B:

Para calcular B, sustituimos A en la segunda ecuación y despejamos B: Prueba de Acceso a la Universidad. SEPTIEMBRE 014. Matemáticas II. a) Multiplicamos por la segunda ecuación: 9 6A B 7 7 1 1 Sumamos ahora ambas ecuaciones: 7A A 0 7 0 1 Para calcular B, sustituimos A en

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

Ejercicio nº 1 de la opción A del modelo 1 de Solución

Ejercicio nº 1 de la opción A del modelo 1 de Solución Ejercicio nº 1 de la opción A del modelo 1 de 2001 Se quiere dividir la región encerrada entre la parábola y = x 2 y la recta y = 1 en dos regiones de igual área mediante la recta y = a. Halla el valor

Más detalles

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c, PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene

Más detalles

SOLUCIONES A LAS CUESTIONES TIPO TEST

SOLUCIONES A LAS CUESTIONES TIPO TEST Grado en Economía Facultad de Economía, Empresa y Turismo Matemáticas para la Economía I Curso 01/013 Soluciones del examen de la convocatoria ordinaria celebrado el 09/07/013 IMPORTANTE: Las calificaciones

Más detalles

IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A

IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A Opción A Ejercicio n 1 de la opción A del modelo 1 del libro 96_97 De una función continua f : R R se sabe que si F : R R es una primitiva suya, entonces también lo es la función G dada por G(x) 3 - F(x).

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II 1 Matemáticas II COMUNIDAD DE MADRID MODELO CURSO 009-010 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio 1 a) Para calcular los extremos y los intervalos

Más detalles

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular

xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular . [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y

Más detalles

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid)

MODELOS DE EXÁMENES. Pruebas de acceso a la universidad Matemáticas II. Universidad Complutense (Madrid) COLEGIO INTERNACIONAL SEK EL CASTILLO Departamento de Ciencias MODELOS DE EXÁMENES Pruebas de acceso a la universidad Matemáticas II Universidad Complutense (Madrid) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD

Más detalles

S O L U C I O N E S O P C I Ó N A. PR1.- Nos dan 3 planos, dos de ellos determinan la recta. El problema se reduce a interpretar.

S O L U C I O N E S O P C I Ó N A. PR1.- Nos dan 3 planos, dos de ellos determinan la recta. El problema se reduce a interpretar. S O L U C I O N E S O P C I Ó N A PR.- Nos dan planos, dos de ellos determinan la recta. El problema se reduce a interpretar geométricamente las posibles soluciones del sistema m y m my a) Matri de los

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Ejercicio 2.- [2 5 puntos] Sea f : ( 2, + ) R la función

Más detalles

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto)

PROPUESTA A. 1 + x2 c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado. Bachillerato L. O. G. S. E. Instrucciones: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios deben

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio 1. Valor: 2 puntos. Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento,

Más detalles

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 [2 5 puntos] Sea la función f : R R dada por f(x) = Calcula las constantes a, b y c sabiendo que f es derivable y que la recta tangente a la gráfica

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)

Más detalles