1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción"

Transcripción

1 LA ESTRUCTURA TEMORAL DE LOS TIOS DE INTERES.- Inoducción La esucua empoal de ipos de ineés o simplemene cuva de ipos ecoge la evolución de los ipos de ineés en función de su vencimieno, consideando po lo ano, acivos de idénicas caaceísicas y iesgo que sólo difieen en su vencimieno. Los acivos han de ene la misma liquidez y iesgo y sus pecios han de esa fomados en mecados eficienes sus pecios incopoan oda la infomación disponible pública y pivada, en caso conaio la coeca inepeación de la esucua empoal de ipos o cuva de ipos equiee ene en cuena las posibles ineficiencias de los mecados en que se negocian los acivos de disinos plazos. La cuva de ipos iene gan impoancia dado que sive como efeencia clave paa la valoación de odo ipo de acivos de ena fia de odo ipo de emisoes públicos, pivados, nacionales o inenacionales. Asimismo po su conenido infomacional sobe expecaivas de los agenes sobe inflación osobe el sesgo de la políica moneaia esula una heamiena fundamenal en el análisis coyunual. 2.-Consucción de la cuva de ipos. o la definición de cuva de ipos, paa su elaboación basaía con oma los ipos de ineés de acivos similaes con disinos vencimienos. Lamenablemene de la popia definición se deduce la dificulad en su elaboación, dado que la mayoía de acivos no son homogéneos ni en sus caaceísicas ni en sus vencimienos. Dado que ese cuso iene un caáce inoducoia se omiián muchas de las dificulades inheenes a la coeca obención de la cuva de ipos y se consideaá sin más, que esán disponibles los endimienos de acivos similaes bonos cupón ceo de idénica liquidez y iesgo paa odos aquellos vencimienos que se deseen. Una dificulad adicional suge de la necesidad de uiliza endimienos que sean compaables paa consui la cuva de ipos, en paicula, endimienos expesados en éminos anuales. A efecos pácicos esa caaceísica no pesena mayoes poblemas dado que basa con uiliza las expesiones: Bono cupón ceo con vencimieno infeio al año: endimieno, n peíodos hasa vencimieno días, semanas, meses,, m peíodos conenidos en una año 360 ó 36 días, 4 semanas, 2 meses. 8

2 m n Bono cupón ceo con vencimieno supeio al año: endimieno, m años hasa vencimieno. m No obsane es peciso ene en cuena que con mecados compleos los bonos de vencimieno supeio pueden expesase a pai de bonos con vencimieno infeio un bono de 3 meses puede consuise como un bono a mes que a su vencimieno es nuevamene emiido dos veces oll-ove con el mismo vencimieno de mes po lo ano el anes calculado incopoa los de oos bonos de vencimieno infeio más las expecaivas sobe las enabilidades fuuas. Esa pecisamene es una de las pincipales uilidades de la cuva de ipos, dado que nos pemie conoce cuales son los ipos de ineés espeados a lo lago del iempo, indicando asimismo cuales son las expecaivas de los agenes sobe las vaiables que afecan a los ipos de ineés. Eemplo: Supongamos que un Banco pecisa fondos po impoe de 0M a un plazo de días. Dichos fondos puede obenelos a avés de OF del BCE con vencimieno a una semana lo que implicaía enova el pésamo o bien a avés del Inebancaio. Supongamos que no hay iesgo en la opeación. El ipo de las OF se siúa en 0,04% 2,0% peo se espea con ceeza que suba la póxima semana a 0,0% 2,64%. Cuál debeía se como mínimo el de las opeaciones a días en el mecado inebancaio paa que no exisan opounidades de abiae?. aa que no haya abiae, el endimieno de ambas opeaciones pésamo a 7 días con enovación y pésamo a días han de se equivalenes. El endimienoespeado del pésamo con enovación es: ^36 2,9% o lo ano el ipo de ineés de las opeaciones a días en el Mdo. Inebancaio ha de se como mínimo el 2,9%, ya que en caso conaio exisián opounidades de abiaes que consisiían en pedi pesado en el Inebancaio a días y pesa el impoe esulane a semana al 0,04% y ascuido ese plazo volve a pesa los fondos a semana al 0,0% 28

3 ANEXO: Algunas expesiones úiles Rendimieno bono cupón ceo. 0 Rendimieno anualizado: Bono cupón ceo con vencimieno infeio al año: endimieno, n peíodos hasa vencimieno días, semanas, meses,, m peíodos conenidos en una año 360 ó 36 días, 4 semanas, 2 meses. m n El esulado suele apoximase con la expesión n Bono cupón ceo con vencimieno supeio al año: endimieno, m años hasa vencimieno. m m Relaciones deivadas: -aa vencimieno infeio al año paa vencimieno supeio al año n m m Rendimieno medio si en cada peíodo vaía el ipo de ineés n m n m n n 2 ipo de ineés paa opeaciones con vencimieno a año deno de 2 años. Relaciones deivadas: Tipo de ineés medio a dos años y ipos espeados a un año 2 m 2 ipo de ineés a año espeado deno de año. ipo de ineés a año espeado deno de años. 38

4 Tipo de ineés medio a cuao años y ipos espeados a un año 4 m Las expesiones aneioes sugen de considea simplemene la evolución de los pecios de una acivo a lo lago del iempo. Si llamamos al pecio de un acivo en el momeno, el endimieno de un acivo compado en - y vendido en es p Igualmene, el endimieno de un acivo compado en -2 y vendido en - vendá dado po: p Expesión que susiuida en la elación aneio supone: 2 2 po lo ano un acivo que se vende en y se ha compado en 0 cumple 2 2 i i 0 Si en cada peíodo se cumple.. 2 m Se endá simplemene: m 0 i i 0 Si defino el endimieno ene 0 y como equivalencias: 0 se cumplián las siguienes i Si en la expesión: m i 48

5 8 i i m Aplicamos logaimos.s m log log log Teniendo en cuena que cuando x->0 se cumple logx~x podemos uiliza la apoximación: m Es deci, el a un plazo m es apoximadamene igual a la media de las enabilidades anuales espeadas en los poximos años. Si es en dias se cumple ambien i i m Si paso a s O bien De donde aplicando logaimos y apoximando igual que anes llegaiamos a: EJEMLO : Se conocen del mecado diaio de pesamos lo siguienes daos Tipo de inees dia Hoy ene 02-ene 03-ene 04-ene 0-ene lazo Tipo de inees a dia 0,0% 0,0% 0,0% 0,02% 0,03%

6 a cálculo del ipo de ineés de abiae de los pésamos a días. Uilizando la expesión: n Llegamos a 0,08%. Ese es el ipo a días, que expesado en ipo diaios seía: > Cuyo esulado es: 0,02%. o lo ano se cumple: Tomando logaimos y simplificando: Calculando 0,0%0,0%0,0%0,02%0,03%0,08%, con lo que se compueba la validez de la apoximación * 0,0%0,0%0,0%0,02%0,03%0,02%. Vemos que se cumple nuevamene la apoximación. b Tipo de inees dia Hoy ene 02-ene 03-ene 04-ene lazo Tipo de inees a 0,0% 0,0% 0,0% 0,02% dia Tipo a dias 0,0800% ^36-3,72% 3,72% 3,72% 7,7% ^36-6,0% Aplicando la apoximación 68

7 ae*3,72%3,72%3,72%7,7% 6,06%, vemos que hay difeencia con el calculado coecamene, peo es una apoximación basane buena. EJEMLO 2: Las fomulas aneioes siven paa calcula los ipos de inees espeados una vez conocidos los a difeenes peiodos. Se conocen los ipos de ineés del inebancaio expesados en mes 2 meses 3 meses 4 meses meses 6 meses 7 meses 8 meses 9 meses 0 meses meses 2 meses ,8990 2,8800 2,860 2,8330 2,80 2,7940 2,7800 2,760 2,720 2,7490 2,7400 2,7340 Se pide calcula el ipo de ineés espeado a mes, deno de mes, 2 meses, 3 meses,, meses, expesado en éminos. Dado que aa dos meses se cumplia: 2,8822,899e > e2,88*2-2,899 2,86. aa es meses : 2,8603*2,8992,86e>e3*2,860-2,899-2,862,823. Haciendo lo mismo paa odos los casos: mes 2 meses 3 meses 4 meses meses 6 meses 7 meses 8 meses 9 meses 0 meses meses 2 meses ,8990 2,8800 2,860 2,8330 2,80 2,7940 2,7800 2,760 2,720 2,7490 2,7400 2,7340 Resp.a mes 2,8990 2,86 2,823 2,749 2,723 2,709 2,696 2,66 2,648 2,722 2,6 2,668 78

8 2,900 2,9000 2,800 2,8000 2,700 2,7000 2,600 2,6000 2,00 2,

VALORACION DE ACCIONES. (1) El valor presente de la suma del dividendo de finales de período más el precio de la acción a finales de período, o

VALORACION DE ACCIONES. (1) El valor presente de la suma del dividendo de finales de período más el precio de la acción a finales de período, o U N I V E R S I D A D D E C H I L E Faculad de Ciencias Físicas y Maemáicas Depaameno de Ingenieía Indusial IN56A 0 of: Viviana Fenández VALORACION DE ACCIONES El valo de una acción se puede calcula como:

Más detalles

COMO CALCULAR VALORES PRESENTES ( Brealey & Myers )

COMO CALCULAR VALORES PRESENTES ( Brealey & Myers ) APÍTULO OMO ALULAR VALORES PRESENTES ( Bealey & Myes ) Hasa el oeno heos calculado valoes pesenes de acivos que poducen dineo exacaene al cabo de un año, peo no heos explicado aquellos que lo poducen a

Más detalles

2 Matemáticas financieras

2 Matemáticas financieras Solucionaio Maemáicas financieas ACTIVIDADES INICIALES.I. Indica el émino geneal de las siguienes sucesiones y halla el valo del émino que ocupa el décimo luga. a), 4, 6, 8 e), 4, 7, 0 b), 4, 8, 6 f),

Más detalles

Tema 2 (Parte II) Financiación n externa (Acciones y Obligaciones)

Tema 2 (Parte II) Financiación n externa (Acciones y Obligaciones) Tema 2 (Pate II) Financiación n extena (Acciones y Obligaciones) 2.1. La financiación extena y el sistema financieo 2.2. Emisión de activos financieos negociables 2.3. Las acciones y su valoación 2.4.

Más detalles

ESTACIONALIDAD, SINCRONIZACIÓN Y EFICIENCIA ENTRE CARTERAS DE REFERENCIA Y EVALUACIÓN DE LOS FONDOS DE INVERSIÓN

ESTACIONALIDAD, SINCRONIZACIÓN Y EFICIENCIA ENTRE CARTERAS DE REFERENCIA Y EVALUACIÓN DE LOS FONDOS DE INVERSIÓN ESTACIONALIDAD, SINCRONIZACIÓN Y EFICIENCIA ENTRE CARTERAS DE REFERENCIA Y EVALUACIÓN DE LOS FONDOS DE INVERSIÓN uan Calos Maallín Sáez Deaameno de Finanzas y Conabilidad Univesia aume I Camus de Riu Sec

Más detalles

Tema 1, 2 y 3. Magnitudes. Cinemática.

Tema 1, 2 y 3. Magnitudes. Cinemática. IES Pedo de Tolosa. SM de Valdeiglesias. 1 Tema 1, y 3. Magniudes. Cinemáica. MAGNITUDES FÍSICAS. LIBRO Pág. 1 Y 13. Recueda: magniud es cualquie popiedad de un cuepo o de un fenómeno físico que se pueda

Más detalles

Puntos, rectas y planos en el espacio

Puntos, rectas y planos en el espacio Maemáicas II Geomeía del espacio Punos, ecas planos en el espacio Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. La eca coa a los es planos coodenados

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio TÉCNICAS DE COMERCIO EXTERIOR Tema 7: El Mecado de divisas y la cobetua del iesgo de cambio 7..- Intoducción al mecado de cambios. Convetibilidad : Existe un mecado libe que define su pecio. Resticciones

Más detalles

UNIDAD 11. ESPACIOS VECTORIALES.

UNIDAD 11. ESPACIOS VECTORIALES. Unidad. Espacios vecoiales UNIDAD. ESPACIOS VECTORIALES.. Espacios vecoiales.. Definición.. Ejemplos. Subespacio Vecoial.. Definición.. Condición necesaia y suficiene.. Combinación Lineal. Sisema Geneado.

Más detalles

N r euros es el precio

N r euros es el precio RETABILIDADES ACTIVOS FIACIEROS Ejemplo 1: Una leta del teoo a doce mee tiene un nominal de 10.000 euo. Ha ido compada po un pecio de 9.500 euo. Cual e el endimiento implícito de dicha leta?. Rendimiento

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera)

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera) Aplicación : Divesificación de las invesiones (poblema de selección de catea) Hecho empíico: Cuanto mayo es el valo espeado (endimiento) de una invesión NO es cieto que sea más apetecible. (Si invesoes

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

MACROECONOMIA II. Grado Economía 2013-2014

MACROECONOMIA II. Grado Economía 2013-2014 MACROECONOMIA II Grado Economía 2013-2014 PARTE II: FUNDAMENTOS MICROECONÓMICOS DE LA MACROECONOMÍA 3 4 5 Tema 2 Las expecaivas: los insrumenos básicos De qué dependen las decisiones económicas? Tipo de

Más detalles

Tema 4 FENOMENOS DE TRANSPORTE Y CONDUCTIVIDAD ELECTROLITICA. Departamento de Química Física. Universidad de Valencia.

Tema 4 FENOMENOS DE TRANSPORTE Y CONDUCTIVIDAD ELECTROLITICA. Departamento de Química Física. Universidad de Valencia. Tema 4 FENOMENOS DE TRANSPORTE Y CONDUCTIVIDAD ELECTROLITICA Depaameno de Química Física Univesidad de Valencia. QF III Tema 4 Índice: 4.. Inoducción 4... Descipción macoscópica de esados de no equilibio.

Más detalles

5.1 La herencia keynesiana. 5.2 Modelo neoclásico de inversión con costes de capital. 5.3 Modelo de inversión de Tobin con ajustes de capital.

5.1 La herencia keynesiana. 5.2 Modelo neoclásico de inversión con costes de capital. 5.3 Modelo de inversión de Tobin con ajustes de capital. Tema 5 La invesión 5. La heencia keynesiana. 5. Modelo neoclásico de invesión con coses de capial. 5.3 Modelo de invesión de Tobin con ajuses de capial. Bibliogafía: Gacía del Paso Macoeconomía Avanzada

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

UNIVERSIDAD DE LA LAGUNA

UNIVERSIDAD DE LA LAGUNA ESCUEL UNIVERSIDD DE L LGUN TÉCNIC SUPERIOR DE INGENIERÍ INFORMÁTIC Tecnología de Computadoes Páctica de pogamación, cuso 2010/11 Pofeso: Juan Julian Meino Rubio Enunciado de la páctica: Cálculo de una

Más detalles

CALCULO DE FACTORES DE EXPANSIÓN ENCUESTA NACIONAL SOBRE NIVELES DE VIDA EN LOS HOGARES

CALCULO DE FACTORES DE EXPANSIÓN ENCUESTA NACIONAL SOBRE NIVELES DE VIDA EN LOS HOGARES CALCULO DE ACTORES DE EXPANSIÓN ENCUESTA NACIONAL SOBRE NIELES DE IDA EN LOS HOGARES Ínice Página 1. aco e expansión 2002 1 1.1 aco e expansión a niel iiena 1 1.1.1 Ajuse a los facoes e expansión 3 1.2

Más detalles

I N G E N I E R I A U N L P

I N G E N I E R I A U N L P I N G E N I E R I U N L P TENSIONES TNGENCILES DEBIDS L ESFUERZO DE CORTE Sección Cicula Delgada Fançois Moelle Libeación compaca nº, 99 ING. SDRÚBL E. BOTTNI ÑO ) Inoducción: Se popone analia la disibución

Más detalles

PROBLEMAS RESUELTOS DE ONDAS y SONIDO

PROBLEMAS RESUELTOS DE ONDAS y SONIDO PROBLEMAS RESUELTOS DE ONDAS y SONDO CURSO - Anonio J. Babeo, Maiano Henández, Alfonso Calea, José González Deaaeno Física Alicada. UCLM Pobleas esuelos ondas y sonido PROBLEMA. Una onda se oaga o una

Más detalles

Tema 1: La autofinanciación

Tema 1: La autofinanciación Tema : La auofinanciación.. Concepo y ipos de auofinanciación..2. La amorización de los elemenos parimoniales.3. Los beneficios reenidos.4. Venajas e inconvenienes de la auofinanciación irección Financiera

Más detalles

Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA

Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA Alquile o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda Una aplicación del método de pogamación dinámica a vaiable dicotómica Maisol Rodíguez Chatuc UdeSA 4 CNEPE - 28 y 29 de mayo de 2009 Motivación

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1

una y en dos dimensiones http://www.walter-fendt.de/ph14s/ 1 Bolilla : Movimieno en una y en dos dimensiones hp://www.wale-fend.de/ph4s/ Bolilla : Movimieno en una y endos dimensiones - El esudio del movimieno se basa en medidas de Posición, Velocidad, y Aceleación.

Más detalles

TEMA 3.-LAS INSTITUCIONES FINANCIERAS Y MONETARIAS (IFM)

TEMA 3.-LAS INSTITUCIONES FINANCIERAS Y MONETARIAS (IFM) Julián Moal TEMA 3.-AS INSTITUCIONES FINANCIERAS Y MONETARIAS (IFM) 3.1.-as funciones del sistema bancaio 3.2.-os intemediaios bancaios en la economía 3.3.-El Banco Cental y el Sistema bancaio Bibliogafía

Más detalles

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN

TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN TEMA 3 EXPECTATIVAS, CONSUMO E INVERSIÓN En el Tema 2 analizamos el papel de las expecaivas en los mercados financieros. En ése nos cenraremos en los de bienes y servicios. El papel que desempeñan las

Más detalles

Curso: IN56A-1 Semestre: Primavera 2008 Profesores: Gonzalo Maturana Jorge Montecinos Prof. Auxiliar: Rodrigo Moser PAUTA CONTROL Nº 1

Curso: IN56A-1 Semestre: Primavera 2008 Profesores: Gonzalo Maturana Jorge Montecinos Prof. Auxiliar: Rodrigo Moser PAUTA CONTROL Nº 1 P1 PAUTA CONTROL Nº 1 Cuso: IN56A-1 Tiempo: 90 min. a) El objetivo de esta medida es loga que la inflación, que se ha mantenido muy alta, conveja a la meta del 3% anual (el Banco quiee ancla las expectativas

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

Redes Bayesianas e Inteligencia Artificial: Aplicaciones en Educación. Información Básica. Contenidos. Incertidumbre

Redes Bayesianas e Inteligencia Artificial: Aplicaciones en Educación. Información Básica. Contenidos. Incertidumbre edes Bayesianas e Ineligencia ificial: plicaciones en ducación Ineligencia ificial y ducación Pogama de Docoado de ísica e Infomáica Univesidad de La Laguna Infomación Básica Pofeso: eléfono: 9845048 e-mail:

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

E A PRECIOS ÓPTIMOS EN EL TRANSPORTE INTERURBANO POR CARRETERA * OSCAR ÁLVAREZ SAN-JAIME PEDRO CANTOS SÁNCHEZ Universidad de Valencia

E A PRECIOS ÓPTIMOS EN EL TRANSPORTE INTERURBANO POR CARRETERA * OSCAR ÁLVAREZ SAN-JAIME PEDRO CANTOS SÁNCHEZ Universidad de Valencia E Númeo 45 (vol. XV), 2007, págs. 155 a 182 A PRECIOS ÓPTIMOS EN EL TRANSPORTE INTERURBANO POR CARRETERA * OSCAR ÁLVAREZ SAN-JAIME PEDRO CANTOS SÁNCHEZ Univesidad de Valencia ROBERTO PEREIRA MOREIRA Univesidad

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

Sus experiencias con el cáncer

Sus experiencias con el cáncer Número de OMB: 0935-0118 Fecha de vencimieno de la aprobación: 01/31/2013 Sus experiencias con el cáncer l Esa encuesa es acerca de las secuelas o efecos secundarios del cáncer y de los raamienos para

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

ACTIVIDADES UNIDAD 7: Funciones elementales

ACTIVIDADES UNIDAD 7: Funciones elementales ACTIVIDADES UNIDAD 7: Funciones elemenales 1. La facura del gas de una familia, en sepiembre, fue de 4,8 euros por 1 m 3, y en ocubre, de 43,81 por 4 m 3. a) Escribe la función que da el impore de la facura

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

Variación Multipoder Bajo Efectos de Microestructura de Mercado

Variación Multipoder Bajo Efectos de Microestructura de Mercado Banco de México Documenos de Invesigación Banco de México Woking Papes N 7-3 Vaiación Mulipode Bajo Efecos de Micoesucua de Mecado Cala Ysusi Banco de México Ocube 7 La seie de Documenos de Invesigación

Más detalles

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0 TEMA 4: MODELO DE DETERMINACIÓN DE LA RENTA NACIONAL: EL SECTOR MONETARIO En el modelo de deteminación de la enta nacional desaollado hasta ahoa no hemos hablado de la cantidad de dineo ni de los tipos

Más detalles

Adaptación de impedancias

Adaptación de impedancias .- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V

Más detalles

Operaciones financieras de financiación, inversión y cobertura de riesgos.

Operaciones financieras de financiación, inversión y cobertura de riesgos. Opeaciones financieas de financiación, invesión y cobetua de iesgos. Tinidad Sancho, Maite Mámol UNIVERSIDAD DE BARCELONA 23/0/203 2 Tinidad Sancho Insa, Mª Teesa Mámol INDICE.. Sistemas y mecados financieos

Más detalles

Leyes de Kepler. Ley de Gravitación Universal

Leyes de Kepler. Ley de Gravitación Universal Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER

Más detalles

ANALISIS DE RIESGO E INCERTIDUMBRE. Evaluacion de Proyectos Jose Fuentes Valdes

ANALISIS DE RIESGO E INCERTIDUMBRE. Evaluacion de Proyectos Jose Fuentes Valdes ANALISIS DE RIESGO E INCERTIDUMBRE Análisis Deteministico V/S Análisis de Riesgo e Incetidumbe Valoes Únicos y Conocidos Valoes Vaiables y Desconocidos ANALISIS DETERMINISTICO Pecio Cantidad Invesión EVALUACION

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

DINAMICA DE SIERRAS CIRCULARES: UNA SOLUCIÓN NUMÉRICA

DINAMICA DE SIERRAS CIRCULARES: UNA SOLUCIÓN NUMÉRICA III Congeso Inenacional sobe Méodos Numéicos en Ingenieía y Ciencias Aplicadas S.Gallegos I. Heeo S Boello F. Záae y G. Ayala (Edioes) ITESM Moneey 4 CIMNE Bacelona 4 DINAMICA DE SIERRAS CIRCULARES: UNA

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto) Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación

Más detalles

( ) r r. V t. I r t. r F. F r C U R S O: FÍSICA COMÚN MATERIAL: FC-07 DINÁMICA II

( ) r r. V t. I r t. r F. F r C U R S O: FÍSICA COMÚN MATERIAL: FC-07 DINÁMICA II C U R S O: FÍSICA COMÚN MATERIAL: FC-07 DINÁMICA II En la naualeza exisen leyes de consevación. Una de esas leyes es la de Consevación de la Canidad de Movimieno, la cual seá analizada en esa guía. El

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

CARLOS FORNER RODRÍGUEZ Departamento de Economía Financiera y Contabilidad, UNIVERSIDAD DE ALICANTE

CARLOS FORNER RODRÍGUEZ Departamento de Economía Financiera y Contabilidad, UNIVERSIDAD DE ALICANTE ApunA es de Ingeniería Financiera TEMA 4: Opciones II: en los precios de las opciones CARLOS FORNER RODRÍGUEZ Deparameno de Economía Financiera y Conabilidad, UNIVERSIDAD DE ALICANTE En ese ema esudiaremos

Más detalles

MECÁNICA CUÁNTICA. GOD DOES NOT PLAY DICES WITH THE UNIVERSE (Albert Einstein. 1879 1955)

MECÁNICA CUÁNTICA. GOD DOES NOT PLAY DICES WITH THE UNIVERSE (Albert Einstein. 1879 1955) MECÁNICA CUÁNTICA GOD DOES NOT PLAY DICES WITH THE UNIVERSE Albe Einsein. 1879 1955 NOT ONLY DOES GOD PLAY DICES BUT HE SOMETIMES THROWS THEM WHERE THEY CAN T BE SEEN Seen Hawking. 194 Mecánica CUÁNTICA

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena.

Lección 4. Funciones de varias variables. Derivadas. 4. Las reglas de la cadena. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 11 1. Lección 4. Funciones de aias aiables. Deiadas paciales. 4. Las eglas de la cadena. Las eglas de la cadena nos pemien calcula las deiadas paciales de una función

Más detalles

Problemas aritméticos

Problemas aritméticos 3 Poblemas aitméticos Antes de empeza Objetivos En esta quincena apendeás a: Recoda y pofundiza sobe popocionalidad diecta e invesa, popocionalidad compuesta y epatos popocionales. Recoda y pofundiza sobe

Más detalles

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos.

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos. Instumentación Nuclea onf. # 2 Tema I. Pocesamiento y onfomación de Pulsos. Sumaio: aacteísticas geneales de los pulsos. oncepto de Ancho de Banda y su elación con el tiempo de subida de un pulso. Objetivo

Más detalles

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39

3 TEORÍA DE LA CODA. 3.1 Introducción TEORÍA DE LA CODA 39 TEORÍA DE LA CODA 39 3 TEORÍA DE LA CODA 3. Inoducción Las heeogeneidades de la liosfea eese acúan como elemenos dispesoes de las ondas pimaias paa poduci ondas secundaias y son las causanes de las anomalías

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

Criterios de evaluación y selección de los proyectos de inversión en Cuba

Criterios de evaluación y selección de los proyectos de inversión en Cuba Crierios de evaluación y selección de los proyecos de inversión en Cuba Auor: Msc. Eliover Leiva Padrón E-Mail: eleyva@ucfinfo.ucf.edu.cu Insiución: Universidad de Cienfuegos Carlos Rafael Rodríguez Carreera

Más detalles

Foundations of Financial Management Page 1

Foundations of Financial Management Page 1 Foundaions of Financial Managemen Page 1 Combinaciones empresarias: decisiones sobre absorciones y fusiones de empresas Adminisración financiera UNLPam Faculad de Ciencias Económicas y Jurídicas Profesor:

Más detalles

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED CAPÍTULO 1 LA VALORACIÓN FINANCIERO-ACTUARIAL Y SU APLICACIÓN A LOS PLANES DE PENSIONES ANDRÉS DE PABLO LÓPEZ Catedático de Economía Financiea UNED RESUMEN En este tabajo se analiza la poblemática que

Más detalles

Tema 2. Ondas electromagnéticas.

Tema 2. Ondas electromagnéticas. Tema. Ondas elecomagnéicas..1. Inoducción. l campo elécico l eoema de Gauss elécico.3 l campo magnéico l eoema de Gauss elécico.4 La le de inducción magnéica o le de Faada.5 La le de Ampèe.6 Las ecuaciones

Más detalles

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades Cálculo de la elación de magen de contibución en los pecios y el sugimiento de la popoción áuea en la estuctua de utilidades Fecha de ecepción: 06.04.00 Fecha de aceptación: 9.0.00 Calos Henández Otega

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

EJERCICIOS CÁTEDRA 11 AGOSTO

EJERCICIOS CÁTEDRA 11 AGOSTO EJERCICIOS CÁTEDRA 11 AGOSTO Poblema 1 Suponga que used necesia 6.000.000 paa compa un nuevo auomóvil y le ofecen las siguienes alenaivas: Banco A: Tasa de ineés : 1.57% Plazo : 24 meses Impuesos, seguo

Más detalles

Kronotek: Configuración de Red para VoIP

Kronotek: Configuración de Red para VoIP Konotek: Configuación de Red paa VoIP Contenido 1. Intoducción... 2 2. Impotancia de la Configuación de Red... 2 3. Pasos Pevios: Cálculo del númeo de líneas de voz... 3 Pime paso: obtención del ancho

Más detalles

propiedad de la materia causada por la interacción electromagnética

propiedad de la materia causada por la interacción electromagnética www.clasesalacaa.com 1 Caga Elécica. Ley de Coulomb Tema 1.- Elecosáica Unidad de caga elécica La caga elécica es el exceso o defeco de elecones que posee un cuepo especo al esado neuo. Es una popiedad

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas.

0.2.4 Producto de un escalar por un vector. Vector unitario. 0.3 Vectores en el sistema de coordenadas cartesianas. VECTORES, OPERCIONES ÁSICS. VECTORES EN EL SISTEM DE C. CRTESINS 0.1 Vectoes escalaes. 0. Opeaciones básicas: 0..1 Suma de vectoes. 0.. Vecto opuesto. 0..3 Difeencia de vectoes. 0..4 Poducto de un escala

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS

INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Maste de Cotabilidad, Auditoía y Cotol de Gestió INSTRUMENTOS FINANCIEROS Y COBERTURAS DE RIESGOS Cuso 007/008 Cuso 007/008 Maste de Cotabilidad, Auditoía y Cotol de Riesgos DEPÓSITO FORWARD-FORWARD Acuedo

Más detalles

El modelo de Merton como medida alternativa de valuación de riesgo de default

El modelo de Merton como medida alternativa de valuación de riesgo de default El modelo de Meton como medida altenativa de valuación de iesgo de default Auto: Estella Peotti i (epeotti@bc.com.a) Diecto: Gabiela Facciano, FRM Maestía en Administación de Negocios ESEADE Escuela Supeio

Más detalles

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios La Conducción de la Políica Monearia del Banco de México a ravés del Régimen de Saldos Diarios INDICE I. INTRODUCCIÓN...2 II. LA OPERACIÓN DEL BANCO DE MÉXICO EN EL MERCADO DE DINERO...3 III. IV. II.1.

Más detalles

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 Insiuo Nacional de Esadísica y Censos (INDEC) Dirección

Más detalles

RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES

RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES CONSIDERANDO: Que el arículo 86 de la Ley 87-01 de fecha 9 de mayo de 2001, que crea el Sisema Dominicano de Seguridad Social,

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

TURISMO Y CRECIMIENTO ECONÓMICO: EL CASO DE ANTIOQUIA

TURISMO Y CRECIMIENTO ECONÓMICO: EL CASO DE ANTIOQUIA Vol 3, º 7 (abil/abil 2 URISMO CRECIMIEO ECOÓMICO: EL CASO DE AIOQUIA Juan Gabiel Bida Pablo Daniel Moneubbianesi 2 Sanda Zaaa Aguie 3 Claudia Maía Gialdo Velásquez 4 Resumen En ese abajo invesigamos la

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas

domótico Extras 2.1 Unidad de control 2.2 Dispositivos de entrada 2.4 Electrodomésticos domóticos 2.5 Medios de comunicación en redes domésticas 2 Elemenos de un sisema domóico Conenidos 2.1 Unidad de conrol 2.2 Disposiivos de enrada 2.3 Acuadores 2.4 Elecrodomésicos domóicos 2.5 Medios de comunicación en redes domésicas 2.6 Tecnologías aplicadas

Más detalles

Supuestos del Modelo Hecksher-Ohlin-Samuelson

Supuestos del Modelo Hecksher-Ohlin-Samuelson Supuestos del Modelo Heckshe-Ohlin-Samuelson 1. Modelo 2x2x2 2 naciones ( y ) 2 poductos ( y ) 2 factoes de poducción (K y L) 2. La misma tecnología de poducción en ambas naciones 3. Un poducto es L-intensivo

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

15. MOVIMIENTO OSCILATORIO.

15. MOVIMIENTO OSCILATORIO. Física. 5. Movimieno oscilaoio. 5. MOVIMINTO OSCIATORIO. Concepo de movimieno amónico simple. Movimieno amónico simple (M.A.S.). Movimieno peiódico en el que el móvil esá someido en odo insane a una aceleación

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

Sistemade indicadores compuestos coincidentey adelantado julio,2010

Sistemade indicadores compuestos coincidentey adelantado julio,2010 Sisemade indicadores compuesos coincideney adelanado julio,2010 Sisema de Indicadores Compuesos: Coincidene y Adelanado SI REQUIERE INFORMACIÓN MÁS DETALLADA DE ESTA OBRA, FAVOR DE COMUNICARSE A: Insiuo

Más detalles

Plan Español para el Estímulo de la Economía y el Empleo. Una oferta excelente. Sostenible y ecoeficiente. Más moderna y competitiva

Plan Español para el Estímulo de la Economía y el Empleo. Una oferta excelente. Sostenible y ecoeficiente. Más moderna y competitiva 2010 lan spañol paa el símlo de la conomía y el mpleo Una ofea excelene Más modena y compeiiva Sosenible y ecoeficiene Mejoa la sosenibilidad y eficiencia enegéica de inanciación de poyecos paa sia al

Más detalles

FI -1001 Introducción a la física Newtoniana

FI -1001 Introducción a la física Newtoniana FI -1001 Inoducción a la física Newoniana D. René A. Méndez Depaameno de Asonomía & Obsevaoio Asonómico Nacional Faculad de Ciencias Físicas & Maemáicas Escuela de Injenieía Univesidad de Chile hp://www.das.uchile.cl

Más detalles