UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009"

Transcripción

1 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas producen dos tpos de resduos contamnantes: C y C2. S se procesan los resduos, se puede dsmnur la contamnacón. Semanalmente, los vertdos (en toneladas) aparecen reflejados en la sguente tabla: C C2 P P P Por delto ecológco, cada tonelada no procesada de C tene una multa de 30 euros y cada tonelada de C2 sn procesar se penalza con 40 euros. Cada planta dspone de sus propos equpos de procesamento de resduos, ya que cada planta sólo puede procesar resduos generados por ella msma. Dependendo de las característcas de dchos equpos, procesar una tonelada de resduos tene un coste dferente, y tambén necesta un tempo dferente para el procesado. Los costes y tempos de procesado aparecen reflejados en las sguentes tablas: Costes (en euros) de procesar una tonelada de resduos C C2 equpo P 7 equpo P2 4 6 equpo P3 Tempos (en horas) de procesar una tonelada de resduos C C2 equpo P 6 0 equpo P2 4 equpo P3 8 7 Los equpos de cada planta pueden procesar resduos durante las ventcuatro horas del día, todos los días de la semana. Las plantas dsponen de, 2 y 3 equpos de procesamento de resduos, respectvamente. a) ( punto) Escrbe un modelo de programacón lneal que permta establecer cuál es la polítca de procesamento que mnmza el coste total. b) ( punto) Escrbe el modelo anteror en forma estándar y encuentra una polítca de procesamento ncal (solucón básca factble). c) ( punto) A partr de la solucón anteror, realza una teracón del método Smplex para encontrar una polítca de procesamento mejor. Solucón. a) Las varables de decsón (contnuas) son: =, 2, 3, j =, 2. x j = toneladas de resduo contamnante j que se procesan semanalmente en la planta, Para defnr la funcón objetvo hay que evaluar el coste (en euros por semana) total dervado de la polítca de procesamento determnada por las varables de decsón anterores: Coste de procesamento: x + 7x 2 + 4x 2 + 6x 22 + x 3 + x 32, 3 Multas por vertdo de contamnantes al río: 30(60 x ) + 40(0 Las restrccones son: = 3 x 2 ) Límtes de procesamento de contamnante en cada planta, dados por la cantdad de cada contamnante que se produce semanalmente: x 80, x 2 60, x 2 30, x 22 0, x 3 0, x Límtes de procesamento de contamnante en cada planta, dados por la capacdad semanal de procesamento de cada contamnante en cada planta. Prevamente, debemos de calcular dchas capacdades, que dependen del número de horas semanales que trabajan los equpos (7 24) y de cuántos equpos se dsponga: = 6x + 0x () 4x 2 + x (2) 8x 3 + 7x (3)

2 Condcones de no negatvdad: x j 0, para todo =, 2, 3, j =, 2. b) Añadendo 9 varables de holgura, el modelo anteror en forma estándar es: mnmzar x 33x 2 26x 2 34x 22 2x 3 3x 32 sujeto a x + s = 80 x 2 + s 2 = 60 x 2 + s 3 = 30 x 22 + s 4 = 0 x 3 + s = 0 x 32 + s 6 = 40 6x + 0x 2 + s 7 = 840 4x 2 + x 22 + s 8 = 336 8x 3 + 7x 32 + s 9 = 04 x, s 0. Un vértce ncal para este modelo será (tomando como varables báscas las de holgura): (x, s) = (0, 0, 0, 0, 0, 0, 80, 60, 30, 0, 0, 40, 840, 336, 04), es decr, no procesar vertdo alguno, lo que conlleva una multa de 0800 euros. c) El vértce ncal no es óptmo ya que σ N = ( 2, 33, 26, 34, 2, 3). Iterando el Smplex una vez se obtene el punto (x, s) = (0, 0, 0, 0, 0, 40, 80, 60, 30, 0, 0, 0, 840, 336, 224), que se obtene al entrar x 32 en la base con valor x 32 = 40 = mín{40, 04 7 }, y salr s 6. El coste dervado de esta nueva solucón es de = 9400, menor que el anteror aunque no es la polítca óptma de procesamento. 2

3 PROBLEMA 2. (2. puntos) Una cadena de hpermercados se plantea abrr hasta 4 nuevos centros en 4 cudades: C, C2, C3, y C4. Cada posble centro puede ser construdo con 3 dstntos tamaños: pequeño (A), medano (B), y grande (C). A contnuacón se muestra una tabla que contene los costes de construccón de cada centro en funcón de su tamaño y el benefco medo esperado de cada centro (tras 3 años de funconamento). Tanto los costes como los benefcos están en mllones de euros. Coste Benefco C C2 C3 C4 C C2 C3 C4 A A B B C C La compañía tene un presupuesto total de 00 mllones de euros para construr un máxmo de 4 centros. a) ( punto) Formula un problema de programacón entera que ayude a la compañía a decdr qué centros construye y de qué tamaño. b) (0. puntos) Qué restrccón hay que añadr al problema anteror s necesaramente tene que haber un hpermercado en la cudad C2? c) (0. puntos) Cómo modelarías la sguente restrccón? Solamente s se construye un hpermercado de tamaño pequeño en la cudad C4 se puede construr un hpermercado de tamaño pequeño en las cudades C, C2 y C3. d) (0. puntos) Y esta restrccón? En total, no puede haber más de dos tpos de tamaño construdos. Solucón. a) Denotanto el conjunto de tamaños por {A, B, C}, y el conjunto de cudades por j {C, C2, C3, C4}, el problema es: maxmzar b j x j sujeto a j c j x j 00 j x j j x {0, }, donde x j es la varable de decsón bnara que vale s el tamaño es usado en la cudad j, b denota los benefcos y c denota los costes. b) x 2 =. c) Posble restrccón: x + x 2 + x 3 3x 4. Otra posble restrccón: x x 4, x 2 x 4, x 3 x 4. d) Hay que ntroducr las varables bnaras y = s se usa el tamaño. Entonces, y 2 junto con j x j 4y para todo. 3

4 PROBLEMA 3. (2 puntos) En su últmo día de estanca en la cudad, un tursta sale de su hotel (nodo ) rumbo a la estacón de tren (nodo 0). Su dea es llegar a la estacón cuanto antes. Sn embargo, quere todavía vstar una estatua que se encuentra en la plaza dada por el nodo 2 y hacer unas últmas compras en la calle dada por el arco (,8). Escrbe un modelo de programacón matemátca que le permta determnar qué ruta segur para llegar a la estacón lo más pronto posble y cumplr con el tempo en mnutos necesaro para recorrer la calle que representa. Aparte de sus objetvos. En el grafo, aparece sobre cada arco el tempo en mnutos necesaro para recorrer la calle que representa. hallar la ruta óptma, debe formularse explíctamente el modelo resuelto Observa que hay algunos arcos de doble sentdo. Observa que hay algunos arcos de doble sentdo. No hace falta encontrar la solucón del problema Solucón. Sobre la base de la formulacón del problema del camno mínmo como un problema de programacón lneal, hay que añadr las sguentes restrccones: Quere vstar una estatua que se encuentra en la plaza dada por el nodo 2: x 2 + x 32 + x 42 (entra en la plaza al menos vez). Tambén pueden forzar a que, al menos, salga una vez (la restrccón de conservacón de flujo en el nodo 2 oblga a que entre y salga el msmo número de veces). Quere hacer unas últmas compras en la calle dada por el arco (,8): x 8 = Para defnr el problema del camno mínmo: mín s.a (,j) E c jx j Ax = b x j {0, }, (, j) E donde G = (N, E) es el grafo del problema, sendo E el conjunto de arcos del msmo y c j el tempo en mnutos necesaro para recorrer la calle que representa el arco (, j). Cuando el arco es de doble sentdo c j = c j. Y sendo A la matrz de ncdenca del grafo, y b el vector b t = (, 0, 0, 0, 0, 0, 0, 0, 0, ). 4

5 PROBLEMA 4. (2. puntos) Eres el encarado de admnstrar un gran complejo de cnes llamados Cnema I, II, III y IV. Cada uno de los cuatro cnes proyecta una película dferente. Además, para evtar aglomeracones, el programa de proyeccón evta que las cuatro películas comencen a la msma hora. El complejo tene una sola taqulla y un solo cajero que atende a razón de 280 clentes cada hora. Se supone que los tempos de servco sguen una dstrbucón exponencal. Los clentes llegan al complejo según una dstrbucón de Posson a razón de 20 clentes cada hora. a) (0. puntos) Calcula el numero medo de clentes esperando en la cola de la taqulla para adqurr una entrada. b) (0. puntos) Qué porcentaje del tempo está ocupado el cajero? c) (0. puntos) Cuál es el tempo medo que dedca un clente para consegur una entrada? d) (0. puntos) Cuál es el tempo medo que dedca un clente esperando en la cola de la taqulla? e) (0. puntos) Cuál es la probabldad de que haya más de dos personas en la cola? Puedes ayudarte de alguna de las fórmulas sguentes: p 0 p n L M/M/ ρ ρ n ρ p 0 ρ M/M/s M/M//K (ρ ) s n=0 n! + (λ/µ)s s! ρ M/M//K (ρ = ) K+ n! p 0 ; n s (λ/µ) s p 0ρ s!( ρ) 2 + λ µ s!s p n s 0 ; n > s ρ ρ n ρ( (K+)ρ p K +Kρ K+ ) ρ K+ 0 ( ρ)( ρ K+ ) K+ K 2 Solucón. El sstema es un M/M/ con parámetros λ = 20 y µ = 280. Esto mplca ρ = 0.7. a) El promedo de clentes en la cola es L q = ρ2 ρ = 2.2. b) El porcentaje de tempo que el cajero está ocupado es ρ = 7 %. c) El tempo medo que un clente dedca a consegur una entrada es W = µ( ρ) = =.43sec d) El tempo medo que un clente pasa en la cola es W q = ρw = = 38.7sec. e) La probabldad de que haya más de 2 personas en la cola es gual a la probabldad de que haya más de 3 personas en el sstema (cola+taqulla). Es decr P {N > 3} = (p 0 + p + p 2 + p 3 ) = ( ρ)( + ρ + ρ 2 + ρ 3 ) = ( ρ 4 ) = ρ 4 = 3.64 %.

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization)

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization) Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multobjectve Optmzaton) Patrca Jaramllo A. y Rcardo Smth Q. Insttuto de Sstemas y Cencas de la Decsón Facultad de Mnas Unversdad Naconal de Colomba, Medellín,

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL 27 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 2003 YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL J. Guad, J. Larrañeta, L. Oneva Departamento de Organzacón Industral

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI Undad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI 3.1. DINÁMICA DE LA GESTIÓN DE PROYECTOS. 3.1.1. GESTIÓN DE PROYECTOS. La gestón

Más detalles

Análisis de Sistemas Multiniveles de Inventario con demanda determinística

Análisis de Sistemas Multiniveles de Inventario con demanda determinística 7 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 00 Análss de Sstemas Multnveles de Inventaro con demanda determnístca B. Abdul-Jalbar, J. Gutérrez, J. Scla Departamento de

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

CAP 5. Apunte Optimización Prof: Jorge Amaya

CAP 5. Apunte Optimización Prof: Jorge Amaya CAP 5. Apunte Optmzacón Prof: Jorge Amaya Capítulo 5 Modelos y algortmos para fluos en redes Esta área de la Optmzacón es muy mportante ya que exsten muchos problemas de estructura partcular que se pueden

Más detalles

3.- Programación por metas.

3.- Programación por metas. Programacón Matemátca para Economstas 1 3.- Programacón por metas. Una vez menconados algunos de los nconvenentes de las técncas generadoras, la ncorporacón de nformacón se va a traducr en una accón del

Más detalles

F.Ares (2003) Business plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL

F.Ares (2003) Business plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL F.Ares (00) Busness plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL F.Ares (00) Busness plan de una empresa de transporte de mercancías 49 MODELO

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

ASIGNACIÓN DE LOCALIZACIONES DE ALMACENAMIENTO CONSIDERANDO DISTANCIAS Y TIEMPOS DE ESTADÍA ENTRE PEDIDOS

ASIGNACIÓN DE LOCALIZACIONES DE ALMACENAMIENTO CONSIDERANDO DISTANCIAS Y TIEMPOS DE ESTADÍA ENTRE PEDIDOS ASIGNACIÓN DE LOCALIZACIONES DE ALMACENAMIENTO CONSIDERANDO DISTANCIAS Y TIEMPOS DE ESTADÍA ENTRE PEDIDOS Marcela C. González-Araya Departamento de Modelacón y Gestón Industral, Facultad de Ingenería,

Más detalles

Planificación de las vacaciones en un sistema de organización del tiempo de trabajo con bolsa de horas Pág. 1. Resumen

Planificación de las vacaciones en un sistema de organización del tiempo de trabajo con bolsa de horas Pág. 1. Resumen Planfcacón de las vacacones en un sstema de organzacón del tempo de trabajo con bolsa de horas Pág. 1 Resumen El alto grado de compettvdad entre las empresas y la mportanca de cubrr la capacdad necesara

Más detalles

Tutorial sobre Máquinas de Vectores Soporte (SVM)

Tutorial sobre Máquinas de Vectores Soporte (SVM) Tutoral sobre Máqunas de Vectores Soporte SVM) Enrque J. Carmona Suárez ecarmona@da.uned.es Versón ncal: 2013 Últma versón: 11 Julo 2014 Dpto. de Intelgenca Artcal, ETS de Ingenería Informátca, Unversdad

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

Nuevos Modelos Probabilísticos. de Localización de Servicios de Emergencias 1

Nuevos Modelos Probabilísticos. de Localización de Servicios de Emergencias 1 Departamento de Estadístca y Matemátca Aplcada Nuevos Modelos Probablístcos de Localzacón de Servcos de Emergencas Fernando Borrás Rocher Memora para optar al grado de Doctor por la Unversdad Mguel Hernández,

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

Planificación de la Operación de Corto Plazo de Sistemas de Energía Hidroeléctrica

Planificación de la Operación de Corto Plazo de Sistemas de Energía Hidroeléctrica Planfcacón de la Operacón de Corto Plao de Sstemas de Energía Hdroeléctrca João P. Catalão 1, Sílvo J. Marano 1, Vctor M. Mendes 2 y Luís A. Ferrera 3 (1) Unversdad Bera Interor. Dpto. de Ingenaría Electromecánca.

Más detalles

TEMA 4. TEORÍA DE LA DUALIDAD.

TEMA 4. TEORÍA DE LA DUALIDAD. Investgacón Operatva TEMA. TEORÍA DE LA DUALIDAD. TEMA. TEORÍA DE LA DUALIDAD..... INTRODUIÓN... ALGORITMO DUAL DEL SIMPLEX.... EJEMPLO.... EJEMPLO.... EJEMPLO... TEORÍA DE LA DUALIDAD.... PROLEMA PRIMAL

Más detalles

Lo que necesito saber de mi Tarjeta de Crédito

Lo que necesito saber de mi Tarjeta de Crédito Lo que necesto saber de m Tarjeta de Crédto Informatvo tarjetas de crédto bancaras Cómo obtener una 3 Qué es una La tarjeta de crédto es un medo de pago que permte a los clentes utlzar una línea de crédto

Más detalles

Un Modelo de Asignación de Recursos a Rutas en el Sistema de Transporte Masivo Transmilenio

Un Modelo de Asignación de Recursos a Rutas en el Sistema de Transporte Masivo Transmilenio Un Modelo de Asgnacón de Recursos a Rutas en el Sstema de Transporte Masvo Transmleno A Model for Resource Assgnment to Transt Routes n Bogota Transportaton System Transmleno Sergo Duarte, Ing., Davd Becerra,

Más detalles

Smoothed Particle Hydrodynamics Animación Avanzada

Smoothed Particle Hydrodynamics Animación Avanzada Smoothed Partcle Hydrodynamcs Anmacón Avanzada Iván Alduán Íñguez 03 de Abrl de 2014 Índce Métodos sn malla Smoothed partcle hydrodynamcs Aplcacón del método en fludos Búsqueda de vecnos Métodos sn malla

Más detalles

Un enfoque de inventarios para planear capacidad en redes de telecomunicaciones

Un enfoque de inventarios para planear capacidad en redes de telecomunicaciones Un enfoque de nventaros para planear capacdad en redes de telecomuncacones arlos Alberto Álvarez Herrera, Maurco abrera Ríos Dvsón de Posgrado en Ingenería de Sstemas, FIME-UANL carlos@yalma.fme.uanl.mx,

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

MODELO DE PROGRAMACIÓN LINEAL DE LA PRODUCCIÓN, INTEGRADO EN UN SISTEMA COMPUTARIZADO DE PRODUCCIÓN, INVENTARIO Y VENTAS INDUSTRIAL

MODELO DE PROGRAMACIÓN LINEAL DE LA PRODUCCIÓN, INTEGRADO EN UN SISTEMA COMPUTARIZADO DE PRODUCCIÓN, INVENTARIO Y VENTAS INDUSTRIAL Ponsot, E. y Márquez V.: Modelo de programacón lneal de la produccón... MODELO DE PROGRAMACIÓN LINEAL DE LA PRODUCCIÓN, INTEGRADO EN UN SISTEMA COMPUTARIZADO DE PRODUCCIÓN, INVENTARIO Y VENTAS INDUSTRIAL

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

UNIVERSIDAD DE TALCA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL INDUSTRIAL

UNIVERSIDAD DE TALCA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL INDUSTRIAL UNIVERSIDAD DE TALCA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL INDUSTRIAL MODELO PARA CAMBIO DINÁMICO ENTRE LECTURA MENSUAL Y BIMENSUAL DE CLIENTES RESIDENCIALES MEMORIA PARA OPTAR AL TITULO DE

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

Estimación del consumo diario de gas a partir de lecturas periódicas de medidores

Estimación del consumo diario de gas a partir de lecturas periódicas de medidores Nota técnca Estmacón del consumo daro de gas a partr de lecturas peródcas de meddores Por Salvador Gl, Gerenca de Dstrbucón del Enargas, A. azzn, Gas Natural Ban y R. Preto, Gerenca de Dstrbucón del Enargas

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

EL AMPLIFICADOR OPERACIONAL.

EL AMPLIFICADOR OPERACIONAL. Tema 6. El mplfcador peraconal. Tema 6 EL MPLIFICD PECINL.. Introduccón... Símbolos y termnales del amplfcador operaconal... El amplfcador operaconal como amplfcador de tensón..3. Conceptos báscos de realmentacón..4.

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemátcas Fnanceras Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Profundzar en los fundamentos del cálculo fnancero, necesaros

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Optimización no lineal

Optimización no lineal Optmzacón no lneal José María Ferrer Caja Unversdad Pontfca Comllas Planteamento general mn f( x) x g ( x) 0 = 1,..., m f, g : n R R La teoría se desarrolla para problemas de mnmzacón, los problemas de

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Software de bloqueo automático de páginas web que incitan a la violencia a través de un algoritmo híbrido de aprendizaje computacional* 1

Software de bloqueo automático de páginas web que incitan a la violencia a través de un algoritmo híbrido de aprendizaje computacional* 1 Software de bloqueo automátco de págnas web que nctan a la volenca a través de un algortmo híbrdo de aprendzaje computaconal* Auto lock software web pages ncte volence through a hybrd computatonal learnng

Más detalles

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO

TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO Págna de 4 TEMA 5. EL SISTEMA DE PRODUCCIÓN DE LA EMPRESA (I) CONTENIDO INTRODUCCIÓN... 2 2 CLASIFICACIÓN DE LAS ACTIVIDADES PRODUCTIVAS... 4 3 FUNCIÓN DE PRODUCCIÓN... 3 4 CLASIFICACIÓN DE LOS PROCESOS

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

Modelo de programación lineal de la producción, integrado en un sistema computarizado de producción, inventario y ventas industrial

Modelo de programación lineal de la producción, integrado en un sistema computarizado de producción, inventario y ventas industrial Economía, XXV, 6 (2000), pp. 73-90 Modelo de programacón lneal de la produccón, ntegrado en un sstema computarzado de produccón, nventaro y ventas ndustral A lnear programmng producton model ntegrated

Más detalles

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx Tasas de Caducdad - Guía de Apoyo para la Construccón y Aplcacón - Por: Act. Pedro Agular Beltrán pagular@cnsf.gob.m 1. Introduccón La construccón y aplcacón de tasas de caducdad en el cálculo de utldades

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS

RESUELTOS POR M. I. A. MARIO LUIS CRUZ VARGAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS PROBLEMAS RESUELTOS DE ANUALIDADES ANTICIPADAS. En las msmas condcones, qué tpo de anualdades produce un monto mayor: una vencda o una antcpada? Por qué? Las anualdades antcpadas producen un monto mayor

Más detalles

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

Gestión de las Empresas de Servicios: Yield Management.

Gestión de las Empresas de Servicios: Yield Management. II Conferenca de Ingenería de Organzacón Vgo, 5-6 Septembre 2002 Gestón de las Empresas de Servcos: Yeld Management. José Guadx Martín 1, Lus Oneva Gménez 2, Juan Larrañeta Astola 3, Carlos Fernández Rueda

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Profesor: Rafael Caballero Roldán

Profesor: Rafael Caballero Roldán Contendo: 5 Restrccones de ntegrdad 5 Restrccones de los domnos 5 Integrdad referencal 5 Conceptos báscos 5 Integrdad referencal en el modelo E-R 53 Modfcacón de la base de datos 53 Dependencas funconales

Más detalles

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL OBJETIVO El alumno obtendrá el punto azeotrópco para el sstema acetona-cloroformo, calculará los coefcentes de actvdad de cada componente a las composcones

Más detalles

Intangible Capital ISSN: 2014-3214 ic.editor@intangiblecapital.org Universitat Politècnica de Catalunya España

Intangible Capital ISSN: 2014-3214 ic.editor@intangiblecapital.org Universitat Politècnica de Catalunya España Intangble aptal ISSN: 2014-3214 c.edtor@ntangblecaptal.org Unverstat oltècnca de atalunya España Magaña Neto, ntono; Rajadell arreras, Manel Reparto de los ahorros de la gestón conjunta de stocks Intangble

Más detalles

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS Explcacón de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS EMBARGO: 21 de agosto de 2012, 15:00 (CEST) Objetvo angular de 24 mm, con zoom óptco 30x (PowerShot SX500 IS) Desarrollado usando

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

DESPACHO DE CARGA ORIENTADO A EVENTUAL SEPARACIÓN EN ISLAS

DESPACHO DE CARGA ORIENTADO A EVENTUAL SEPARACIÓN EN ISLAS UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEARTAMENTO DE INGENIERÍA ELÉCTRICA DESACHO DE CARGA ORIENTADO A EVENTUAL SEARACIÓN EN ISLAS MEMORIA ARA OTAR AL TÍTULO DE INGENIERO CIVIL

Más detalles

EXISTE ALGÚN SISTEMA DE FIDELIZACIÓN MÁS SENCILLO?

EXISTE ALGÚN SISTEMA DE FIDELIZACIÓN MÁS SENCILLO? www. t r ama. es Bar c el ona936911051-madr d916666800-val enc a963847453 Gr anada958411728-sev l l a954906725-reus977771245-val l adol d983354755 Sstema NEXIS No. Tj.: 000012 Total Puntos: 5,00 --- ACUMULACION

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1 odelos de secuencacón de tareas en máqunas Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu ODELOS DE SECUENCIACIÓN EN ÁQUINAS odelos de secuencacón de tareas

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

B.El por qué de la planificación económico financiera

B.El por qué de la planificación económico financiera Tema 1 Sobre la elaboracón de un sstema ntegrado de presupuestos 1.1. Introduccón a la planfcacón económca fnancera A. Qué son los planes económcos en la práctca? La realzacón de prevsones o la actuacón

Más detalles

GUÍA DE DISEÑO PARA CAPTACIÓN DEL AGUA DE LLUVIA

GUÍA DE DISEÑO PARA CAPTACIÓN DEL AGUA DE LLUVIA GUÍA DE DISEÑO PARA CAPTACIÓN DEL AGUA DE LLUVIA Lma, 2004 Tabla de contendo 1. Introduccón...3 2. Ventajas y desventajas...3 Págna 3. Factbldad...3 3.1 Factor técnco...4 3.2 Factor económco...4 3.3 Factor

Más detalles

Control de Inventarios y su Aplicación en una Compañía de Telecomunicaciones

Control de Inventarios y su Aplicación en una Compañía de Telecomunicaciones Control de Inventaros y su Aplcacón en una Compañía de Telecomuncacones Carlos Alberto Álvarez Herrera, Maurco Cabrera-Ríos * Dvsón de Posgrado en Ingenería de Sstemas, FIME-UANL {carlos@yalma.fme.uanl.mx,

Más detalles

GUÍA DE DISEÑO PARA CAPTACION DEL AGUA DE LLUVIA

GUÍA DE DISEÑO PARA CAPTACION DEL AGUA DE LLUVIA GUÍA DE DISEÑO PARA CAPTACION DEL AGUA DE LLUVIA Undad de Apoyo Técnco en Saneamento Básco Rural (UNATSABAR) Centro Panamercano de Ingenería Santara y Cencas del Ambente Dvsón de Salud y Ambente Organzacón

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

Télématique ISSN: 1856-4194 jcendros@urbe.edu Universidad Privada Dr. Rafael Belloso Chacín Venezuela

Télématique ISSN: 1856-4194 jcendros@urbe.edu Universidad Privada Dr. Rafael Belloso Chacín Venezuela Télématque ISSN: 1856-4194 jcendros@urbe.edu Unversdad Prvada Dr. Rafael Belloso Chacín Venezuela García, Rosa Carolna; Rojas, Lus Evaluacón de tráfco de voz y datos en las redes celulares Télématque,

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

MÉTODO DEL CENTRO DE GRAVEDAD

MÉTODO DEL CENTRO DE GRAVEDAD DEFINICIÓN MÉTODO DEL CENTRO DE GRVEDD Es un moelo matemátco que se utlza para la localzacón e plantas e fabrcacón o almacenes e strbucón respecto a unos puntos ya establecos e la empresa, ese one se proucen

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

DETERMINACIÓN DEL NIVEL DE PRECIOS PACTADOS EN EL MERCADO DE CONTRATOS Y MITIGACIÓN DE LA VOLATILIDAD EN EL MERCADO ELÉCTRICO MAYORISTA ECUATORIANO

DETERMINACIÓN DEL NIVEL DE PRECIOS PACTADOS EN EL MERCADO DE CONTRATOS Y MITIGACIÓN DE LA VOLATILIDAD EN EL MERCADO ELÉCTRICO MAYORISTA ECUATORIANO DETERMINACIÓN DEL NIVEL DE PACTADOS EN EL MERCADO DE CONTRATOS Y MITIGACIÓN DE LA VOLATILIDAD EN EL MERCADO ELÉCTRICO MAYORISTA ECUATORIANO Galo Nna Análss y Control RESUMEN El obetvo de este trabao es

Más detalles

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2 35 M/R Versón Segunda Parcal /7 UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Segunda Parcal VERSIÓN:

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Modelo de programación jerárquica de la producción en un Job shop flexible con interrupciones y tiempos de alistamiento dependientes de la secuencia

Modelo de programación jerárquica de la producción en un Job shop flexible con interrupciones y tiempos de alistamiento dependientes de la secuencia REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 28 No. 2, AGOSTO DE 2008 (72-79) Modelo de programacón jerárquca de la produccón en un Job shop flexble con nterrupcones y tempos de alstamento dependentes de la

Más detalles

Reparto de los ahorros de la gestión conjunta de stocks

Reparto de los ahorros de la gestión conjunta de stocks Reparto de los ahorros de la gestón conjunta de stocks ntono Magaña Neto Manel Rajadell arreras rofesores de la Unverstat oltécnca de atalunya En este trabajo se prueba que la gestón conjunta de stocks

Más detalles

Valoración de opciones financieras por diferencias finitas

Valoración de opciones financieras por diferencias finitas Valoracón de opcones fnanceras por dferencas fntas José Mª Pesquero Fernández Dpto. Nuevos Productos - Tesorería BBVA mpesquero@grupobbva.com Indce INDICE. Introduccón. La ecuacón dferencal 3. Dferencas

Más detalles

ANEJO 9: INSTALACIÓN CONTRA INCENDIOS

ANEJO 9: INSTALACIÓN CONTRA INCENDIOS ANEJO 9: INSTALACIÓN CONTRA INCENDIOS ANEJO 9: INSTALACIÓN CONTRA INCENDIOS. 1. APÉNDICE 1: Caracterzacón de los establecmentos ndustrales en relacón con la segurdad contra ncendos. 1.1. Caracterzacón

Más detalles

Clase 25. Macroeconomía, Sexta Parte

Clase 25. Macroeconomía, Sexta Parte Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos

Más detalles

DIPLOMADO EN LOGÍSTICA Y CADENA DE SUMINISTRO

DIPLOMADO EN LOGÍSTICA Y CADENA DE SUMINISTRO IPLOMAO EN LOGÍSTICA Y CAENA E SUMINISTRO MÓULO I: Rs Poolng CRISTINA GIGOLA epto Ingenería Industral ITAM ggola@tam.mx Coordnacón en la SC ecsones que maxmcen la utldad de la SC. Caso 1: El mercado determna

Más detalles

Un algoritmo GRASP para resolver el problema de la programación de tareas dependientes en máquinas diferentes (task scheduling)

Un algoritmo GRASP para resolver el problema de la programación de tareas dependientes en máquinas diferentes (task scheduling) Un algortmo GRASP para resolver el problema de la programacón de tareas dependentes en máqunas dferentes (tas schedulng) Manuel Tupa Pontfca Unversdad Católca del Perú, Departamento de Ingenería Av. Unverstara

Más detalles

Título: Dos métodos de diagnóstico de circuitos digitales de alta y muy alta escala de integración.

Título: Dos métodos de diagnóstico de circuitos digitales de alta y muy alta escala de integración. Título: Dos métodos de dagnóstco de crcutos dgtales de alta y muy alta escala de ntegracón. Autor: Dr. Ing. René J. Díaz Martnez. Profesor Ttular. Dpto. de Automátca y Computacón. Fac. de Ingenería Eléctrca.

Más detalles

2 Tiempo, causalidad y estado global

2 Tiempo, causalidad y estado global 2 Tempo, causaldad y estado global Contendo 2.2 Tempo físco 2.2.1 Sncronzacón externa 2.2.2 Sncronzacón nterna 2.2.3 Compensacón de desvacones 2.2.4 Ejemplos 2.3 Tempo lógco y orden de eventos 2.3.1 Modelo

Más detalles

Aplicación de Programación Lineal en el Planeamiento de la Operación de Usinas Hidroeléctricas.

Aplicación de Programación Lineal en el Planeamiento de la Operación de Usinas Hidroeléctricas. 132 Aplcacón de Programacón Lneal en el Planeamento de la Operacón de Usnas Hdroeléctrcas. Lus Barrentos Mujca 1, Lz Alvarez Ferrera 1, Anastaco Sebastán Arce Encna 2 Unversdad Naconal del Este - Facultad

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles