ESTADÍSTICA DESCRIPTIVA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTADÍSTICA DESCRIPTIVA"

Transcripción

1 ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores que permte resumr a u cojuto de datos dspersos, podría asumrse que estas meddas equvale a u cetro de gravedad que adopta u valor represetatvo para todo u cojuto de datos predetermados. Estas meddas so: 1. Promedo Artmétco (Meda o smplemete promedo). Medaa. Moda 4. Promedo Geométrco 5. Promedo Poderado 6. Promedo Total 7. Meda Armóca Otras meddas de poscó so: Cuartles, Decles y Percetles B. MEDIDAS DE VARIABILIADAD So estadígrafos de dspersó que permte evaluar el grado de homogeedad, dspersó o varabldad de u cojuto de datos. Estas meddas so: 1. Ampltud o Rago. Varaca. Desvacó Estádar 4. Coefcete de Varabldad C. MEDIDAS DE FORMA Evalúa la forma que adopta la dstrbucó de frecuecas respecto al grado de dstorsó (clacó) que regstra respecto a valor promedo tomado como cetro de gravedad, el grado de aputameto (elevameto) de la dstrbucó de frecuecas. A mayor elevameto de la dstrbucó de frecueca sgfcará mayor cocetracó de los datos e toro al promedo, por tato, ua meor dspersó de los datos. Estas meddas so: 1. Asmetría o Sesgo. Curtoss Los Gráfcos de Cajas como dcadores de forma Arturo Rubo Aputes Estadístca Geeral 1

2 A. MEDIDAS DE TENDENCIA CENTRAL 1. LA MEDIA ARITMETICA Para Datos No Agrupados. El promedo artmétco de u cojuto de valores ( x 1 x x... x ) es: x 1 x x1 x x... x Ejemplo: Durate los últmos días el valor de las compras e peródcos fue: { 5., 10., 7.0, 7.1, 10., 8., 9.4, 9., 6.5, 7.1, 6.6, 7.8, 6.8, 7., 8.4, 9.6, 8.5, 5.7, 6.4, 10.1, 8., 9.0, 7.8, 8., 5., 6., 9.1, 8.6, 7.0, 7.7, 8., 7.5 } El promedo artmétco del valor de las compras de peródcos es: x 1 x Para Datos Agrupados. x k 1 f Dode: f Frecueca e la clase k-ésma Marca de clase e la tervalo k-ésmo Ejemplo: Para los gastos daros e peródcos del hotel agrupados e ua tabla de frecueca: Itervalo f h F H TOTAL El promedo artmétco es: x k 1 f ( ) 5( ) 9( ) 7( 8. 5 ) 5( 9. 5 ) ( ) Durate los días el hotel tuvo u gasto promedo e peródcos de 7.87 soles Arturo Rubo Aputes Estadístca Geeral

3 . LA MEDIANA Es el valor que ocupa la poscó cetral de u cojuto de observacoes ordeadas. El 50% de las observacoes so mayores que este valor y el otro 50% so meores. Para Datos No agrupados. ( 1) La ubcacó de la medaa de datos ordeados se determa por :. Ejemplos: E los 7datos ordeados: {4, 5, 5, 6, 7, 8, 9 } (7 1) La ubcacó de la medaa es: 4 Luego el valor de la medaa es: Me6 E los 8 datos ordeados: {, 4, 5, 5, 6, 7, 8, 9} (8 1) 5 6 La medaa se ubca e el lugar 4. 5 Luego el valor de la medaa es M e 5. 5 Para Datos Agrupados. c F-1 c Me L L f h Dode: L Límte Iferor del tervalo que cotee a la Medaa F -1 Frecueca Acumulada e la clase ateror -ésma f Frecueca e la clase que cotee a la medaa H -1 Frecueca Relatva Acumulada e la clase ateror -ésma h Frecueca Relatva e la clase que cotee a la medaa c Tamaño del tervalo de clase. ( H ) Ejemplo: Para los gastos daros e peródcos del hotel e ua tabla de frecueca: -1 Itervalo f h F H TOTAL Me7.8 La Medaa es: ( ) Me El 50% de los días el hotel gastó meos de 7.8 soles e la compra de peródcos Arturo Rubo Aputes Estadístca Geeral

4 . LA MODA Es el valor, clase o categoría que ocurre co mayor frecueca y sus característcas so: - Puede o exstr o exstr más de ua moda - Su valor o se ve afectado por los valores extremos e los datos - Se utlza para aalzar tato la formacó cualtatva como la cuattatva - Es ua medda estable cuado e úmero de datos es reducdo. Para Datos No Agrupados. Por ejemplo, durate los últmos días el valor de las compras e peródcos fue: { 5., 10., 7.0, 7.1, 10., 8., 9.4, 9., 6.5, 7.1, 6.6, 7.8, 6.8, 7.1, 8.4, 9.6, 8.5, 5.7, 6.4, 10.1, 8., 9.0, 7.8, 8., 5., 6., 9.1, 8.6, 7.0, 7.7, 8., 7.5 } Moda Mo 7.1; Es el valor más frecuete, ocurre veces. Para Datos Agrupados. M o L d1 c d1 d Dode: d 1 (f - f -1 ) y d 1 (f - f 1 ) f Valor de la mayor frecueca Ejemplo: El gasto daro e peródcos del hotel AAA agrupados e ua tabla de frecueca: Itervalo f h F H TOTAL Mo7.6 d d 9-7 c 0.9 Tamaño de Itervalo de Clase La moda estmada utlzado estos datos agrupados es: M o (0.9) Utlzado las frecuecas relatvas, la moda estmada es: 015. M o 7. 0 (0.9) El gasto daro e peródcos más frecuete es 7.6 soles Arturo Rubo Aputes Estadístca Geeral 4

5 4. MEDIA GEOMÉTRICA Correspode al valor represetatvo cetral de observacoes secuecales y estrechamete relacoadas etre sí tales como tasas de: terés, flacó, devaluacó, varacó, crecmeto, dsmucó. El promedo geométrco de los valores: (... f ) es: t G FC1 FC... FCt ó t G f Dode f Valor fal y Valor cal Ejemplo: La tasa de terés mesual que se pagó por u préstamo recbdo por meses fue cambado mes a mes; e el prmer mes se pagó u terés de 15%, e el segudo mes 10% y e el tercer mes 16%.La tasa de terés promedo mesual que se pagó es: Mes 1 Tasa Factor (1.15)(1.10)(1.16) (1.6% mesual) G Ejemplo: El Producto Bruto Itero de u país durate los últmos cco años tuvo la evolucó sguete: Año1: 5%. Año : 0% Año: - 1% Año 4: % y Año5: 4%. La tasa de crecmeto aual promedo del PBI sería: 5 G (1.05)(1.00)(0.99)(1.0)(1.04) (1.97% aual) Ejemplo: Se recbó u préstamo de 0 soles por meses y al fal del período se pagó u total soles; Cuál fue la tasa promedo de terés mesual que se pagó? Mes 0 Mes 1 Mes Mes Saldo G (1.6%)mesual 5. PROMEDIO PONDERADO Cuado se desea ecotrar el promedo de valores ( 1... k ) que ocurre co frecuecas (f 1 f... f k ) dferetes se deberá poderar los valores observados co pesos dferetes: x K 1 W Dode los valores Wf / se deoma poderacoes o pesos Ejemplo: E ua ageca de vajes se ha veddo 00 pasajes a los precos sguetes: Preco de Veta (soles) Número de pasajes f Poderacó W Total El preco promedo de veta de los 00 pasajes: x 0. 0( 1 ) 0. 50( 14 ) 0. 0( 16 ) 1. 8 Arturo Rubo Aputes Estadístca Geeral 5

6 6. PROMEDIO TOTAL Correspode al valor promedo represetatvo de grupos de observacoes separadas o dferetes y que podría estar cosoldadas e tablas de frecueca depedetes, por tato: k T 1... k : Número de observacoes e el grupo -ésmo. : Promedo correspodete el grupo -ésmo Grupo A Grupo B Nota F Nota f Total Total 40 Promedo del grupo A: Promedo del grupo B: 4( 7.5 ) 16( 1.5 ) 5( ) 8(.5 ) 10( 7.5 ) 16( 1. 5 ) 6(17.5) x A 1.7 x B k Promedo Total Grupo A B Totla 65 f x T 5( 1.7 ) 40( 10.0 ) MEDIA ARMÓNICA El promedo armóco de los valores: ( 1... ) dode guo toma el valor cero es: H 1 1 x1 x x x Este promedo se utlza para que los valores extremos o afecte al valor del promedo. Los valores extremos sí afecta cuado se usa el promedo artmétco o el promedo geométrco. Ejemplo: Calcular el redmeto promedo para el caso de tres automóvles que recorrero 500 klómetros y cada auto tuvo el redmeto sguete: Auto A B C Redmeto (Km/galó) H Klómetros(CONSTANTE) galó Verfcacó: Auto Km Redmeto Total galoes A B C Total H Arturo Rubo Aputes Estadístca Geeral 6

7 Para Datos Agrupados PERCENTILES, CUARTILES Y DECILES Percetles: So 99 valores que dvde a u cojuto de datos e partes guales k c F-1 Pk L f L Límte Iferor del tervalo que cotee al Percetl F -1 Frecueca Acumulada e la clase ateror k-ésma f Frecueca e la clase que cotee al Percetl c Tamaño del tervalo de clase. k 1%, %, %,..., 97%, 98%, 99% Percetles Itervalo De Clase Marca de Clase Frecueca Absoluta f Frecueca Relatva h Frec.Acum. Absoluta F Frec. Acum. Relatva H TOTAL Ejemplo: El Percetl 80% de los gastos daros e peródcos estará e tervalo 5 ( / F ) c ( ) P80 % L f 5 El 80% de los datos aalzados será meores a y el 0% restate será superores Cuartles: So valores Q 1 ; Q y Q que dvde a los datos e 4 partes guales El Cuartl (Percetl 75%) se ubcará e el cuarto tervalo ( / F ) c ( 4 17 ) P75 % L f 7 75% de los datos será meores a 8.8 y el 5% de los datos restates será superores Decles: So 9 valores D 1, D ; D ; D 4 ; D 5 ; D 6 ; D 7 ; D 8 y D 9 que dvde a u cojuto de datos e 10 partes guales. El Decl 7(Percetl 70%) se ubcará e el cuarto tervalo ( / F ) c (.4-17 ) P70 % L f 7 70% de los datos será meores a y el 0% restate será superores a Arturo Rubo Aputes Estadístca Geeral 7

8 Para Datos No Agrupados El lugar o poscó dode se ecuetra los cuartles para datos ordeados es: Cuartel Q 1 P 5% Q P 50% Q P 75% Poscó 5 ( 1) 50 ( 1) 75 ( 1) Ejemplo: Determe los cuartles y el decl 8 de los 1 datos ordeados sguetes: Percetl Poscó Valor del Cuartel Q 1 P 5 0.5(11).5 Q 1 11(1-11) Q P (11)7 Q 1 Q P (11)10.5 Q 15(17-15)0.516 D 8 P (11)11. P 80 17(18-17)0.17. Ejemplo: Para la represetacó tallo hoja de los gastos e peródcos del hotel: Tallo Hojas (9) Determe los cuartles correspodetes a los datos ordeados: Cuartl Poscó Valor Q 1 P 5% 5( 1) Q 1 6.8( ) Q P 50% 50( 1) Q 7.8( ) Q P 75% 75( 1) Q 8.6( ) Etre qué valores está el 80% cetral de los gastos daros e peródcos? Percetl Poscó Valor P 10 10( 1) P 10% 5.7(6.-5.7) P 90 90( 1) P 90% 9.6( ) El 80% de los gastos daros e peródcos está defdo etre los 5.85 y 9.95 soles Arturo Rubo Aputes Estadístca Geeral 8

9 B. MEDIDAS DE VARIABILIDAD 1. AMPLITUD O RANGO Sea los valores: (x 1 x x... x ). La ampltud o rago de estos dato es A( max - m ). VARIANCIA Para Datos No Agrupados La varaca de los datos de esta muestra (x 1 x x... x ): 1 S 1 Ejemplo: Calcular la varaca de los cuatro datos sguetes (:, 4, 6 y 7 ) x S Para Datos Agrupados (5) 10. La varaca de los valores: (x 1 x... x k ) que ocurre co las frecuecas (f 1 f... f k ) es: S 1 f 1 Ejemplo: Los gastos daros e peródcos del hotel agrupados e la tabla de frecueca: Los cálculos ecesaros para determar la varaca de los gastos daros so: Itervalo f f f² f (7.8719) S TOTAL DESVIACIÓN ESTÁNDAR Es ua medda de varabldad que correspode a la raíz cuadrada de la varaca. Este dcador tee la msma udad de medda e la que se expresa el promedo. S S soles S1.9 Arturo Rubo Aputes Estadístca Geeral 9

10 4. COEFICIENTE DE VARIABILIDAD Es ua medda de varabldad de los datos que se expresa e porcetaje e la cual se compara la desvacó estádar co el respectvo valor del promedo de los datos: S C. V. x x Grado de varabldad de los datos Coefcete de varabldad Co varabldad baja Meos de 10% Co varabldad moderada De 10% a 0% Co alta varabldad Más de 0% E el ejemplo ateror el coefcete de varabldad es: C. MEDIDA DE FORMA: ASIMETRIA O SESGO 1.9 C. V. x 16.4% 7.87 Evalúa el grado de dstorsó o clacó que adopta la dstrbucó de los datos respecto a su valor promedo tomado como cetro de gravedad. El coefcete de asmetría de Pearso es: ( M e ) AK S Grado de Asmetría Valor del Sesgo Smetría Perfecta Cero. El promedo es gual a la medaa Sesgo Postvo Postvo. Promedo mayor que la medaa Sesgo Negatvo Negatvo. Promedo meor que medaa Asmetría Postva Smétrca Asmetría Negatva (Promedo>Medaa) PromedoMedaa Promedo<Medaa E el ejemplo sobre los gastos daros e peródcos el Promedo es 7.87 le Medaa es 7.80 y la desvacó estádar 1.9, por tato el sesgo es lgeramete postvo 0.16 D. MEDIDA DE FORMA: CURTOSIS Evalúa el grado de aputameto de la dstrbucó, el coefcete es: K U P75 P5 ( P90 P10 ) Grado de Aputameto Valor de la Curtoss Mesocurtca (Dstrbucó ormal) 0.6 Leptocúrtca (Elevada) Mayor a 0.6 ó se aproxma a 0.5 Platcúrtca (Aplaada) Meor a 0.6 ó se aproxma a 0 K u0.6 K u>0.6 K u<0.6 Mesocúrtca Leptocúrtca Platcúrtca E el ejemplo de los gastos daros e peródcos como Q 8.8; Q 7.0; P y P la curtoss de la dstrbucó es 0.5; por tato, la dstrbucó es lgeramete platcúrtca. Arturo Rubo Aputes Estadístca Geeral 10

11 GRÁFICOS DE CAJAS Tercer Cuartl: Q 8.8 Segudo Cuartl: Q 7.8 Prmer Cuartl: Q Rago Itercuatílco: IQR Q -Q Límte feror: Q 1-1.5(IQR) (1.8)4. Límte Superor: Q 1.5(IQR) (1.8) La mtad (50%) de los datos so meores a 7.8 La mtad (50%) de los datos toma valores etre 7.0 y 8.8 La cuarta parte (5%) de los datos so meores a 7.0 (Ates de Prmer Cuartl) La cuarta parte (5%) de los datos toma valores etre a 7.0 y 7.8 La cuarta parte (5%) de los datos toma valores etre a 7.8 y 8.8 La cuarta parte (5%) de los datos so mayores a 8.8 (Después del Tercer Cuartl) Los datos tee mayor varabldad etre 7.8 y 8.8. Los datos superores a 11.5 y los datos ferores a 4. se deoma ATÍPICOS REGLA EMPÍRICA Cuado la dstrbucó de frecueca es smétrca: ( 68% ) ( 95% ) ( 99.7% ) S el Promedo es 7.87 y Desvacó estádar 1.9 podremos afrmar que: 68% ( datos) está etre: [7.871(1.9)]9.16 y etre [7.87-1(1.9)] % (0 datos) está etre: [7.87(1.9)] y etre [7.87-(1.9)] % ( datos) está etre: [7.87(1.9)] y etre [7.87-(1.9)].991 Arturo Rubo Aputes Estadístca Geeral 11

12 TRANSFORMACIONES LINEALES DE VARIABLES S la varable tee promedo y varaca S x y sea la trasformacó leal: Y a b El promedo de la varables Y es : Y a b La varaca de la varables Y es: La desvacó estádar de la varables Y es: S Ya S S Y a S Ejemplo: Las calfcacoes de u exame de estadístca so: Nota f F f f Total Promedo Medaa Moda Varaca 1.44 Desvacó estádar.5 S el profesor decde trasformar las calfcacoes e la forma: Y 0.8 El promedo de la otas modfcadas Y es : Y 0.8( ) La medaa de la otas modfcadas Y es : M e 0.8(11.641)11.1 La moda de la otas modfcadas Y es : M o 0.8(11.867)11.49 La varaca de la varables Y es: S Y0.8 (1.44)7.96 La desvacó estádar de la varables Y es: S Y 0.8 (.5).8 Verfcacó: Utlzado la tabla de frecueca trasformada dode c.: Nota Y f F f Y f Y Total Promedo Medaa 11.1 Moda Varaca 7.96 Desvacó estádar.8 Arturo Rubo Aputes Estadístca Geeral 1

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Pága 09 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

Manual de Estadística

Manual de Estadística Maual de Estadístca Pag Maual de Estadístca Davd Ruz Muñoz Edtado por eumed et 004 ISBN: 84-688-653-7 Maual de Estadístca Pag ÍNDICE Capítulo I: Capítulo II: Capítulo III: Capítulo IV: Capítulo V: Capítulo

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO Nota: A partr del de julo de 200, las empresas reporta a la SBS formacó más segmetada de las tasas de terés promedo de los crédtos destados a facar

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

LECCIONES DE ESTADÍSTICA

LECCIONES DE ESTADÍSTICA LECCIONES DE ESTADÍSTICA Estos aputes fuero realzados para mpartr el curso de Métodos Estadístcos y umércos e el I.E.S. A Xuquera I de Potevedra. Es posble que tega algú error de trascrpcó, por lo que

Más detalles

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá:

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá: 3 MEDIDAS RESUMEN OBJETIVOS Al térmo de la udad el alumo podrá: 3. Compreder las meddas como ua herrameta más que descrbe los datos obtedos e ua vestgacó socal o de la vda dara. 3. Compreder los sgfcados

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos Feómeos determístcos TEMA I. ESTADÍSTICA DESCRIPTIVA Llamados també causales,

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos Udad ddáctca ESTADÍSTICA. ESTADÍSTICA: COCEPTOS BÁSICOS La Estadístca surge ate la ecesdad de poder tratar y compreder cojutos umerosos de datos. E sus orígees hstórcos, estuvo lgada a cuestoes de Estado

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

1. Introducción 1.1. Análisis de la Relación

1. Introducción 1.1. Análisis de la Relación . Itroduccó.. Aálss de la Relacó Ejemplos: Relacoes fucoales de terés Redmeto Doss de fertlzate Redmeto hortícola Desdad de platacó Volume de madera a cortar Desdad de platacó Catdad de suplemeto dado

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

MS Word Editor de Ecuaciones

MS Word Editor de Ecuaciones MS Word Edtor de Ecuacoes H L. Mata El Edtor de ecuacoes de Mcrosoft Word permte crear ecuacoes complejas seleccoado símbolos de ua barra de herrametas y escrbedo varables y úmeros. medda que se crea ua

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA TRATA DE DESCRIBIR CONJUNTOS DE DATOS RESUMIENDO LA INFORMACIÓN QUE ESTOS PROPORCIONAN, UTILIZANDO: TABLAS DE FRECUENCIAS GRÁFICAS MEDIDAS NUMÉRICAS REPRESENTATIVAS (POSICIÓN, DISPERSIÓN

Más detalles

Análisis Estadístico de Mediciones de la Velocidad del Viento Utilizando la Técnica de Valores Desviados

Análisis Estadístico de Mediciones de la Velocidad del Viento Utilizando la Técnica de Valores Desviados Smposo de Metrología 008 Satago de Querétaro, Méxco, al 4 de Octubre Aálss Estadístco de Medcoes de la Velocdad del Veto Utlzado la Técca de Valores Desvados E. Cadeas, a W. Rvera b a Uversdad Mchoacaa

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! Isttuto Tecológco de Apzaco Departameto de Cecas Báscas INSTITUTO

Más detalles

A2.1 SUMA PRESENTE A SUMA FUTURA

A2.1 SUMA PRESENTE A SUMA FUTURA A2. APÉNDICE MATEMÁTICAS FINANCIERAS E este apédce se preseta las fórmulas tradcoales para hallar las sumas equvaletes e el tempo y ua coleccó de fórmulas para equvaleca de tasas omales y efectvas. Para

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

PROBABILIDAD Y ESTADÍSTICA APLICADA

PROBABILIDAD Y ESTADÍSTICA APLICADA UNIVERSIDAD ORT Uruguay Facultad de Igeería Berard Wad - Polak PROBABILIDAD Y ESTADÍSTICA APLICADA NOTAS DE CLASE DEL CURSO DE LA Lcecatura e Sstemas FASCÍCULO Prof. Orual Ada Cátedra de Matemátcas Año

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA H. Helam Estadístca -/5 ITRODUCCIÓ. COCEPTO DE ETADÍTICA ETADÍTICA DECRIPTIVA La estadístca es la rama de las matemátcas que estuda los eómeos colectvos recogedo, ordeado y clascado y smplcado los datos

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

I n t r o d u c i ó n A l a E s t a d í s t i c a 1

I n t r o d u c i ó n A l a E s t a d í s t i c a 1 Estadístca I t r o d u c ó A l a E s t a d í s t c a INTRODUCCIÓN: La Estadístca descrptva es ua parte de la Estadístca cuyo objetvo es examar a todos los dvduos de u cojuto para luego descrbr e terpretar

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

Técnicas básicas de calidad

Técnicas básicas de calidad Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

1 ESTADÍSTICA DESCRIPTIVA

1 ESTADÍSTICA DESCRIPTIVA 1 ESTADÍSTICA DESCRIPTIVA 1.1 OBJETO DE ESTUDIO Y TIPOS DE DATOS La estadístca descrptva es u cojuto de téccas que tee por objeto orgazar y presetar de maera coveete para su aálss, la formacó coteda e

Más detalles

Estadistica Descriptiva

Estadistica Descriptiva Estadstca Descrptva Marques de Catú, María José (990). Probabldad y Estdístca para Cecas Químco-Bológcas, Méxco, D. F.: Mc. Graw Hll. pp. 74-7. ORGANIZACIÓN Y REPORTE DE DATOS: TABLAS Y GRÁFICAS Los datos

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO

GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO RESOLUCIÓN OENO 0/005 GUÍA PRÁCTICA PARA LA VALIDACIÓN, EL CONTROL DE CALIDAD Y LA ESTIMACIÓN DE LA INCERTIDUMBRE DE UN MÉTODO DE ANÁLISIS ENOLÓGICO ALTERNATIVO LA ASAMBLEA GENERAL, Vsto el artículo, párrafo

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles