LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL"

Transcripción

1 INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 8 JULIO DE 08 8 UNIDADES INDICADORES DE DESEMPEÑO Deteria adecuadaete el líite de fucioes reales, aplicado sus teoreas fudaetales. Desarrolla ordeadaete las actividades propuestas por el profesor. LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL Después de aber trabajado e el segudo período todo lo relacioado co las fucioes reales y sus aplicacioes, pasas aora a aejar uo de los coceptos ás fudaetales que tiee el cálculo coo es la teoría de líites. Los coociietos que vas adquiriedo va elazados uos co otros y so uy iportates tato para tu desarrollo itelectual coo para la aplicació e próios coceptos ateáticos. Es así, por ejeplo, coo el cocepto de líite os llevará al estudio de otros de los teas fuertes del cálculo coo lo es la derivada cuyo estudio realizarás e el últio período. Cotiúa adelate co tu trabajo que ya falta uy poco para que logres alcazar ua eta ás e otra etapa esecial de tu vida. Racioales Factorizació LÍMITES DE FUNCIONES reales Irracioales Laterales Racioalizació Factorizació y/o racioalizació Defiició ituitiva de líite: Sea Y= f () ua fució cualquiera y sea a y L dos úeros reales, quereos aalizar el coportaieto que tiee Y a edida que la variable X se acerca o se aproia al úero real a. X se puede aproiar al úero a por dos lados: por la izquierda de a (ó sea toado valores ligeraete eores que a) o por la dereca de a (ó sea toado valores ligeraete ayores que a). Si a edida que X se aproia por la izquierda de a ( < a) toado valores ligeraete eores que a pero uy cercaos, decios que X a - (se lee tiede a a por la izquierda ) y si a edida que esto ocurre f () se aproia al úero real L etoces podeos decir que el líite cuado X tiede a a por la izquierda de f () es igual a L y se escribe:

2 f () = L a - (líite lateral por la izquierda de a). Si a edida que se aproia a a por la dereca de ( > a ) toado valores ligeraete ayores que a pero uy cercaos, decios que X a + ( se lee tiede a a por la dereca ) y si a edida que esto ocurre f () se aproia tabié al úero real L, etoces podeos decir que el líite cuado X tiede a a por la dereca de f () es igual a L y se escribe: f () = L a + (líite lateral por la dereca de a). Si el f () es igual al f () y so iguales al úero real L, es porque el líite total eiste y a + a - podeos escribir: f () = L y eiste, es decir, el líite de ua fució dada eiste cuado los a dos líites laterales so iguales al iso úero real; por lo tato el líite de la fució dada o eiste cuado los dos líites laterales so diferetes. NOTA IMPORTANTE: Secillaete el líite es el valor que toa la fució Y cuado se aproia a u valor real dado. E clase tu profesor te ostrará el ANÁLISIS GRÁFICO DEL LÍMITE. E tus cursos de cálculo uiversitario podrás aalizar co todo el rigor ateático dica defiició. Aora bie, para allar el líite co tedecia a real de ua fució o siepre es ecesario calcular los líites laterales; para ello es suficiete co teer presete los teoreas que tú aalizarás a cotiuació: ACTIVIDADES Estaré uy ateta a estas actividades; lo que o etieda se lo pregutaré a Caila Herrera.. LEO Y ANALIZO DETENIDAMENTE LOS SIGUIENTES TEOREMAS: a. Uicidad del líite: El líite de ua fució si eiste debe ser úico e igual a u úero real. b. ite de la fució costate: El líite de ua fució costate es la isa costate, es decir, sea Y = f () = #, etoces: f () = # = # a a

3 Ej: a. 9 = 9 ; b. ( - 7 / ) = - 7 / ; c. ab = ab - c. ite de la fució polióica: El líite de ua fució polióica lo calculas reeplazado e el polioio a la variable por su tedecia y el resultado es el líite, es decir, sea Y = f () co f () polióica, etoces: f () = f (a) a Ej: ( + - 7) = () + () - 7 = Desde aquí puedo observar que Colobia tabié tiee líites... Tedrá que ver esto co lo que estaos estudiado? Tú qué piesas? d. ite de ua potecia o de ua raíz co base o catidad subradical polioios: Se procede de igual fora que e el teorea c aterior, es decir, sea Y = f() u polioio, etoces: [ f () ] P = [ f (a) ] P y, dode e f ( ) f ( a) la a a raíz f(a) o puede dar cero porque e caso de dar cero es ecesario aalizar líites laterales, los cuales estudiarás u poco ás adelate. Ej: [8 + ] = [8 (/) - (/) + ] = [ / + ] = /8 ½ e. ite de la fució racioal: Sea Y = N () / D () ua fució racioal (dode el uerador y el deoiador so polioios), etoces: N () / D () = N (a) / D (a) siepre y cuado D (a) 0 a Este teorea e palabras quiere decir lo siguiete: Para toarle el líite a ua fució racioal se reeplaza etalete e el deoiador a la variable por la tedecia y si da cero, es ecesario factorizar tato el uerador y el deoiador (si es posible) y se siplifica la fracció resultate (tal coo siplificas fraccioes algebraicas) y luego reeplazas a la variable por la tedecia y el resultado es el líite; aora bie, si el deoiador o da cero etoces o ecesitas factorizar sio que

4 reeplazas directaete a la variable por la tedecia e toda la fució racioal y el resultado es el líite. NOTA: Cuado te platee el líite de la sua y/o resta de varias fraccioes racioales, es pertiete efectuar priero las operacioes idicadas para obteer ua sola fracció y luego se aplica el teorea e. f. ite de ua fució irracioal: Sea Y = f () ua fució irracioal (fraccioario co variable detro de raíces); para calcular el líite a dica fució se procede de igual fora que e el teorea e, pero si el deoiador se aula ecesitas racioalizar E geeral si al calcular el líite a ua fracció el uerador y el deoiador se aula, debes factorizar y/o racioalizar, siplificar y luego reeplazar a la variable por su tedecia y el resultado es el líite. Por otra parte cuado teeos ua fució racioal o irracioal co varios factores e el uerador y/o e el deoiador y éste se aule, sólo ecesitas factorizar o racioalizar a aquellos factores que se aula cuado se reeplaza a la variable por la tedecia.. MUY ATENTA EN CLASE ESTOY AL CÁLCULO DE LOS SIGUIENTES LÍMITES QUE ENCUENTRA MI PROFESOR APLICANDO LOS TEOREMAS ANTERIORES: a. - 7 b. 7 c. Li 8 6 d. f. X 9 e g. Si f() =, verifica que: 0 f ( ) f ( ) 6. 0 ( ) 9 6 i. 6. j j. k. l CON OTRAS DOS COMPAÑERAS TRABAJO LOS SIGUIENTES LÍMITES: E clase trabajo los siguietes líites que e propoe, los que o terie e el bloque los debo cotiuar e la casa:

5 . X 9. X X ( ) z z. z z 9z f ( ). Si, alla el 0 6 f ( ) f ( ) X 6 X z z z 6 7. ( )( ) 0 Las pregutas y so de selecció últiple co úica respuesta.. es igual a: A. / B. /7 C. / D. /7 9. Si f ( ) f ( ), etoces es igual a: X f (0) A. B. No eiste C. 0 D. 6 El desafío ace al líder de ecelecia y o ay desafío si riesgo al fracaso Miguel Ágel Corejo

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

b n 1.8. POTENCIAS Y RADICALES.

b n 1.8. POTENCIAS Y RADICALES. .. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO.

IES SANTIAGO RAMÓN Y CAJAL. PRIMER TRIMESTRE. EJERCICIOS DE REPASO. IES SANTIAGO RAMÓN Y CAJAL PRIMER TRIMESTRE EJERCICIOS DE REPASO Falta ejercicios del Tea Estos ejercicios so eraete orietativos - Hallar los siguietes líites: a) b) c) - E ua progresió geoétrica sabeos

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tea Los úeros reales Mateáticas I º Bachillerato TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úeros racioales: Se caracteriza porque puede expresarse: E fora de fracció,

Más detalles

, sin embargo, en 1 claro que esperar. Para obtener una idea del comportamiento de la gráfica de f cerca de x 1

, sin embargo, en 1 claro que esperar. Para obtener una idea del comportamiento de la gráfica de f cerca de x 1 Aputes de Matemáticas grado. Istitució Educativa Dolores María Ucrós LIMITE DE UNA FUNCION Cuado los días del mes tiede al día, el diero e mis bolsillos tiede a cero Osvaldo Dede. Itroducció a los límites.

Más detalles

LÍMITES DE FUNCIONES REALES

LÍMITES DE FUNCIONES REALES INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

UNIDAD 10.- DERIVADAS

UNIDAD 10.- DERIVADAS UNIDAD.- DERIVADAS. DERIVADA DE UNA EN UN PUNTO. DERIVADAS LATERALES Defiici.- Se llama derivada de ua fuci f ( e u puto de abscisa al siguiete ite si eiste: f ( f '( sigifica lo mismo. f (. Se suele represetar

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) =

a n = Ejemplo: Representa las gráficas de las funciones f(x) = 1/x, g(x) = x 2 y h(x) = TEMA 9: LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN. 9. Cocepto de límite lateral. Límite. 9. Operacioes co fucioes covergetes. 9.3 Cálculo de límites. 9.4 Cotiuidad de ua fució. 9.5 Asítotas: Verticales, horizotales

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

X si existe una transformación lineal. : de modo que se verifique que: 0 =

X si existe una transformación lineal. : de modo que se verifique que: 0 = Pro. Adrea Capillo Aálisis ateático II Diereciabilidad Deiició: Sea el capo vectorial D : y sea puto iterior de D. Se dice que es diereciable e si eiste ua trasoració lieal : de odo que se veriique que:

Más detalles

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados

NÚMEROS COMPLEJOS. el conjunto de todos los pares ordenados NÚMEROS COMPLEJOS 0.- INTRODUCCIÓN Represetareos por reales: el cojuto de todos los pares ordeados Dicho cojuto se deoia plao cartesiao. xy, : xy, x, y de úeros Recuerda que sabeos suar pares ordeados

Más detalles

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1

Facultad de Ingeniería Sistemas de Control (67.22) Universidad de Buenos Aires INTRODUCCIÓN AL MATLAB CLASE 1 Facultad de Igeiería Sisteas de Cotrol (67.) Uiversidad de Bueos Aires INTRODUCCIÓN AL CLASE INTRODUCCIÓN DE FUNCIONES DE TRANSFERENCIA Para la itroducció de fucioes de trasferecia polióicas se utiliza

Más detalles

Ejercicios de Combinatoria,

Ejercicios de Combinatoria, Ejercicios de Cobiatoria, 0 0 00 E ua caja hay bolas blacas, todas iguales e taaño, y otras bolas, de igual taaño que las ateriores pero todas de diferete color (o hay dos que tega el iso) De cuátas foras

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo6.LugardelasRaíces JoséRaóLlataGarcía EstherGozálezSarabia DáasoFerádezPérez CarlosToreFerero MaríaSadraRoblaGóez DepartaetodeTecologíaElectróica eigeieríadesisteasyautoáca Lugar de las

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

Matemáticas Aplicadas a las Ciencias Sociales II. UNIDAD 5: Límites de funciones. Continuidad ACTIVIDADES INICIALES-PÁG.114

Matemáticas Aplicadas a las Ciencias Sociales II. UNIDAD 5: Límites de funciones. Continuidad ACTIVIDADES INICIALES-PÁG.114 UNIDAD : Líites de fucioes. Cotiuidad ACTIVIDADES INICIALES-PÁG.. E la fució y f, cuya gráfica aparece e el dibujo, calcula: f ; f ; f f ; f ; f f ; f ; f f ; f f ; f y f Asítotas verticales, horizotales

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA : CONCEPTOS PREVIOS. INTRODUCCIÓN. Se va a aalizar los itercabios fiacieros cosiderado u abiete de certidubre. El itercabio fiaciero supoe que u agete etrega a otro u capital (o capitales) quedado

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }.

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }. 1. SUCESIONES DE NÚMEROS REALES. A lo largo de este tea vaos a cosiderar que e cojuto ρν o cotiee al eleeto 0. Por tato ρν={1,, 3, }. DEF Llaareos sucesió de Núeros Reales a toda aplicació f: ρν ΙΡ. Es

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

Definición: f(x) f(z) x z. x z. f(x) f(z) x z. x z. f(z+h) f(z) h 0. Interpretaciones de la derivada: f(x) f(z) f(x) f(z) - 1 -

Definición: f(x) f(z) x z. x z. f(x) f(z) x z. x z. f(z+h) f(z) h 0. Interpretaciones de la derivada: f(x) f(z) f(x) f(z) - 1 - LA DERIVADA Defiició: Sea f: [ a,b] R y z [ a,b]. U úero L es la derivada de f e z, si dado u ε > 0 eiste u δ( f, ε ) > 0 talque si z < δ etoces f() f(z) L < ε. Es decir, la fució f es z f() f(z) derivable

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Problema 34. Evaluar lim(2x. Solución: Problema 35. Calcular lim. lim x x. Solución: Problema 36. Determinar lim. lim 5 4(2)

Problema 34. Evaluar lim(2x. Solución: Problema 35. Calcular lim. lim x x. Solución: Problema 36. Determinar lim. lim 5 4(2) Si la fució f es u poliomio o ua fució racioal y a perteece al domiio de f, etoces f ( ) f( a) siempre que el valor del deomiador para a o sea cero, e el a caso de ua fució racioal Problema. Evaluar (

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

3 LÍMITE Ejercicios Resueltos

3 LÍMITE Ejercicios Resueltos LÍMITE Ejercicios Resueltos Límites Determiados a) 6 6 6 c) π π se π b) ( ) cos cos e) 0 π + + d) 0 f) e 0 + 5 5 g) 4 64 Idetermiació (0/0) Fucioes Racioales Factorear y Simplificar ( + ) + 6. a). ( ).

Más detalles

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE

DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES DE UNA VARIABLE REAL. APROXIMACIÓN POLINÓMICA. DESARROLLOS EN SERIE DEIVACIÓN Y DIFEENCIACIÓN DE FUNCIONES DE UNA VAIABLE EAL. APOXIMACIÓN POLINÓMICA. DESAOLLOS EN SEIE.- Calcular, aplicado la defiició, las derivadas de las siguietes fucioes e el puto : a) f ( ) se( )

Más detalles

PLAN DE MEJORAMIENTO GRADO OCTAVO. Afianzamiento en el manejo de las fracciones desde situaciones de juego o de la vida real.

PLAN DE MEJORAMIENTO GRADO OCTAVO. Afianzamiento en el manejo de las fracciones desde situaciones de juego o de la vida real. PLAN DE MEJORAMIENTO GRADO OCTAVO INSTITUCIÓN EDUCATIVA LOMA HERMOSA DOCENTE: WÍLMAR ALONSO RAMÍREZ G. Refuerzo ateáticas 011, grado 8 o Fecha: /0/011. SEGUNDO PERÍODO: Copetecias: Afiazaieto e el aejo

Más detalles

METODO DE ITERACION DE NEWTON

METODO DE ITERACION DE NEWTON METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura

Más detalles

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS I.E.S. Ramó Giraldo UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS. NÚMEROS REALES.. NÚMEROS NATURALES =,,, 4,... Operacioes iteras (el resultado es u úmero atural) - Suma y producto Operacioes eteras (el resultado

Más detalles

MODELO DE RESPUESTAS. Lim n. Lim

MODELO DE RESPUESTAS. Lim n. Lim Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Lapso 008 - INTEGRAL MATEMÁTICA I (175) FECHA PRESENTACIÓN: 08-11-008 MODELO DE RESPUESTAS OBJ 7 PTA 7 Dadas las sucesioes de térmios

Más detalles

14.1 Comprender los exponentes racionales y los radicales

14.1 Comprender los exponentes racionales y los radicales Nombre Clase Fecha 14.1 Compreder los expoetes racioales y los radicales Preguta esecial: Cómo se relacioa los radicales co los expoetes racioales? Resource Locker Explorar 1 Compreder los expoetes de

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 3: Sucesiones y series. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados e Igeiería Capítulo 3: Sucesioes y series Domigo Pestaa Galvá José Mauel Rodríguez García Figuras realizadas co Arturo de Pablo Martíez TEMA 3. Sucesioes y series 3. Sucesioes

Más detalles

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video Matemáticas 9 Bimestre: I Número de clase: Clase Actividad Esta clase tiee video Tema: Radicació e los úmeros reales Lea la siguiete iformació. Si es u úmero etero positivo, etoces la raíz -ésima de u

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Pág. Grado Ig. Tec. Telecomuicació NOTA: E todos los ejercicios se deberá justificar la respuesta eplicado el procedimieto seguido e la resolució

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR UNVESDAD SMON BOLVA Departaeto de Coversió y Trasporte de Eergía CONSTUCCON Y FUNCONAMENTO DE MOTOES Hoja Nº -37 CON OTO JAULA DE ADLLA El rotor jaula de ardilla, debido a su siple costrucció, robustez

Más detalles

Guía de estudio para 2º año Medio

Guía de estudio para 2º año Medio Liceo Marta Dooso Espejo Medio Reforzamieto Guía de estudio para º año Medio El propósito de esta guía es hacer ua revisió de los pricipales coteidos tratados e el 1º año Medio durate el año 009. I. Números

Más detalles

EJERCICIOS DE SERIES DE FUNCIONES

EJERCICIOS DE SERIES DE FUNCIONES EJERCICIOS DE SERIES DE FUNCIONES. Campo de covergecia. Covergecia uiforme. Determiar el campo de covergecia de la serie 2 se x. Aplicado el criterio de la raíz, la serie es absolutamete covergete cuado:

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LÍMITE

1. INTRODUCCIÓN AL CONCEPTO DE LÍMITE 1. INTRODUCCIÓN AL CONCEPTO DE LÍMITE 1. Cocepto de límite 1.1 Defiició de etoro o vecidad: Si a es u úmero real (supógase que a está e el eje X), etoces, u etoro o vecidad de a de radio es u itervalo

Más detalles

MEDIDAS DE DISPERSION

MEDIDAS DE DISPERSION UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Uiversidad del Perú, DECANA DE AMERICA) MEDIDAS DE DISPERSION 14/06/008 Ig. SEMS .3 MEDIDAS DE DISPERSIÓN Todos los valores represetativos discutidos e las seccioes

Más detalles

10 Introducción al concepto de límite

10 Introducción al concepto de límite Itroducció al cocepto de límite PIENSA Y CONTESTA Segú Zeó de Elea, quié gaará la carrera: Aquiles o la tortuga? Segú Zeó de Elea la carrera la gaará la tortuga. Por qué o es correcto el razoamieto de

Más detalles

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad DIFERENCIL DE UN FUNCIÓN REL DE DOS VRILES RELES a R : R b R R z : E las codicioes ateriores si llaaos a la ució : R R observaos que es ua trasoració

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20

Guía de estudio Fracciones parciales Unidad A: Clase 19 y 20 Guía de estudio Fraccioes parciales Uidad A: Clase 19 y 0 Camilo Eresto Restrepo Estrada, Lia María Grajales Vaegas y Sergio Ivá Restrepo Ochoa 1. 9. Fraccioes parciales Ua fracció racioal es ua expresió

Más detalles

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual

estar contenido estar contenido o ser igual pertenece no pertenece existe para todo < menor menor o igual > mayor mayor o igual Tema I : Fucioes reales de variable real. Límites y cotiuidad 1. La recta real : itervalos y etoros. 2. Fucioes reales de variable real. 3. Fucioes elemetales y sus gráficas. 4. Límites de fucioes reales

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

Propiedad Intelectual Propiedad Cpech Intelectual Cpech

Propiedad Intelectual Propiedad Cpech Intelectual Cpech Raíces Propiedad Itelectual Propiedad Cpech Itelectual Cpech Apredizajes esperados Recoocer la defiició de raíz como ua potecia de base etera y de expoete racioal. Aplicar las propiedades de las raíces

Más detalles

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales.

DISEÑO Y ANÁLISIS DE DATOS II. NOVIEMBRE con la variable Y. Disponemos de las puntuaciones observadas en Y y de las puntuaciones residuales. DIEÑO ANÁLII DE DATO II. NOVIEMBRE 00 Problea.- Relacioaos la variable X co la variable. Dispoeos de las putuacioes observadas e de las putuacioes residuales. ) Deteriar R. OL: Calculeos la sua de cuadrados

Más detalles

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS

6. SUCESIONES Y SERIES NUMÉRICAS 6.1. SUCESIONES NUMÉRICAS Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 6. SUCESIONES Y SERIES NUMÉRICAS 6... Sucesioes de úmeros reales 6.. SUCESIONES NUMÉRICAS Se llama sucesió de úmeros reales a cualquier

Más detalles

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios

Tema 2. Tema 2: Aproxim mación de funciones por po olinomios Tema Itroducció al Cálcu ulo Ifiitesimal Tema : Aproim mació de fucioes por po oliomios 1.Orde de cotacto.poliomios de Taylor 3.Teorema de Taylor 4.Desarrollo de McLauri 5.Aplicació al cálculo de límites

Más detalles

Números reales. Operaciones

Números reales. Operaciones Números reales. Operacioes Matemáticas I 1 Números reales. Operacioes Números racioales. Caracterizació. Recuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma

Más detalles

NUMEROS REALES CLASIFICACIÓN DE LOS NÚMEROS. Reales, R

NUMEROS REALES CLASIFICACIÓN DE LOS NÚMEROS. Reales, R NUMEROS REALES El cuerpo de los úmeros reales esta formado por todo el cojuto de úmeros que hemos estado viedo e los distitos cursos ateriores; por ejemplo, el cuerpo de los úmeros racioales, irracioales,

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potecias y raíces Tema : Potecias y raíces ESQUEMA DE LA UNIDAD.- Cocepto de potecia..- Potecias de expoete atural..- Potecias de expoete etero egativo..- Operacioes co potecias..- Notació cietífica...-

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal MATEMÁTICA JRC La disciplia es la parte ás iportate del éito POLINOMIOS EN R EXPRESIÓN ALGEBRAICA.- Es u cojuto de úeros letras, elazadas por cualquiera de las cuatro operacioes, adeás de la poteciació

Más detalles

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada.

valor absoluto de sus términos, se tiene la serie: que si es convergente, entonces también es convergente la serie alternada. (Aputes e revisió para orietar el apredizaje) CONVERGENCIA ABSOLUTA TEOREMA. Si e la serie alterada ( ) valor absoluto de sus térmios, se tiee la serie: a + a + + a + a se toma el = que si es covergete,

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

5.- Teoremas de Cauchy y del Residuo

5.- Teoremas de Cauchy y del Residuo 5.- Teoreas de auchy y del esiduo a) Itroducció. b) Putos sigulares aislados. c) esiduo. d) Teorea de auchy. e) esiduos y polos. f) eros de fucioes aalíticas. g) Aplicació de los residuos. a).- Itroducció.

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sistemas y Señales Trasparecias: Aálisis de Sistemas LE e TD e el Domiio Trasformado Z Autor: Dr. Jua Carlos Góme Aálisis de Sistemas LE e TD e el Domiio Trasformado Z. Trasformada Z Bilateral

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

DEFINICIÓN DE PRODUCTO CARTESIANO:

DEFINICIÓN DE PRODUCTO CARTESIANO: Fucioes DEFINICIÓN DE PRODUCTO CARTESIANO: Dados dos cojutos A y B, llamaremos producto cartesiao de A por B (lo aotaremos A B) al cojuto formado por todos los pares ordeados que tiee como primera compoete

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico Matemática GUINV004M2-A17V1 Guía: Operado e u uevo cojuto umérico Matemática - Segudo Medio Secció 1 Me cocetro Objetivos Idetificar los úmeros irracioales como úmeros decimales que tiee desarrollo ifiito

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teoría de Sistemas y Señales Trasparecias: Aálisis de Sistemas LE e TD e el Domiio Trasformado Z Autor: Dr. Jua Carlos Góme Aálisis de Sistemas LE e TD e el Domiio Trasformado Z. Trasformada Z Bilateral

Más detalles

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en: UCEIÓN CPR. JORGE JUAN Xuvia-Naró Ua sucesió, (a ), de úmeros reales es ua fució que hace correspoder a cada úmero atural, excluido el cero, u úmero real, la cual viee defiida segú: f: N* R a a i a Número

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Epresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Sesión 8 Series numéricas III

Sesión 8 Series numéricas III Sesió 8 Series uméricas III Defiició Serie de Potecias Si a 0, a, a,, a so úmeros reales y x es ua variable, ua expresió de la forma a x, se llama Serie de Potecias. Lo abreviaremos co SP. Alguos ejemplos

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

Objetivo: Concepto de Límite

Objetivo: Concepto de Límite --0 Sesió Coteidos: Cocepto ituitivo de límite. > Coceptos básicos propiedades de alguos límites. > Cálculo de límite de alguas fucioes. Objetivo: Determia límite de fucioes, sólo por reemplazo. Determia

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

2.2. Estadísticos de tendencia central

2.2. Estadísticos de tendencia central 40 Bioestadística: Métodos y Aplicacioes La dispersió o variació co respecto a este cetro; Los datos que ocupa ciertas posicioes. La simetría de los datos. La forma e la que los datos se agrupa. Cetro,

Más detalles

Sucesiones I Introducción

Sucesiones I Introducción Temas Qué es ua sucesió? Notacioes y coceptos relacioados. Maeras de presetar ua sucesió. Gráfico de sucesioes. Capacidades Coocer y compreder el cocepto de sucesió. Coocer y maejar las diferetes maeras

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Examen de Febrero de 2005 de Cálculo I. Soluciones.

Examen de Febrero de 2005 de Cálculo I. Soluciones. Eame de Febrero de 5 de Cálculo I Solucioes Sea la fució f() = e sh + co domiio R a) Hallar los tres primeros térmios o ulos de su desarrollo de Taylor e = b) Probar que eiste su fució iversa f y calcular

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

a a a a... a a (n veces)

a a a a... a a (n veces) EJERCICIOS de POTENCIAS º ESO Aplicadas FICHA : Potecias de expoete IN RECORDAR: a a a a... a a ( veces) Defiició de potecia (Añadir esta fórmula al formulario, juto co la lista de pricipales potecias

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Lím f(x) Lím f(x) = f(a).

Lím f(x) Lím f(x) = f(a). CÁLCULO DE LÍMITES Y CONTINUIDAD 1. TEOREMA SOBRE LÍMITES Defiició: El límite de ua fució f(), cuado tiede a o es L si y sólo si para todo ε > 0 eiste u δ(ε) > 0 tal que para todo úmero real que perteece

Más detalles