Cuando un condensador se comporta como una bobina

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cuando un condensador se comporta como una bobina"

Transcripción

1 Cuando un condensador se comporta como una bobina Milagros Montijano Moreno Objetivo Se pretende señalar en este trabajo la diferencia entre el componente electrónico ideal y el real y aportar un procedimiento experimental para ilustrar la desviación de un condensador real respecto del funcionamiento ideal. Introducción En este trabajo se quiere mostrar el comportamiento no ideal de un condensador real y en qué circunstancias sucede. Con ello, se pretende hacer hincapié en que, en prácticamente todas las áreas del conocimiento, hay un salto entre la teoría y la práctica que hay que salvar cuidadosamente. La primera, para poder desarrollarse, necesita de ciertas simplificaciones y generalizaciones. Pero, cuando vamos al mundo real, hay que tener cuidado para mantener las condiciones y premisas en las que se ha desarrollado la teoría. En concreto, en el ámbito de la electrónica, nunca hay que perder de vista que una cosa es el elemento circuital ideal en el esquema de un circuito dibujado sobre el papel y otra (a veces, muy diferente) el componente que compramos en la tienda de electrónica. Para ilustrar este hecho, vamos a centrarnos en el análisis del comportamiento de un condensador real en función de la frecuencia a la que trabaja el circuito. Comprobaremos que, en ciertas circunstancias, el condensador real se comporta como una bobina! No nos conformamos en este artículo con contarlo, sino que también proponemos un procedimiento experimental para que el lector interesado pueda verificarlo por sí mismo. Después de esta breve introducción, realizaremos un breve repaso sobre qué es un condensador y con qué ecuaciones se describe. Seguidamente, expondremos el origen de los efectos que desvían el comportamiento real de un condensador respecto del ideal cuando aumentamos la frecuencia de la señal. También se presenta un modelo circuital para reproducir este comportamiento. Posteriormente, se propone un montaje práctico que permite comprobar y medir este comportamiento no ideal y obtener los parámetros del modelo que mejor lo reproducen. Finalmente, se termina con las principales conclusiones de este trabajo.

2 Los condensadores. Un breve repaso Un condensador es, en electrónica, un componente pasivo que sirve para almacenar carga y, por tanto, energía eléctrica. Está formado por un par de láminas conductoras (armaduras) separadas por un material no conductor (dieléctrico). Al someter el condensador a una diferencia de potencial, éste adquiere una determinada carga eléctrica, positiva en una de las placas y negativa en la otra (siendo nula la carga total). La carga almacenada en una de las placas es proporcional a la diferencia de potencial entre esta placa y la otra, siendo la constante de proporcionalidad la capacidad del condensador. Por tanto, se define la capacidad de un condensador mediante la siguiente fórmula: C = Q / V C, siendo C la capacidad, Q la carga almacenada (en valor absoluto) en una de las armaduras y V C = V 1 V 2, donde V 1 es la tensión en una armadura y V 2 en la otra. En el Sistema Internacional de Unidades, se mide en Faradios (F), siendo un faradio la capacidad de un condensador en el que, sometidas sus armaduras a una diferencia de potencial de un voltio, éstas adquieren una carga eléctrica de un culombio. El Faradio es una unidad demasiado grande para medir la capacidad, por lo que en la práctica se utilizan submúltiplos de éste como el microfaradio (10-6 F), el nanofaradio (nf = 10-9 F) o el picofaradio (pf = F). Como elemento circuital, la tensión que cae entre las armaduras de un condensador y la corriente que circula (I C ) están relacionados a través de la siguiente ecuación: I C = C dv C /dt. Para señales sinusoidales, el fasor tensión (V C ) y el fasor intensidad (V C ) están relacionados a través de la impedancia del mismo (Z C ) según la siguiente expresión: V C = Z C I C. El valor de la impedancia de un condensador depende de la frecuencia y está dado por: Z C = (jωc) -1, siendo ω la frecuencia angular y j la unidad imaginaria. Por tanto, el módulo de la impedancia de un condensador viene dado por: Z C = (ωc) -1.

3 Comportamiento no ideal de un condensador Según se ha descrito anteriormente, el módulo de la impedancia de un condensador debería ser una función estrictamente decreciente de la frecuencia. Sin embargo, se comprueba experimentalmente (como veremos en el siguiente apartado de este trabajo) que, a partir de cierta frecuencia, empieza a aumentar en lugar de seguir reduciéndose. Este fenómeno se debe a que un condensador real tiene elementos adicionales a lo que sería el condensador ideal. En efecto, como hemos recordado en el apartado anterior, un condensador ideal estaría formado por dos láminas paralelas de un conductor perfecto separadas por un dieléctrico y que almacenan carga. Sin embargo, estas armaduras se conectan al mundo exterior a través de dos hilos conductores. Esto provoca una serie de efectos, que denominamos parásitos porque no son deseados. Como sabemos, todo hilo conductor presenta una resistencia y una inductancia. La resistencia cabe esperar que sea pequeña si el hilo tiene conductividad elevada. La inductancia también debería ser reducida, especialmente si los conductores son de longitud corta. Obsérvese que esta es una de las razones por las que en un circuito siempre hay que intentar minimizar la longitud de los conductores. No obstante, aunque ambos elementos parásitos tengan, en principio, un valor pequeño su efecto puede ser importante en determinadas circunstancias y por tanto no conviene olvidarse de ellos por completo. Para reproducir el comportamiento del condensador real se suele proponer entonces el modelo circuital mostrado en la figura 1, en el que al condensador ideal se le ha añadido una resistencia y una inductancia en serie. Figura 1: modelo para reproducir el comportamiento no ideal de un condensador real en función de la frecuencia. En serie con el condensador ideal (dado por la capacitancia C) se han añadido la inductancia de los hilos conectores (L w ) y la resistencia (R w ) de los mismos. Nótese que se trata de un circuito RLC serie y que, por tanto, la impedancia total es la suma de las impedancias de los tres elementos que lo constituyen. Como hemos recordado en el apartado anterior, la impedancia del condensador es inversamente proporcional a la frecuencia. Eso hace que sea elevada a bajas frecuencias (de hecho, es infinita en continua y tiende a cero cuando la frecuencia tiende a infinito). Lo contrario sucede con la impedancia de una inductancia, que es directamente proporcional a la frecuencia. Por tanto, en continua es cero, mientras que su valor se incrementa conforme crece la frecuencia (haciéndose infinito cuando la frecuencia tiende a infinito). Por su parte, la impedancia de una resistencia es independiente de la frecuencia e igual a su valor (si despreciamos fenómenos como el efecto Skin). Si tenemos esto en cuenta, comprenderemos que a bajas frecuencia la influencia de los elementos parásitos R w y L w sea despreciable frente a la impedancia del condensador. En este rango de frecuencias, el condensador real se comporta como

4 cabe esperar. Sin embargo, conforme aumenta la frecuencia, la impedancia debida a la capacitancia C va reduciéndose mientras que la de la inductancia L w va incrementándose. Llega una frecuencia en la que ambos valores se cruzan y, a partir de dicha frecuencia, la impedancia de la inductancia es mayor y, por tanto, es la que básicamente controla la impedancia total del circuito. La frecuencia en la que el módulo de ambas impedancias (debidas, respectivamente a la capacitancia C y a la inductancia L w se igualan) es la frecuencia de resonancia. Como ambas impedancias tiene fase opuesta, a la frecuencia de resonancia se cancelan y la impedancia que queda es la de la resistencia, R w. Por tanto, como consecuencia bastante curiosa y llamativa, vemos que a partir de (aproximadamente) la frecuencia de resonancia, el condensador real se comporta como una bobina en lugar de como un condensador. Finalmente, queremos realizar las siguientes puntualizaciones: 1. El comportamiento parásito aparece antes para condensadores de valor elevado (pues la impedancia de la capacitancia C ideal decrece más rápidamente) y además, por supuesto, es muy dependiente de la tecnología empleada para fabricar los condensadores. Por tanto, para aplicaciones que trabajen a frecuencias relativamente elevadas (digamos, varios megahercios) hay que tener cuidado con los condensadores elegidos. Los condensadores que peor comportamiento en frecuencia tienen son los electrolíticos. Por tanto, para la práctica propuesta en el siguiente apartado (que, consiste, precisamente en observar el comportamiento parásito de un condensador real) elegiremos un condensador electrolítico de 10 microfaradios. 2. El modelo propuesto y comentado es para reproducir el comportamiento en función de la frecuencia. Para reproducir el comportamiento en continua o baja frecuencia (básicamente, la pérdida de carga) se emplea otro modelo (con una resistencia elevada en paralelo con las armaduras del condensador a través de la cual se descarga el condensador). Un ejemplo de práctica En este apartado proponemos un procedimiento experimental que puede servir de práctica de laboratorio para comprobar el comportamiento no ideal de un condensador que hemos comentado anteriormente. El instrumental necesario está disponible en la mayoría de los laboratorios de electrónica analógica de los centros en los que se imparten los Ciclos Formativos de la rama de Electricidad y Electrónica. Se propone medir el módulo de la impedancia de un condensador en función de la frecuencia y representarlo gráficamente para observar el comportamiento descrito en el apartado anterior. Como parte opcional (para estudiantes más avanzados), se sugiere determinar el valor de los componentes del modelo que se ha propuesto para reproducir el comportamiento no ideal del condensador. Material necesario 1. Osciloscopio 2. Generador de funciones (que sea capaz de generar señales sinusoidales de, al menos, hasta 20 MHz de frecuencia).

5 3. Condensador electrolítico de 10 microfaradios. 4. Resistencia de 10 ohmios (a ser posible, de tolerancia menor que el 2%). 5. Placa de prototipos para inserción de componentes Procedimiento experimental Para calcular la impedancia (en módulo) de un condensador en función de la frecuencia se deben realizar las siguientes operaciones: 1. Montar el circuito de la figura 1. Poner especial atención a la polaridad del condensador electrolítico. Como señal de entrada, seleccionar una señal sinusoidal con una amplitud de aproximadamente 1.5 V y un desplazamiento (offset) mayor que la amplitud para obtener siempre tensiones positivas (tenga en cuenta que el condensador electrolítico no admite tensiones con polaridad inversa). Figura 2. Esquema del circuito propuesto para determinar experimentalmente la impedancia del condensador. Se señalan también los puntos donde deben situarse las sondas de los dos canales del osciloscopio. 2. Una vez montado el circuito, hay que rellenar una tabla con los datos experimentales medidos al variar la frecuencia de la señal sinusoidal entre 1 KHz y 30 MHz (una buena representación puede obtenerse con dos puntos por década hasta 1 MHz y a partir de esta frecuencia, medir cada 2 MHz). Para cada frecuencia, se debe medir la amplitud de la señal representada en el canal 2 (V C, tensión en el condensador) y la amplitud de la señal correspondiente a la caída de tensión en la resistencia (V R, que es la diferencia entre las tensiones medidas en ambos canales). Esta última señal se obtiene empleando las opciones matemáticas (resta) del osciloscopio. 3. En la tabla 1 podemos ver un ejemplo de posibles medidas. Experimentalmente, se determinan las tres primeras columnas (frecuencia, tensión en el condensador y caída de tensión en la resistencia).

6 4. A partir de los datos experimentales de las columnas 2 y 3 de la tabla anterior, rellenamos una cuarta columna en la que para cada frecuencia se calcula la intensidad que circula por el condensador mediante la siguiente fórmula: I C = V R / 10 Ω. 5. Finalmente, añadimos una quinta columna en la que se recoge, para cada frecuencia, el módulo de la impedancia del condensador, calculado según su definición: Z C = V C / I C. 6. Observaciones: a) En esta práctica, proponemos medir hasta 30MHz. Con los condensadores que se han probado para realizar este trabajo, el comportamiento inductivo se observa claramente a partir de 12 ó 15 MHz. Por tanto, con generadores que alcancen los 20 MHz puede ser suficiente para realizar la práctica. En cualquier caso, conviene recordar que lo que estamos midiendo aquí no deja de ser un efecto parásito y que, por tanto, está sujeto a mucha variabilidad al cambiar de fabricante e, incluso, al cambiar de un condensador a otro dentro de una misma marca y serie de fabricación. b) Como la impedancia del condensador a altas frecuencias es muy baja, la tensión proporcionada por el generador de señales no es la que indica en su pantalla sino que hay pérdida de tensión en la resistencia interna del generador (usualmente, de 50, 100 ó 600 ohmios). Además, esta caída de tensión es dependiente de la frecuencia. Por tanto, si se observa que las señales se hacen muy débiles, puede probarse a aumentar ligeramente la amplitud del generador de señales. FREC. VC VR (Ch2-Ch1) I = VR/R Z = VC/I (KHz) (V) (V) (A) (Ω) Tabla 1: Ejemplo de resultados experimentales

7 Análisis de los resultados experimentales Una vez obtenidos las medidas, se propone al alumno su análisis mediante los siguientes ejercicios: 1. Representar en una gráfica la impedancia del condensador en función de la frecuencia. 2. Comentar los resultados y compararlos con los que cabría esperar a partir del comportamiento ideal de un condensador de 10 microfaradios. En la figura 3 se muestra un ejemplo del tipo de gráfica que se obtiene. Los datos mostrados se corresponden con los recogidos en el ejemplo de la Tabla Zc (ohm Frecuencia (KHz) Figura 3: Representación gráfica del módulo de la impedancia del condensador en función de la frecuencia. Los datos se corresponden con los resultados experimentales mostrados en la Tabla 1. Para los alumnos más avanzados, se sugiere la realización de las siguientes tareas adicionales: 1. Estimar los parámetros del modelo propuesto en la figura 1 correspondientes al condensador medido. Para ello se pueden seguir los siguientes pasos: a. El valor de la capacidad, C, puede obtenerse mediante un capacímetro (habitualmente, los polímetros incorporan uno) o a partir de los datos experimentales del módulo de la impedancia del condensador. Efectivamente, en los puntos correspondientes a menor frecuencia, todavía predomina el comportamiento capacitivo (determinado por C), y por tanto a partir de un punto (dado por el par (f a, Z ca )) puede obtenerse el valor de C como:

8 C = (2 π f a Z ca ) -1. b. El valor de la resistencia, R w, puede estimarse como el valor mínimo de todos los medidos pues, como es conocido, en un circuito RLC serie el valor mínimo de la impedancia es precisamente el valor de la resistencia R (que ocurre para la frecuencia de resonancia en la cual se compensan las impedancias de la capacidad C y la inductancia L). Por tanto, en el ejemplo propuesto R w = 2.6 Ω. c. El valor de la inductancia parásita L w puede estimarse a partir de los datos correspondientes a la zona inductiva de la gráfica (figura 3). Si suponemos que el módulo de la impedancia del condensador viene determinado en esta zona únicamente por la inductancia L w (de forma que Z ca = 2 π f L w ), entonces su valor lo podemos obtener fijándonos en un punto (f b, Z cb ) de dicha zona de la gráfica como: L w = Z cb / (2 π f b ). Por ejemplo, usando el dato de la Tabla 1 correspondiente a la frecuencia de 26 MHz obtenemos el valor L w = 89.9 nh. d. Observación: los valores de la capacidad C y la inductancia L w los hemos obtenido a partir de un único punto de la zona capacitiva e inductiva de la gráfica, respectivamente. Estrictamente, sería más correcto considerar todos los puntos de las zonas capacitiva e inductiva, respectivamente, y realizar una estimación lineal por mínimos cuadrados de los puntos de cada zona. A partir de la pendiente de las rectas de ajuste, se obtendrían los valores respectivos de C y la inductancia L w. No se ha propuesto este método porque cabe esperar que los alumnos de los Ciclos Formativos no estén familiarizados con esta técnica. 2. Comparar los resultados experimentales con los del modelo propuesto, cuyos parámetros se han calculado en el apartado anterior. Los valores teóricos del módulo de la impedancia del condensador correspondientes al modelo se pueden calcular mediante simulación (con SPICE, por ejemplo) o a partir de la siguiente expresión (que proporciona el módulo de la impedancia total de un circuito RLC serie): Z RLC = [R 2 + (ωl -ω -1 C -1 ) 2 ] 1/2, donde ω es la frecuencia angular (ω = 2πf). En la figura 4 se muestra la gráfica que se obtiene al realizar esta última tarea propuesta con los datos experimentales que se han mostrado como ejemplo a lo largo de este artículo.

9 Zc (ohm Experimental Teórico Frecuencia (KHz) Figura 4: Comparación de los resultados experimentales con los obtenidos teóricamente a partir del modelo propuesto. Conclusiones En este trabajo hemos recordado que hay que tener cuidado al pasar del mundo teórico (en nuestro caso particular, de los esquemas circuitales sobre el papel) al mundo real (de los circuitos que se tocan y que están montados con componentes reales). Se ha ilustrado este hecho mostrando el comportamiento no ideal de un condensador, que podría servir de ejemplo para recordar a los estudiantes de electrónica que una cosa es el comportamiento ideal y (a menudo) simplificado de los circuitos mostrados en los libros y otra diferente es su realización práctica, en la que frecuentemente hay que tener en cuenta otros muchos fenómenos. Bibliografía 1. Harper, C.A. (1997). Passive Electronic Component Handbook. McGraw-Hill. 2. Bowick, C. (1996). RF Circuit Design. Boston: Newnes. 3. (artículo sobre condensadores)

ELECTRÓNICA 4º ESO IES JJLOZANO Curso 2013-2014

ELECTRÓNICA 4º ESO IES JJLOZANO Curso 2013-2014 CONDENSADORES Su funcionamiento se parece al de las pequeñas baterías recargables y, al igual que éstas, son capaces de almacenar y descargar energía eléctrica. Están formados por dos láminas de un material

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción

Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción Práctica Amplificadores de RF. Objetivo En primer lugar, en esta práctica montaremos un amplificador de banda ancha mediante una etapa emisor común y mediante una etapa cascodo, con el findeestudiar la

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo

Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Trabajo Práctico de Laboratorio N 6 Circuitos excitados con corrientes dependientes del tiempo Introducción teórica En el cuadro de la última página resumimos las caídas de tensión, potencia instantánea

Más detalles

Tema I: Elementos de un circuito

Tema I: Elementos de un circuito Elementos de un circuito 1 Tema I: Elementos de un circuito 1 Placa de soporte Los elementos pasivos de interés desde la perspectiva de este manual son dispositivos de dos terminales. Para configurar el

Más detalles

Trabajo práctico Nº 1

Trabajo práctico Nº 1 Circuito de acoplamiento 1. Introducción 1.1. Requisitos 2. Funcionamiento 2.1. Sintonización 2.2. Adaptación 3. Diseño 3.1. Consideraciones generales 3.2. Diseño inductor 3.3. Factor de calidad 3.4. Cálculo

Más detalles

Experimento 8 EL CIRCUITO RC. Objetivos. Teoría. Figura 1 Un capacitor de placas planas paralelas

Experimento 8 EL CIRCUITO RC. Objetivos. Teoría. Figura 1 Un capacitor de placas planas paralelas Experimento 8 EL CIRCUITO RC Objetivos 1. Describir los aspectos básicos del circuito RC 2. Explicar y describir la dependencia del voltaje y la corriente con respecto al tiempo en los procesos de carga

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

Condensador con tensión alterna sinusoidal

Condensador con tensión alterna sinusoidal Capacitancia e Inductancia en Circuito de Corriente Alterna 1.- OBJETIVO: Experiencia Nº 10 El objetivo fundamental en este experimento es el estudio de la corriente alterna en un circuito RC y RL. 2.-

Más detalles

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador

Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador Práctica 1.2 Manejo del osciloscopio. Circuito RC. Carga y descarga de un condensador P. Abad Liso J. Aguarón de Blas 13 de junio de 2013 Resumen En este informe se hará una pequeña sinopsis de la práctica

Más detalles

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002.

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002. TEMA 11. FENÓMENOS TRANSITORIOS. 11 Fenómenos transitorios. Introducción. 11.1. Evolución temporal del estado de un circuito. 11.2. Circuitos de primer y segundo orden. 11.3. Circuitos RL y RC en régimen

Más detalles

MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA

MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA MEDIDA DE POTENCIA Y CORRECCIÓN DEL FACTOR DE POTENCIA OBJETIVOS: I Utilizar el vatímetro análogo y el digital para medir la potencia activa absorbida por una puerta. II Repasar los fundamentos teóricos

Más detalles

3.1. FUNCIÓN SINUSOIDAL

3.1. FUNCIÓN SINUSOIDAL 11 ÍNDICE INTRODUCCIÓN 13 CIRCUITOS DE CORRIENTE CONTINUA 19 Corriente eléctrica. Ecuación de continuidad. Primera ley de Kirchhoff. Ley de Ohm. Ley de Joule. Fuerza electromotriz. Segunda ley de Kirchhoff.

Más detalles

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial

Capacitores de película de sulfuro de polifenileno (PPS) para montaje superficial CAPACITORES INTRODUCCIÓN Los capacitores son componentes eléctricos y electrónicos capaces de almacenar energía eléctrica, la cantidad de energía almacenada dependerá de las características del mismo componente.

Más detalles

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS

Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS Sistema Integrador Ciencia y tecnología CIRCUITOS ELECTRICOS FUNDAMENTOS La electricidad La electricidad es un fenómeno físico cuyo origen se encuentra en las cargas eléctricas y cuya energía se manifiesta

Más detalles

En su forma más simple, un sistema mecánico de traslación consiste de una masa, un resorte y un amortiguador, tal como lo ilustra la figura 1.

En su forma más simple, un sistema mecánico de traslación consiste de una masa, un resorte y un amortiguador, tal como lo ilustra la figura 1. ANALOGÍA ENTRE UN SISTEMA MECÁNICO DE TRASLACIÓN Y UN SISTEMA ELÉCTRICO. Tomado del texto de Circuitos III del Profesor Norman Mercado. 1. INTRODUCCIÓN. Tradicionalmente, las analogías entre los sistemas

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

PRÁCTICA # 1 EL MEDIDOR DE IMPEDANCIA

PRÁCTICA # 1 EL MEDIDOR DE IMPEDANCIA PRÁCTICA # 1 EL MEDIDOR DE IMPEDANCIA 1. Finalidad Familiarización con el medidor de impedancia general radio, modelo 1650-B. 2. Método Mediciones directas con sus elementos circuitales con su correspondiente

Más detalles

CIRCUITOS RESONANTES, RLC

CIRCUITOS RESONANTES, RLC CIRCUITOS RESONANTES, RLC En este desarrollo analizamos circuitos RLC alimentados con una tensión alternada (AC) y su respuesta a distintas frecuencias. Por convención, y a los fines de simplificar la

Más detalles

PROYECTO Nº 2: PATRÓN NACIONAL DE INDUCTANCIA

PROYECTO Nº 2: PATRÓN NACIONAL DE INDUCTANCIA PROYECTO Nº 2: PATRÓN NACIONAL DE INDUCTANCIA ÁREA : ELECTRICIDAD Y MAGNETISMO LABORATORIO: IMPEDANCIA Yolanda Álvarez Sanmamed Mª Mar Izquierdo García ÍNDICE 1.- Objetivo 2.- Inductancia 2.1.- Unidad

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

DPTO. FISICA APLICADA II - EUAT

DPTO. FISICA APLICADA II - EUAT Práctica 6 Corriente alterna 6.1. Objetivos conceptuales Familiarizarse con el uso del osciloscopio. Medir el desfase entre la intensidad y la caída de tensión en un condensador. Determinar el desfase

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

Módulo 1: Electrostática Condensadores. Capacidad.

Módulo 1: Electrostática Condensadores. Capacidad. Módulo 1: Electrostática Condensadores. Capacidad. 1 Capacidad Hemos visto la relación entre campo eléctrico y cargas, y como la interacción entre cargas se convierte en energía potencial eléctrica Ahora

Más detalles

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN

Componentes Pasivos. CATEDRA: Mediciones Electricas I Y II. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Componentes Pasivos CATEDRA: Mediciones Electricas I Y II Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACINAL DE TUCUMÁN Año 2011 Resistencias Resistencia es la oposición que presenta un conductor

Más detalles

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor.

CIRCUITOS DC Y AC. En las fuentes reales, ya sean de voltaje o corriente, siempre se disipa una cierta cantidad de energía en forma de calor. CIRCUITOS DC Y AC 1. Fuentes de tensión y corriente ideales.- Una fuente ideal de voltaje se define como un generador de voltaje cuya salida V=V s es independiente de la corriente suministrada. El voltaje

Más detalles

DESCRIPCIÓN DEL PUESTO DE TRABAJO

DESCRIPCIÓN DEL PUESTO DE TRABAJO NORMATIVA Las prácticas de laboratorio de la asignatura TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS de primero curso de la E.T.S.I. de Telecomunicación de la U.L.P.G.C. tendrán lugar en el Laboratorio

Más detalles

PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7:

PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7: PROGRAMA DE TECNOLOGIA ELECTRICA UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 7: MANEJO DEL OSCILOSCOPIO - MEDIDA DE ANGULOS DE FASE Y MEDIDA DE PARAMETROS DE UNA BOBINA 1. OBJETIVOS Adquirir conocimientos

Más detalles

PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA. 5.1. Capacidad

PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA. 5.1. Capacidad 1 PRÁCTICA N 5 EL CONDENSADOR COMO DISPOSITIVO DE ALMACENAMIENTO DE ENERGÍA 5.1. Capacidad Es la propiedad que poseen los circuitos eléctricos que tiende a evitar los cambios de tensión. Cuando se aplica

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS Circuitos Eléctricos Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 3 Créditos: 9 Clave: F0120 Asignaturas antecedentes y subsecuentes PRESENTACIÓN

Más detalles

Un receptor de Radio AM

Un receptor de Radio AM GUIA 6 : Un receptor de Radio AM Objetivos: estudiar un receptor de radio AM básico Introducción : en este experimento, se verá como podemos usar un circuito para obtener un sintonizador de radio. omo

Más detalles

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas

PRACTICA 6 SOLENOIDES, BOBINAS Y TRANSFORMADORES. 6.1. Solenoides y Bobinas PACTICA 6 SOLEOIDES, BOBIAS Y TASFOMADOES 6.. Solenoides y Bobinas Se demostrado que al hacer circular una corriente por un conductor rectilíneo, alrededor de éste se crea un campo magnético ( B r ) que

Más detalles

Comprobación de componentes empleando un osciloscopio con generador de forma de onda integrado

Comprobación de componentes empleando un osciloscopio con generador de forma de onda integrado componentes empleando un osciloscopio con generador de forma de onda integrado Por Dennis Weller, Agilent Technologies www.agilent.com Dennis Weller es ingeniero superior de Agilent Technologies. Cuenta

Más detalles

Práctica 2. Circuitos con bobinas y condensadores en CC y CA

Práctica 2. Circuitos con bobinas y condensadores en CC y CA Electrotecnia y Electrónica (34519) Grado de Ingeniería Química Práctica 2. Circuitos con bobinas y condensadores en CC y CA Francisco Andrés Candelas Herías Con la colaboración de Alberto Seva Follana

Más detalles

Unidad9 CARACTERISTICAS DIELECTRICAS Y AISLAN- TES DE LOS MATERIALES

Unidad9 CARACTERISTICAS DIELECTRICAS Y AISLAN- TES DE LOS MATERIALES Unidad9 CARACTERISTICAS DIELECTRICAS Y AISLAN- TES DE LOS MATERIALES 1 PRESENTACION El diseño óptimo de un componente no conductor de la corriente eléctrica requiere el compromiso de una buena conformación,

Más detalles

Medidas de efecto Hall en una muestra de germanio

Medidas de efecto Hall en una muestra de germanio PRÁCTICA 2 Medidas de efecto Hall en una muestra de germanio Temas tratados: semiconductores, teoría de bandas, banda de energía prohibida (band gap), fuerza de Lorentz, efecto Hall, concentración y tipo

Más detalles

Electrónica Analógica Respuesta en frecuencia. Transformada de Laplace

Electrónica Analógica Respuesta en frecuencia. Transformada de Laplace Electrónica Analógica espuesta en frecuencia. Transformada de Laplace Transformada de Laplace. Introducción La transformada de Laplace es una herramienta matemática muy útil en electrónica ya que gracias

Más detalles

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable. PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de

Más detalles

1 Introducción. 1.1 Magnitudes eléctricas.

1 Introducción. 1.1 Magnitudes eléctricas. 1 Introducción....2 1.1 Magnitudes eléctricas....2 1.1.1 Corriente continua....2 1.1.2 Corriente alterna....3 1.1.3 Desfase....4 1.1.4 Valor medio....6 1.1.5 Valor de Pico y de pico-pico....6 1.1.6 Valor

Más detalles

Conceptos básicos: Etapa de entrada. Amplificadores

Conceptos básicos: Etapa de entrada. Amplificadores Conceptos básicos: Los Amplificadores o etapas de potencias tienen como función incrementar la señal entrante en función de obtener una ganancia de tensión y por ende de corriente, que será luego traducirá

Más detalles

2 Electrónica Analógica

2 Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2009-2010 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2 2 A li i d l A lifi d O i l 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL

MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 8 MEDICIONES EN AC CON EL OSCILOSCOPIO EL OSCILOSCOPIO DIGITAL Familiarizarse

Más detalles

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. 3º parte En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm. ELEMENTOS DEL CIRCUITO ELÉCTRICO Para poder relacionar las

Más detalles

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01

P5: CORRIENTE ALTERNA MONOFÁSICA II FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA D. FAUSTINO DE LA BODEGA Y BILBAO CURSO 2º GRUPO 01 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P5:

Más detalles

Práctica 6: Amplificador operacional inversor y no inversor.

Práctica 6: Amplificador operacional inversor y no inversor. NOMBRE: NOMBRE: GRUPO: PUESTO: Práctica 6: Amplificador operacional inversor y no inversor. Introducción al amplificador operacional inversor y no inversor 47K (R ) 100K (R ) V E 4K7 (R 1 ) 3 - + +15 7

Más detalles

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF

TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF TRABAJO PRACTICO 6 MEDICIONES CON ANALIZADOR DE ESPECTRO DE RF INTRODUCCION TEORICA: El análisis de una señal en el modo temporal con ayuda de un osciloscopio permite conocer parte de la información contenida

Más detalles

CAPITULO 5. Corriente alterna

CAPITULO 5. Corriente alterna CAPITULO 5 Corriente alterna Se denomina Corriente Alterna (CA) a la corriente eléctrica en la cual la magnitud y el sentido varían periódicamente, siendo la forma sinusoidal la más utilizada. El uso doméstico

Más detalles

Práctica 2. Diseño y medida de una Red Resonante. Laboratorio de medidas e instrumentación. Nombres. Grupo

Práctica 2. Diseño y medida de una Red Resonante. Laboratorio de medidas e instrumentación. Nombres. Grupo Red resonante Laboratorio de medidas e instrumentación i Laboratorio de medidas e instrumentación. Práctica 2. Diseño y medida de una Red Resonante. Nombres Grupo Red resonante Laboratorio de medidas e

Más detalles

SISTEMA DE CONTROL DE TEMPERATURA

SISTEMA DE CONTROL DE TEMPERATURA Práctica 5 SISTEMA DE CONTROL DE TEMPERATURA 5.1 Introducción Esta práctica tiene como principal finalidad el trabajar con un sistema realimentado con un retraso importante entre el instante en que se

Más detalles

Orientación para el diseño de fuentes de alimentación

Orientación para el diseño de fuentes de alimentación Orientación para el diseño de fuentes de alimentación Por Carlos Díaz http://www.electron.es.vg/? 0.- Introducción? 1.- Transformador de entrada? 2.- Rectificadores a diodos o Rectificador a un diodo o

Más detalles

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S.

CORRIENTE ALTERNA. S b) La potencia disipada en R2 después que ha pasado mucho tiempo de haber cerrado S. CORRIENTE ALTERNA 1. En el circuito de la figura R1 = 20 Ω, R2 = 30Ω, R3 =40Ω, L= 2H. Calcular: (INF-ExSust- 2003-1) a) La potencia entrega por la batería justo cuando se cierra S. S b) La potencia disipada

Más detalles

PRÁCTICA 3. MEDIDA DE IMPEDANCIAS: PUENTE DE WHEATSTONE, MEDIDOR LCR. CARACTERIZACIÓN DE FILTROS.

PRÁCTICA 3. MEDIDA DE IMPEDANCIAS: PUENTE DE WHEATSTONE, MEDIDOR LCR. CARACTERIZACIÓN DE FILTROS. PRÁCTICA 3. MEDIDA DE IMPEDANCIAS: PUENTE DE WHEATSTONE, MEDIDOR LCR. CARACTERIZACIÓN 1 Objetivo. DE FILTROS. Realizar medidas de componentes pasivos. Diseño y caracterización de filtros activos y pasivos

Más detalles

Diseño e implementación de un amplificador de audio de ganancia programable

Diseño e implementación de un amplificador de audio de ganancia programable Ingeniería de Telecomunicación Laboratorio de Circuitos Electrónicos Curso 2010/2011 Diseño e implementación de un amplificador de audio de ganancia programable Departamento de Electrónica Índice: 1 Introducción...

Más detalles

Circuitos de Corriente Alterna

Circuitos de Corriente Alterna Tema 5 Circuitos de Corriente Alterna 5.1. Introducción Dado que en el Tema 4 se han establecido algunas de las leyes físicas que rigen el comportamiento de los campos eléctrico y magnético cuando éstos

Más detalles

MODULACIONES ANGULARES. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid.

MODULACIONES ANGULARES. E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. MODULACIONES ANGULARES. Marcos Martín Fernández E. T. S. de Ingenieros de Telecomunicación Universidad de Valladolid. CONTENIDOS INDICE. DE FIGURAS VII 1. INTRODUCCIÓN. 1. MODULACIÓN DE FASE (PM) Y MODULACIÓN

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

ÍNDICE MEMÓRIA Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 Capítulo 3: el front-end analógico... 10

ÍNDICE MEMÓRIA Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 Capítulo 3: el front-end analógico... 10 ÍNDICE MEMÓRIA Índice memória... 1 Capítulo 1: Introducción... 3 Capítulo 2: el osciloscopio... 5 2.1. Qué es un osciloscopio?... 5 2.2. Tipos de osciloscopios... 5 2.2.1. Osciloscopio analógico... 5 2.2.2.

Más detalles

FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA FNDAMENTOS DE TECNOLOGÍA ELÉCTRCA CRSO 03-04 ÍNDCE Determinación del coeficiente de autoinducción de una bobina. Medidas de tensiones y corrientes mediante el uso del osciloscopio, determinación de curvas

Más detalles

INTRODUCCIÓN A LOS TRANSISTORES

INTRODUCCIÓN A LOS TRANSISTORES INTRODUCCIÓN A LOS TRANSISTORES EL TRANSISTOR BIPOLAR Dr. Ing.Eduardo A. Romero Los transitores bipolares se construyen con una fina capa de material semiconductor de tipo P entre dos capas de material

Más detalles

Al finalizar este programa el estudiante estará en condiciones de:

Al finalizar este programa el estudiante estará en condiciones de: ASIGNATURA :CIRCUITOS ELECTRICOS I CODICO :TEC-115 CREDITOS :04 INTRODUCCIÓN: Este programa tiene como propósito proveer al estudiante de una base sólida, en el análisis y métodos de solución de circuitos

Más detalles

CORRIENTE ALTERNA. Fig.1 : Corriente continua

CORRIENTE ALTERNA. Fig.1 : Corriente continua CORRIENTE ALTERNA Hasta ahora se ha considerado que la corriente eléctrica se desplaza desde el polo positivo del generador al negativo (la corriente electrónica o real lo hace al revés: los electrones

Más detalles

UNIDAD. Transformadores

UNIDAD. Transformadores NIDAD 8 Transformadores Transformador de una subestación. (A.L.B.) E l transformador nos resulta muy familiar en el ámbito doméstico. Su uso más común y conocido es para adaptar la tensión de la red a

Más detalles

ELECTRÓNICA ANALÓGICA. El circuito eléctrico. 1-1 Ediciones AKAL, S. A. Está formado por cuatro elementos fundamentales:

ELECTRÓNICA ANALÓGICA. El circuito eléctrico. 1-1 Ediciones AKAL, S. A. Está formado por cuatro elementos fundamentales: El circuito eléctrico Está formado por cuatro elementos fundamentales: Generador de corriente: pila. Conductor de la corriente: los cables. Control de la corriente: los interruptores. Receptores: bombillas,

Más detalles

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla Experimento 3 BATERÍAS, BOMBILLAS Y CORRIENTE ELÉCTRICA Objetivos 1. Construir circuitos sencillos con baterías, bombillas, y cables conductores, 2. Interpretar los esquemáticos de circuitos eléctricos,

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139 DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 019 TRABAJO DE LECTURA.101 Práctica introductoria de electrónica analógica Práctica En

Más detalles

CÁLCULO, SIMULACIÓN E IMPLEMENTACIÓN DE UN TRANSFORMADOR DE ALTO VOLTAJE PARA APLICACIÓN EN DESCARGAS CON BARRERA DIELÉCTRICA T.G.

CÁLCULO, SIMULACIÓN E IMPLEMENTACIÓN DE UN TRANSFORMADOR DE ALTO VOLTAJE PARA APLICACIÓN EN DESCARGAS CON BARRERA DIELÉCTRICA T.G. CÁLCULO, SIMULACIÓN E IMPLEMENTACIÓN DE UN TRANSFORMADOR DE ALTO VOLTAJE PARA APLICACIÓN EN DESCARGAS CON BARRERA DIELÉCTRICA T.G. 1017 JUAN JOSÉ CORREA ACOSTA ARNOLD FABIAN WIESNER HERNANDEZ DIRIGIDO

Más detalles

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA TEMA 3: ELECTRICIDAD Y ELECTRÓNICA Francisco Raposo Tecnología 3ºESO 1. INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son carga eléctrica

Más detalles

Transformadores de Pulso

Transformadores de Pulso 1/42 Transformadores de Pulso Universidad Nacional de Mar del Plata Facultad de Ingeniería 2/42 Aplicaciones Se usan en transmisión y transformación de pulsos con anchuras desde fracciones de nanosegundos

Más detalles

:: INTRODUCCIÓN [10.1]

:: INTRODUCCIÓN [10.1] :: INTRODUCCIÓN [10.1] Si en un circuito, es de interés medir una variable eléctrica del tipo; caída de tensión, intensidad de corriente I u otra desde los terminales o a través de un elemento tal como

Más detalles

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO

LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO 7.1. OBJETIVO DEL LABORATORIO. 7.1.1. OBJETIVO GENERAL. Conocer operativamente los fenómenos de Autoinducción, Inductancia

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE TRANSFORMADA DE LAPLACE DEFINICION La transformada de Laplace es una ecuación integral que involucra para el caso específico del desarrollo de circuitos, las señales en el dominio del tiempo y de la frecuencia,

Más detalles

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS.

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. 9.. Potencias en sistemas equilibrados y simétricos en tensiones Un sistema trifásico puede considerarse como circuitos monofásicos, por lo que la potencia total

Más detalles

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems COMPONENTES PASIVOS. Fundamentos de Ingeniería Eléctrica

Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems COMPONENTES PASIVOS. Fundamentos de Ingeniería Eléctrica Máster en Mecatrónica EU4M Master in Mechatronic and Micro-Mechatronic Systems COMPONENTES PASIVOS Fundamentos de Ingeniería Eléctrica Contenidos Resistencias Tipos Características Código de colores Potenciómetros

Más detalles

LONGITUD DEL CABLE COAXIAL Y NODOS

LONGITUD DEL CABLE COAXIAL Y NODOS LONGITUD DEL CABLE COAXIAL Y NODOS Por: Ramón Miranda, YY5RM ( ramon.miranda811@hotmail.com ) Saludos Colegas. Un tema de discusión y controversias, comúnmente entre Radioaficionados, que en la actualidad

Más detalles

Modelos de líneas de transmisión en estado estacionario... 2

Modelos de líneas de transmisión en estado estacionario... 2 Modelos de líneas de transmisión en estado estacionario Prof Ing Raúl ianchi Lastra Cátedra: CONTENIDO Modelos de líneas de transmisión en estado estacionario Introducción Constantes del cuadripolo Modelos

Más detalles

Mejora del factor de potencia

Mejora del factor de potencia Práctica de corriente alterna. Mejora del factor de potencia Luis Íñiguez de Onzoño Sanz Fundamentos Físicos para Ingenieros III 28 de noviembre de 2007 Índice 1. Conceptos relacionados I 2. Principios

Más detalles

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO Departamento de Tecnología Villargordo J.M.A. Componentes del grupo Nº : - - CURSO USO DEL POLÍMETRO DIGITAL Pantalla Selector Clavija para transistores clavija 10A DC clavija VΩmA clavija COMÚN 1. Pantalla

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Autor: José Arturo Barreto M.A. Páginas web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Aplicación de la Transformada de Laplace y las ecuaciones

Más detalles

Experiencia P52: Circuito RLC Sensor de voltaje

Experiencia P52: Circuito RLC Sensor de voltaje Sensor de voltaje Tema DataStudio ScienceWorkshop (Mac) Circuitos CA P52 LRC Circuit.DS (vea al final de la experiencia) ScienceWorkshop (Win) (vea al final de la experiencia) Equipo necesario Cant. Del

Más detalles

Sesión 6 Instrumentación básica y técnicas de medida

Sesión 6 Instrumentación básica y técnicas de medida Sesión 6 Instrumentación básica y técnicas de medida Componentes y Circuitos Electrónicos Isabel Pérez /José A. Garcia Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos.

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Circuitos RC y LR Objetivo Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Equipamiento Computador PC con interfaz

Más detalles

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2 GUIA DE LABORATORIO Nº2 Universidad Nacional de Misiones MÉTODOS CLÁSICOS PARA MODELACIÓN DE SISTEMAS 1. Objetivo de la práctica. Modelación a través de la Respuesta en frecuencia Este laboratorio tiene

Más detalles

Guía 01. La ley de Ohm

Guía 01. La ley de Ohm Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física Laboratorio de Física II FI-5 A Guía 0 La ley de Ohm Objetivos Conocer la Ley de Ohm y las Leyes de Kirchoff - Estudiar

Más detalles

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA 4.1. Medidas con el osciloscopio El osciloscopio es un instrumento que sirve para visualizar señales periódicas. Nos permite,

Más detalles

Figura 4.5.1. Figura 4.5.2

Figura 4.5.1. Figura 4.5.2 Figura 4.5.1 Existen condiciones en las que la corriente no está en fase con el voltaje. Estas condiciones se ilustran en la figura 4.5.2 (a), en donde la corriente alcanza su valor máximo aproximadamente

Más detalles

Página 1 de 16. Utilización del Osciloscopio para electromecanicos

Página 1 de 16. Utilización del Osciloscopio para electromecanicos Página 1 de 16 Utilización del Osciloscopio para electromecanicos Los multímetros digitales son un instrumento totalmente eficaz para la comprobación estática de circuitos y para casos en que los cambios

Más detalles

Instrucciones: No se permitirá el uso de calculadoras programables ni gráficas. La puntuación de cada pregunta está indicada en las mismas.

Instrucciones: No se permitirá el uso de calculadoras programables ni gráficas. La puntuación de cada pregunta está indicada en las mismas. PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B ELECTROTECNIA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: No se permitirá

Más detalles

GUIAS UNICAS DE LABORATORIO DE ELECTRONICA I RESPUESTA NATURAL DE CIRCUITOS RLC

GUIAS UNICAS DE LABORATORIO DE ELECTRONICA I RESPUESTA NATURAL DE CIRCUITOS RLC GUIAS UNICAS DE LABORATORIO DE ELECTRONICA I RESPUESTA NATURAL DE CIRCUITOS RLC SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS RESPUESTA NATURAL DE CIRCUITOS RLC SERIE - PARALELO

Más detalles

Guía de Ejercicios de Electromagnetismo II Lapso I-2010

Guía de Ejercicios de Electromagnetismo II Lapso I-2010 UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO LUIS BELTRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FÍSICA ELECTROMAGNETISMO II Objetivo: Analizar

Más detalles

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts)

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts) Medidas de tensión e intensidad. daptadores de medida: Práctica y Práctica y : Medidas de tensión e intensidad. daptadores de medida. Conceptos generales La corriente eléctrica que circula por un instrumento

Más detalles

EL POLÍMETRO. HERRAMIENTA BÁSICA Y FUNDAMENTAL PARA EL ELECTROMECÁNICO

EL POLÍMETRO. HERRAMIENTA BÁSICA Y FUNDAMENTAL PARA EL ELECTROMECÁNICO EL POLÍMETRO. HERRAMIENTA BÁSICA Y FUNDAMENTAL PARA EL ELECTROMECÁNICO AUTORÍA JESÚS DÍAZ FONSECA TEMÁTICA MANTENIMIENTO DE VEHÍCULOS AUTOPROPULSADOS ETAPA FORMACIÓN PROFESIONAL Resumen En el siguiente

Más detalles

PARÁMETROS DEL TRANSISTOR

PARÁMETROS DEL TRANSISTOR 13 PARÁMETROS DEL TRANSISTOR 0.- INTRODUCCIÓN (2) 1.- SONDA DETECTORA (4) 2.- MEDIDA DE LA ft (5) 2.1 Realización práctica (7) 3.- PARÁMETRO DE TRANSFERENCIA INVERSA (10) 3.1 Realización práctica (10)

Más detalles