GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7
|
|
- Enrique Aguilera Torres
- hace 5 años
- Vistas:
Transcripción
1 VERSIÓN:.0 FECHA: I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura: Matmáticas ESTÁNDAR: Analizo las rlacions y propidads ntr las prsions algbraicas y las gráicas d uncions polinómicas y racionals y d sus drivadas. Modlo situacions d variación priódica con uncions trigonométricas intrprto y utilizo sus drivadas. INDICADORES DE DESEMPEÑO: Aplica las rglas d drivación para calcular la drivada d uncions compustas y rsulv problmas qu involucran la variación mdia y variación instantána d una unción. EJE(S) TEMÁTICO(S): DERIVADAS DE FUNCIONES ALGEBRAICAS, POLINÓMICAS Y TRIGONOMÉTRICAS. SOLUCIÓN DE PROBLEMAS DE APLICACIÓN DE LA DERIVADA DE UNA FUNCIÓN. MOMENTO DE REFLEXIÓN / CRECIMIENTO PERSONAL/ SEGÚN EL TEMA Cada acción gnra una urza d nrgía qu rgrsa a nosotros d igual manra Coschamos lo qu smbramos. Y cuando optamos por accions qu producn algría y éito a los dmás, l ruto d nustro karma s también algría y éito. L atntamnt la guía. Sigu las instruccions dl docnt. Rsulv las actividads n l cuadrno. Aclara tus dudas. ORIENTACIONES EXPLORACIÓN Encuntra 5 dirncias n l dibujo: CONCEPTUALIZACIÓN DERIVADA DE UNA FUNCION.- Introducción.
2 VERSIÓN:.0 FECHA: PÁGINA: d 9 S abr aquí l studio d uno d los concptos undamntals dl cálculo dirncial: la drivada d una unción. En st tma, admás d dinir tal concpto, s mostrará su signiicado y s hallarán las drivadas d las uncions más usuals. Es d mucha importancia dominar la drivación para dspués podr abordar l trazado d curvas, así como para comprndr la utilidad dl cálculo intgral, qu s studiarán a continuación. La noción d drivada s históricamnt antrior al concpto d límit aunqu actualmnt s studi aquélla inmdiatamnt dspués d ést, por razons qu srán ácilmnt comprnsibls. La drivada d una unción n un punto 0 surg dl problma d calcular la tangnt a la gráica d la unción n l punto d abscisa 0, y u Frmat l primro qu aportó la primra ida al tratar d buscar los máimos y mínimos d algunas uncions. En dichos puntos las tangnts han d sr parallas al j d abscisas, por lo qu l ángulo qu orman con ést s d cro grados. En stas condicions, Frmat buscaba aqullos puntos n los qu las tangnts uran horizontals DERIVADA DE UNA FUNCION EN UN PUNTO Sa una unción y = () y 0 un punto dl j X. Si s toma un punto 0 + h muy próimo a 0 (h s un númro ininitamnt pquño), a mdida qu s hac tndr h a cro, la rcta scant (n rojo d la igura) qu un los puntos ( 0, ( 0 ) ) y ( 0 + h, ( 0 + h) ), tind a conundirs con la tangnt (n azul d la igura) a la curva n l punto ( 0,( 0 )). qu dtrmina la tangnt con s mismo j, n l triángulo rctángulo d vértics ( 0,( 0 )), ( 0 + h,( 0 + h)) y ( 0 + h,( 0 )), s vriica: Al hacr tndr h a cro, y pusto qu la scant tind a conundirs con un sgmnto d la tangnt, s dcir, si miras la igura, al hacr qu h tinda a cro la lína roja s acrca a la lína azul por lo qu: tg a h tind a tg a, s dcir, a la pndint d la tangnt a la curva n l punto ( 0,( 0 )). Esto s prsa matmáticamnt así: NOTA: Es important qu ntindas sto, pus s l núclo por l qu dspués ntndrás otros concptos, si no s así, dímlo Drivada d una unción n un punto Dada una unción y = (), s llama drivada d la unción n un punto 0 al '( 0 ) ( prima d quis sub-cro) o por D((0 )): Cuando st límit ist (y s inito) s dic qu la unción () s drivabl n l punto 0. Signiicado d la drivada
3 VERSIÓN:.0 FECHA: PÁGINA: d 9 Pusto qu la drivada d la unción n un punto 0 no s otra cosa qu la pndint d la tangnt a la curva (gráica d la unción) n ( 0,( 0 )). Calcular la drivada d la unción () = + 5 n l punto d abscisa = 1. Rsolución: S pid l valor d '(1) (n st caso, 0 = 1). Por tanto, '(1) =. Calcular la drivada d la unción () = n l punto. Rsolución: (conjugado dl numrador) Rcordando qu suma por dirncia s igual a la dirncia d los cuadrados: Ejrcicio: cálculo d la cuación d la tangnt a una unción n un punto Calcular la cuación d la tangnt a la curva () = n l punto d abscisa. Rsolución: La tangnt pasa por l punto (, ()) = (,4). La pndint (m) d la tangnt a la curva n l punto d abscisa s, por dinición, '(), lugo la cuación d la rcta s d la orma y - y 0 = m ( - 0 ) y - 4 = '() ( - ). La cuación d la tangnt s ntoncs y - 4 = 4( - ) y - 4 = y - 4 = 0. DEFINICIÓN DE DERIVADA La drivada d la unción () s din mdiant l límit: '( ) h0 ( h) h ( )
4 VERSIÓN:.0 FECHA: PÁGINA: 4 d 9 1. Utilic la dinición d drivada para hallar la drivada d la siguint unción: DERIVADAS ELEMENTALES ( ) 5 1. Si ) k. Si ). Si ( ntoncs '( ) 0 ( ntoncs '( ) 1 n ( ) ; n1 '( ) n ( ) ; 1 '( ) ( ) b ; '( ) b ln( b) 4. Si 5. Si 6. Si ( ) ; '( 7. Si ( ) log b ( ) ; 8. Si ( ) ln( ) ; ALGEBRA DE LAS DERIVADAS 1. Drivada d una suma ( dirncia ) ) 1 '( ) ln( b) 1 '( ) ( ) g( ) ' '( ) g'( ). Drivada d un producto ( ) g( ) ' '( ) g( ) ( ) g'( ). Drivada d una división ( ) ' g( ) '( ) g( ) g( ) ( ) g'( ) OTRAS NOTACIONES PARA LA DERIVADA dy (1) y, la driva d () s pud anotar d las siguints ormas: '( ) ( ) d Si () CRECIMIENTO Si s drivabl n a: DECRECIMIENTO Si s drivabl n a: MÁXIMOS LOCALES Si y ' son drivabls n a, a s un máimo rlativo o local si s cumpl: 1. '(a) = 0. ''(a) < 0 MÍNIMOS LOCALES Si y ' son drivabls n a, a s un mínimo rlativo o local si s cumpl: 1. '(a) = 0. ''(a) > 0 APLICACIONES DE LAS DERIVADAS A LA RESOLUCIÓN DE PROBLEMAS: MONOTONIA (CRECIMIENTO Y DECRECIMIENTO) Y OPTIMIZACIÓN (MÁXIMOS Y MÍNIMOS) EJERCICIOS RESUELTOS 1. Un ondo d invrsión gnra una rntabilidad qu dpnd d la cantidad d dinro invrtida, sgún la ormula: R()= dond R() rprsnta la rntabilidad gnrada cuando s invirt la cantidad. Dtrminar, tnindo n
5 VERSIÓN:.0 FECHA: PÁGINA: 5 d 9 cunta qu disponmos d 500 uros: a) Cuando aumnta y cuando disminuy la rntabilidad b) Cuanto dinro dbmos invrtir para obtnr la máima rntabilidad posibl. c) Cual srá l valor d dicha rntabilidad. Solución a) La drivada primra nos da l crciminto o dcrciminto d la unción. Si la drivada s positiva la unción crc y si s ngativa dcrc Procdiminto:-S driva la unción: R`()=-0,004+0,8 -S iguala a 0 y s rsulv la cuación qu rsulta: R`()=0, -S studia l signo d la drivada a la drcha izquirda d los valors qu nos ha dado 0 la drivada (n st caso =00). Hay varios métodos, uno muy mcánico: s cog un punto mnor qu 00, por jmplo 100, y sustituimos R (100)=0,4>0 y n otro mayor qu 00 (por jmplo 00) R (00)=-0,4<0 Entoncs la drivada s positiva n l intrvalo (0, 00), y s crcint n s intrvalo y s dcrcint n (00, 500) ya qu n s intrvalo nos ha dado ngativa la drivada. Lo qu nos dic también qu n punto 00 hay un máimo local b) Tnindo n cunta l apartado a dbmos invrtir 00 uros. c) La máima rntabilidad s R(00)= -0,00.(00) +0,8.00-5=75 uros Solución gráica. La virulncia d cirta bactria s mid n una scala d 0 a 50 y vin prsada por la unción V(t)= 40+15t-9t +t, dond t s l timpo(n horas) transcurrido dsd qu cominzo n studio (t=0). Indicar los instants d máima y mínima virulncia n las 6 primras horas y los intrvalos n qu sta crc y dcrc. Solución Para qu la unción tnga un máimo o un mínimo la drivada db sr cro. V (t)= 15-18t+t, igualando a 0, t -18t+15=0 Simpliicando t -6t+5=0, cuyas solucions son 5 y 1. Ahora voy a vr quin s l máimo y quin l mínimo d la unción, n l intrvalo [0, 6], qu tin qu star ntr stos dos valors junto o n los trmos dl intrvalo (por l torma d Wirtrars). Ordnamos la unción V por comodidad, V(t)= t -9t +15t+40 V(0)=40 V(5)= =15 V(1)= = 47 V(6)= = La máima virulncia s a las 1 horas y la mínima a las 5 horas. Para vr los intrvalos d crciminto y dcrciminto studiamos l signo d la drivada: V (t)=t -18t V Lugo V crc dsd 0 a 1 y dsd 5 a 6, (crc n (0, 1) unión (5, 6) ) y dcrc n l intrvalo (1, 5) Obsrvando la gráica d sta unción vmos lo q hmos dducido.
6 VERSIÓN:.0 FECHA: PÁGINA: 6 d 9. Un coch d comptición s dsplaza a una vlocidad qu, ntr las 0 y horas, vin dada por la prsión v()= (-)., dond s l timpo n horas y v() s a vlocidad n cintos d kilómtros. Hallar n qu momnto dl intrvalo circula a la vlocidad máima y calcular dicha vlocidad. En qu priodos gano vlocidad y n cuals rdujo? S dtuvo alguna vz? SOLUCIÓN Nos pidn q studimos l crciminto y dcrciminto y l máimo d la unción vlocidad v. Por so utilizamos la drivada, ya qu sabmos (por toría) qu si la drivada da positiva la unción crc y si da ngativa dcrc. También sabmos qu, la unción tin un máimo rlativo n un punto, si la drivada, n s punto, s 0 (condición ncsaria) y admás cambia l crciminto (s dcir pasa d crcr a dcrcr) La drivada s: v ()=-1. +.(-)= = -., sacando actor común s llga a: v ()=((1-) Igualando a 0 nos da (1-). =0, d dond 1- =0 y por tanto =1, (ya q nunca pud sr cro) Estudiamos v n los alrddors d 1 v y crc dcrc Por lo tanto n =1 hay máimo y la unción crc d 0 a 1 (gana vlocidad) y dcrc d 1 a (rduc vlocidad), vamos los valors n s punto y n l trmo: v()= (-) v(1)=(-1). = (aquí l máimo como justiicamos ants) v(0)=(-0).1= v()=(-).1=0 como da la vlocidad 0 aquí s dtuvo. LA GRÁFICA:
7 VERSIÓN:.0 FECHA: PÁGINA: 7 d 9 (No s ncsaria la gráica solo la pongo para ayudar a ntndr lo qu s hac, vmos qu pasa justo lo qu hmos dducido ntr 0 y ) ACTIVIDADES DE APROPIACIÓN 1) utiliza l concpto d drivada para hallar la drivada d: a) ( ) 5 b) ( ) 4 6. Dtrmin la drivada d las siguints uncions: 5 a) ( ) b) ) ( ) g). Dtrmin la drivada d las siguints uncions: a) ( ) 5 ( ) c) ( ) d) ) ( ) ( ) h) ( ) ln( ) i) ( ) log( ) ( ) b) ( ) c) ( ) 1 d) ) 4 ) 4. Dtrmin la drivada d las siguints uncions: a) ( ) ( ln( ) ) ( ) c) ( ) b) ( ) ln( ) ( ) 5. Dtrmin la drivada d las siguints uncions: a) (t) = ( t +1) t + t +1 ( ) b) (z) = 1 z - 1 d) () = ) () = dy 6. En cada caso, dtrmin : d a) y 6 b) y a b c d) y ) 4 ( ) d) ( ) z c) (t) = ) ln( ) t - 1 t + t + 1 ) () = ) y c) y ln 6 y log ln( ) ( ) )
8 VERSIÓN:.0 FECHA: PÁGINA: 8 d 9 7. Dtrmin la drivada d las siguints uncions: ( ) 6 b) () = ( +1) -5 c) ( ) () = + d) () = +1 ) (t) = t + 1 t Dtrmin la drivada d las siguints uncions: a) ) 6 ( ) b) ( w) w 6w 5t ( t) c) ( ) 9. Dtrmin la drivada d las siguints uncions: 1 u b) u) ln 1 u a) ( ) ln( 4) d) ( w) ln 1 w d) 1 ) (u) = ( u + 1) u ( u) ) u ( c) ( t) t 1 lnt 1 ) ( ) log 4 ) ( ) 10. Dtrmin la drivada d las siguints uncions: c) a) () = + ln +1 ( ) b) (t) = t t 5 + ln( ) ( ) d) (u) = ln( u + u ) 11. En cada caso, dtrmin 5 a) 1 d d y y y b) y ln c) y d) y 1. Aplicando la Rgla d L hopital calcul los siguints límits: d d ) y : b) d) ln( 1) SOCIALIZACIÓN log ( ) 8 5 Rsolvr algunos jrcicios n l tablro para aclarar las dudas prsntadas. COMPROMISO Ralizar todos los jrcicios d apropiación n l cuadrno y prparar con timpo las valuacions. PROBLEMAS DE APLICACIONES FÍSICAS DE LA DERIVADA 1La rlación ntr la distancia rcorrida n mtros por un móvil y l timpo n sgundos s (t) = 6t. Calcular: 1 la vlocidad mdia ntr t = 1 y t = 4. La vlocidad instantána n t = 1. Dbido a unas pésimas condicions ambintals, una colonia d un millón d bactrias no cominza su
9 VERSIÓN:.0 FECHA: PÁGINA: 9 d 9 rproducción hasta pasados dos mss. La unción qu rprsnta la población d la colonia al variar l timpo (prsado n mss) vin dada por: S pid: 1. Vriicar qu la población s unción continua dl timpo.. Calcular la tasa d variación mdia d la población n los in trvalos [0, ] y [0, 4].. Calcular la tasa d variación instantána n t = 4. Una población bactriana tin un crciminto dado por la unción p(t) = t², sindo t l timpo mtido n horas. S pid: 1. La vlocidad mdia d crciminto.. La vlocidad instantána d crciminto.. La vlocidad d crciminto instantáno para t 0 = 10 horas. 4La cuación d un moviminto rctilíno s: (t) = t³ 7t. En qué momnto la vlocidad n nula? Hallar la aclración n s instant. 5La cuación d un moviminto circular s: φ(t) = t². Cuál s la vlocidad y la aclración angulars al cabo d sit sgundos? 6Un obsrvador s ncuntra a 000 m d lanzaminto d la torr d un coht. Cuando ést dspga vrticalmnt mid la variación d l ángulo Φ(t) qu orma la lína visual qu l un con l coht y la dl sulo horizontal n unción dl timpo transcurrido. Sabindo qu Φ'(t) = Π/, s pid: 1. Cuál s la altura dl coht cuando Φ = Π/ radians?. Cuál s la vlocidad dl coht cuando Φ = Π/ radians? 7S bomba gas a un globo sérico a razón d 6m /min. Si la prsión s mantin constant. Cuál s la vlocidad con la qu cambia l radio dl globo cuando l diámtro mid 10 cm? 8 Cuál s la vlocidad qu llva un vhículo s muv sgún la cuación (t) = t n l quinto sgundo d su rcorrido? El spacio s mid n mtros y l timpo n sgundos. 9 La cotización d las ssions d una dtrminada socidad, suponindo qu la Bolsa unciona todos los días d un ms d 0 días, rspond a la siguint ly: C = Dtrminar las cotizacions máimas y mínima, así como los días n qu ocurriron, n días distintos dl primro y dl último.. Dtrminar los príodos d timpo n l qu las accions subiron o bajaron. 10. Supongamos qu l rndiminto r n % d un alumno n un amn d una hora vin dado por: r = 00t (1 t). Dond 0 < t < 1 s l timpo n horas. S pid: 1. En qué momntos aumnta o disminuy l rndiminto?. En qué momntos l rndiminto s nulo?. Cuando s obtin l mayor rndiminto y cuál s? ELABORÓ REVISÓ APROBÓ NOMBRES Aura Alandra Urib Rozo Aura Alandra Urib Rozo CARGO Docnts d Ára J d Ára Coordinador Académico
GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7
PÁGINA: 1 d 10 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura: Matmáticas ESTÁNDAR: Analizo las rlacions y propidads
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)
TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu
TEMA 10: DERIVADAS. f = = x
TEMA 0:. DERIVADA DE UNA FUNCIÓN EN UN PUNTO La siguint gráfica rprsnta la tmpratura n l intrior d la Tirra n función d la profundidad. Vmos qu la gráfica s simpr crcint, s dcir, a mdida qu aumnta la profundidad
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )
Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
LÍMITES DE FUNCIONES.
LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté
2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto
TEMA 7 APLICACIONES DE LA DERIVADA
Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
COMPUTACIÓN. Práctica nº 2
Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros
CINEMÁTICA (TRAYECTORIA CONOCIDA)
1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra
. La tasa de variación media es la pendiente del segmento AB, siendo A(a, f(a) ) y B(b, f(b) ) dos puntos de la gráfica de la función:
º BACHILLERATO D MATEMÁTICAS CC SS TEMA 4.- FUNCIONES. DERIVACIÓN.- CONCEPTO DE DERIVADA Tasa d variación mdia S llama tasa d variación mdia d una función f n l intrvalo [a, b] al cocint. La tasa d variación
Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm
Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la
Unidad 11 Derivadas 4
Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no
Ejercicios resueltos Distribuciones discretas y continuas
ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La
EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES
IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A
IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions
PARTE I Parte I Parte II Nota clase Nota Final
Ejrcicio 1 2 3 Part I Puntos PARTE I Part I Part II Nota clas Nota Final Univrsidad Carlos III d Madrid Dpartamnto d Economía Eamn Final d Matmáticas I 14 d Enro d 2009 APELLIDOS: NOMBRE: DNI: Titulación:
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 01-1 Ejrcicio 1º. (,5 puntos) Condra la función polinómica f : R R qu vin dada por la prón f ( ) a b c Dtrmina los valors d los parámtros a,
( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)
ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y
Aplicaciones de las Derivadas
www.slctividad-cgranada.com Tma : Aplicacions d las Drivadas..- Crciminto y dcrciminto d una función Sa f una función dfinida n l intrvalo I. Si la función f s drivabl sobr l intrvalo I, s vrifica: f s
2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada
SOLUCIONES A LOS EXÁMENES DE ANÁLISIS
SOLUCIONES A LOS EXÁMENES DE ANÁLISIS CURSO 0-0 º.- (,5 puntos) Dtrmina la función f : 0, R tal qu f '' gráfica tin una tangnt horizontal n l punto P,. f ( ) ln( ) y su º.- Sa f la función dfinida por
Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V
Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La
OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis
MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa
+ ( + ) ( ) + ( + ) ( ) ( )
latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f
EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO
EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 15-16 Ejrcicio 1º. (,5 puntos) Sabindo qu calcula los valors d a y b. SOLUC: b = a = 1/ a b 1 cos lim sn( ) s finito y val uno, Ejrcicio º.-
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la
Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos
Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla
SEPTIEMBRE Opción A
Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,
TABLA DE DERIVADAS. g f
TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)
Representación de Funciones.
T 5 Rprsntación d Funcions EJERCICIOS DE DESARROLLO 1- Elmntos Fundamntals para la Construcción d Curvas 1 Halla l dominio d stas funcions: a 5 + 7 + b d y g + 5 5 + = ln + + 1 ln +1 = y ( ) f ( ) Halla
EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS
EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la
9 Aplicaciones de las derivadas
9 Aplicacions d las drivadas Página 69 Optimización B A P' Q' O Q T P Página 71 r a) y' = 0 x = 0 8 Punto ( 0 0) x = 1 8 Punto ( 1 1) En (0 0) hay un punto d inflxión. En (1 1) hay un máximo rlativo. b)
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a.
5 Dntro dl triángulo limitado por los js OX y OY y la rcta + y 8, s S inscrib un rctángulo d vértics (a, 0), (0, 0), (a, b) y (0, b). Dtrmina l punto (a, b) al qu corrspond l rctángulo d ára máima. 8 b
CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE EJERCICIOS RESUELTOS DEL TEMA 1
Manul José Frnándz mjg@uniovi.s CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. - EJERCICIOS RESUELTOS DEL TEMA Dmostrar aplicando l principio d inducción las rlacions siguints: a a n n n... n n N b n n!
INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.
INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.
1. (RMJ15) a) (1,5 puntos) Discute el siguiente sistema de ecuaciones en función del parámetro a:
EXAMEN DE MATEMÁTICAS II (Eamn Final, Rcupración d Análisis Intgrals) BACHILLERATO EXAMEN FINAL (RMJ5) a) (,5 puntos) Discut l siguint sistma d cuacions n función dl parámtro a: + y + az + ay + z a a +
REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES
Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (
Tema 13. Aplicaciones de las derivadas
Tma 3. Aplicacions d las drivadas. Monotonía. Crciminto y dcrciminto d una función.... Etrmos rlativos... 3 3. Optimización... 6. Curvatura... 7 5. Puntos d Inflión... 8 6. Propidads d las funcions drivabls,
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x
. Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)
DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.
DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada
6. [ARAG] [JUN-A] Sea F(x) = 7. [ARAG] [JUN-B] Calcular
MasMatscom Slctividad CCNN 7 [ANDA] [JUN-A] San f: y g: las funcions dfinidas mdiant: f() = + y g() = + a) Esboza la gráfica d f y d g calculando sus puntos d cort b) Calcula l ára d cada uno d los dos
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO
SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS CURSO 016-17 Ejrcicio 1º. (,5 puntos) Sabindo qu l valor dl límit. a lim 1 1 Ln( ) s finito, calcula l valor d a y Ejrcicio º.- Considra la función
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
Técnicas de cálculo de derivadas: Derivadas de funciones elementales. Cálculo de la derivada de la función inversa. Derivación logarítmica
BLOQUE a Para ralizar stos jrcicios dbs conocr: La rprsntación gráfica las propidads d las funcions lmntals. La dfinición d continuidad drivabilidad d una función n un punto la rlación ntr ambos concptos.
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD
RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Enero de 2008 APELLIDOS: NOMBRE: D.N.I.
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL Enro d 008 APELLIDOS: NOMBRE: D.N.I. GRUPO (A/B/C): CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada rspusta
CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22
CALCULO GRADO EN INGEN INFORM DEL SOFTWARE - TEMA ACTIVIDADES A Sa ( 0 / 0 0 a Es drivabl por la drca n 0? Es drivabl por la izquirda n 0? Es drivabl n 0? Razonar las rspustas b Obtnr la unción drivada
TEMA 11. La integral definida Problemas Resueltos
Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una
ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN
ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador
98 EJERCICIOS de DERIVABILIDAD 2º BACH.
98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
TEMA 5. Límites y continuidad de funciones Problemas Resueltos
Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,
3.- a) [1,25 puntos] Prueba que f(x) = ex e x
EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una
105 EJERCICIOS de DERIVABILIDAD 2º BACH.
105 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
EJERCICIOS UNIDAD 2: DERIVACIÓN (II)
IES Padr Povda (Guadi) EJERCICIOS UNIDAD : DERIVACIÓN (II) 3 (03-M4-B-) (5 puntos) Condra la función f : R R dada por f ( ) = + a + b+ c Dtrmina a, b y c sabindo qu la rcta normal a la gráfica d f n l
INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL
INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 07 - Problemas 2, 4, 5
página 1/7 Problmas Tma 1 Solución a problmas d Rpaso d 1ºBachillrato - Hoja 07 - Problmas 2, 4, 5 Hoja 7. Problma 2 Rsulto por Luis Sola Ruiz (sptimbr 2014) 1. Los vértics d un triángulo son A( 2, 1),
e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1
CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +
REPRESENTACIÓN DE CURVAS
REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort
x. Determina las asíntotas de la gráfica de f.
Slctividad CCNN 008 ax +x si x. [ANDA] [SEP-A] Considra la función f: dfinida por: f(x) = x -bx-4 si x > a) Halla a y b sabindo qu f s drivabl n. b) Dtrmina la rcta tangnt y la rcta normal a la gráfica
APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ
Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN
Apellidos: Nombre: Curso: 2º Grupo: A Día: 24-II-2016 CURSO
EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apllidos: Nombr: Curso: º Grupo: A Día: -II-16 CURSO 15-16 Instruccions: a) Duración: 1 HORA y 3 MINUTOS. b) Dbs lgir ntr ralizar únicamnt los cuatro jrcicios d la
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------
IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d
CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1
En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
Matemáticas II TEMA 11 La integral definida Problemas Propuestos y Resueltos
Análisis Intgral dfinida Matmáticas II TEMA La intgral dfinida Problmas Propustos y Rsultos Intgrals dfinidas Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una primitiva d cada función hay
91 EJERCICIOS de DERIVABILIDAD 2º BACH.
9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san
3.- Hallar las ecuaciones de las rectas tangente y normal a la curva del ejercicio 1a en el punto en el que se indica en dicho ejercicio.
Matmáticas II Unidad 7 UNIDAD 7 DERIVABILIDAD.- Utilizando la dinición d drivada, hallar las drivadas d las uncions guints n los puntos qu s indican: a b c d 5 n n n n.- Utilizando la dinición d drivada,
LIMITES DE FUNCIONES EN 1D
LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción
Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)
Ejrcicios 6/7 Lcción 6. Funcions.. Dtrmina los intrvalos d gno constant d la función f() + 6 +. Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( )
Una onda es una perturbación que se propaga y transporta energía.
Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga
11 Funciones derivables ACTIVIDADES INICIALES
Solucionario Funcions drivabls ACTIVIDADES INICIALES I Cunta la tradición qu sobr la tumba d Arquímds había sculpido un cilindro con una sfra inscrita Arquímds halló la rlación ntr sus volúmns y l volumn
Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)
Ejrcicios 7/8 Lcción 6 Funcions Dtrmina los intrvalos d gno constant d la función f() + 6 + Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( ) 9 9+
Curso: 2º Bachillerato Examen VIII. donde m representa un número real.
Nombr: Nota Curso: º Bachillrato Eamn VIII Fcha: d Fbrro d 06 La mala o nula plicación d cada jrcicio implica una pnalización d hasta l % d la nota..- Dada la matriz m dond m rprsnta un númro ral. m a)
Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE
Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios
VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA
AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.
RADIO CRÍTICO DE AISLACIÓN
DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría
Idea La derivada de una función, f(x), en un punto P se interpreta geométricamente con la pendiente de la recta tangente a la curva en ese punto.
http://matmaticas-tic.wikispacs.com Lambrto Cortázar Vinusa 06 DERIVADAS EJERCICIOS WIKI Ida La drivada d una unción, (), n un punto P s intrprta gométricamnt con la pndint d la rcta tangnt a la curva
IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CCSS NOMBRE: 2 t
IES Frnando d Hrrra Curso 016 / 17 Sgundo trimstr Obsrvación valuabl scrita nº 1 º Bach CCSS NOMBRE: Instruccions: 1) Todos los folios dbn tnr l nombr y star numrados n la part suprior. ) Todas las rspustas
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 d fbrro d 006 Timpo: horas 30 minutos Cada problma db ntrgars n hojas d xamn