Ejercicios resueltos. Computación. Tema 4

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios resueltos. Computación. Tema 4"

Transcripción

1 Ejercicios resueltos. omputación. Tema 4 Ejercicio.-Sea P un programa GOT O tal que #(P ) = 16. a) uántas instrucciones tiene P? b) Dar todas las instrucciones de P. c) Generalizar el resultado anterior a todos los programas P de código #(P ) = p k 1 donde p k representa al k ésimo número primo. Sea P ( 1, 2,..., n ) un programa de longitud P = n. Sabemos que #(P ) = [#( 1 ), #( 2 ),..., #( n )] 1; es decir, #(P ) + 1 = [#( 1 ), #( 2 ),..., #( n )]. Por tanto, P = Long(#(P ) + 1). a) En nuestro caso, P = Long(16 + 1) = Long(17) = Long([0, 0, 0, 0, 0, 0, 1]) = 7 Es decir, nuestro programa tiene 7 instrucciones. b) omo #(P ) + 1 = 17 = [0, 0, 0, 0, 0, 0, 1], las seis primeras instrucciones tienen código 0, #( i ) = 0, i = 1,..., 6 y la última tienen código 1, #( 7 ) = 1 Por tanto, como 0 = 0, 0, 0 y 1 = 1, 0, 0 nuestro programa se escribirá: P [] c) hora #(P ) + 1 = p k = p k ; o sea, P = Long(p k ) = Long([0, 0,..., 0, 1]) = k. De #(P ) + 1 = [0,.., 0, 1] con longitud k, resulta que el programa tendrá k instrucciones de las que todas son de código 0 salvo la última que es de código 1. En consecuencia, el programa será: P [] (k instrucciones... Ejercicios omputabilidad (V) (OMP.). J. Pérez, M.J.Pérez.- pág. 1

2 Ejercicio.-Se efectúa la computación de un cierto programa: 1 [] Z 2 Z P 6 X X F X 2 0 GOT O para un cierto estado inicial σ = Y = 0, X = 2, Z = 0, X 2 = 1, Z 2 = 0}. l cabo de k 1 pasos se sabe que la descripción instantánea s k, es tal que #(s k ) = 6, a) Obtener #(s k+1 ), #(s k+2 ) y #(s k+3 ). b) Obtener el valor almacenado en la variable Y para la descripción instantánea s k+3. Primeramente observemos que: El estado σ k, de una descripción instantánea s k = (j, σ k ), suele expresarse con el siguiente orden en las variables: σ k = Y = y, X = x, Z = z, X 2 = x 2, Z 2 = z 2,...}, es decir, primero la variable Y y, a continuación, ordenadas alternativamente, las variables de entrada y auxiliares, comenzando por X. El código de σ k es entonces el número: #(σ k ) = [y, x 1, z 1, x 2, z 2...] = p y 1 px 2 p z 3 p x 2 4 pz 2 5. ada variable del estado está asociada a un número primo. Sea s k tal que #(s k ) = j, n, donde j es la instrucción a ejecutar y n = #(σ k ) = p i 1 1 p i 2 2 p ij j pir r. Entonces: Para incrementar en 1 la variable V, representada por el número primo p i, se efectuará el producto: n.p i Para decrementarla en 1 (si no es cero) se efectuará el cociente: qt(n, p i ) Para saber si el valor de dicha variable es o no cero chequearemos el predicado: qt(n, p j ) = 0. a) En este ejercicio el estado de la descripción instantánea s k = (6, σ k ) verifica: = #(σ k ) = 2 y 3 x 5 z,7 x2 11 z 2, por tanto: Obtención de #(s k+1 ) Estado: omo 6 X X + 1, es decir, el nuevo estado se obtendrá incrementando en 1 el valor de X, para lo cual multiplicaremos el código del estado por el primo p 2 = 3, asociado a la variable X: #(σ k+1 ) = = ontrol: pasará a la instrucción que está a continuación. Por tanto, #(s k+1 ) = 7, Obtención de #(s k+2 ) Estado: omo 7 X F X 0 GOT O es una instrucción condicional, el estado no se altera, es decir, σ k+2 = σ k+1 ontrol: hequeamos el valor de la variable X 2 -representada por el primo p 4 = 7- evaluando el predicado qt(155232, 7)? = 0. Resulta que es distinto de a cero, por lo que el control pasará a la primera instrucción etiquetada con [], en este caso, 1. Por tanto, #(s k+2 ) = 1, Obtención de #(s k+3 ) Estado: omo 1 Z 2 Z 2 1, el nuevo estado se obtendrá decrementando en 1 el valor de Z 2, para lo cual dividiremos el código del estado σk + 2 por el primo que representa a la variable Z 2 -que es 11-: #(σ k+3 = qt(155232, 11) = ontrol: pasará a la instrucción que está a continuación. Por tanto, #(s k+1 ) = 2, b) Finalmente, para obtener el valor de la variable Y en la d.i. s k+3 calcularemos el exponente de 2 -que representa la variable Y - en la descomposición del número 14112: = Por tanto, #(s k+3 (Y )) = 5. Ejercicios omputabilidad (V) (OMP.). J. Pérez, M.J.Pérez.- pág. 2

3 Ejercicio( ).- 1. Sea P un programa GOTO fijo y e = #(P ). Sea R el predicado sobre N 3 definido por en el paso k de la computación de P sobre x R(x, k, j) se ejecuta la j ésima instrucción de P Pruébese que R es un predicado primitivo recursivo. 2. Pruébese que la siguiente función, F : N 2 N, es recursiva: 1 si la computación del programa de índice e sobre x tiene longitud impar. F (e, x) = 2 si la computación del programa de índice e sobre x tiene longitud par. en otro caso. 3. Pruébese que = #(Q) : x (Q(x) x es primo)} NO es recursivo. 4. Sean f, g : N N funciones recursivas tales que x N, f(x) < f(x + 1). Pruébese que si B, N son recursivos, entonces el conjunto f() g 1 (B) es recursivo. 1) El predicado R se describe así: R(x, k, j) l(desnst (x, e, k)) = j y, por tanto, es primitivo recursivo. 2) El siguiente programa calcula la función F : Y Y + 1 [] F ST EP (x, e, Z) GOT O B Y Y + 1 GOT O E [B] Z Z + 1 F ST EP (x, e, Z) GOT O E Z Z + 1 GOT O 3) El conjunto de funciones F = f : x(f(x) x es primo )} es tal que su conjunto de índices, F es igual al dado: F =. pliquemos el teorema de Rice. a) F P, pues ninguna función total pertenece a F. 0 si x es primo b) F, pues la siguiente función: f(x) = e.o.c. es recursiva y pertenece a F. Por tanto, = F no es recursivo. 4) De la condición f(x) < f(x + 1), resulta que x(x f(x)), lo que garantiza que el siguiente programa (en el que es la función característica del conjunto ) calcula la función característica de f(): [] F (Z) = 0 GOT O E F X = f(z) GOT O B F X = Z GOT O E Z Z + 1 GOT O [B] Y Y + 1 Por tanto, f() es un conjunto recursivo. Por otra parte, g 1 (B) es recursivo pues, x g 1 (B) g(x) B B (g(x)) = 1 Finalmente, como la intersección de conjuntos recursivos es recursiva, resulta que f() g 1 (B) es recursivo. Ejercicios omputabilidad (V) (OMP.). J. Pérez, M.J.Pérez.- pág. 3

4 Ejercicio.-Sea N un conjunto infinito. Probar que son equivalentes: 1) es recursivo. 2) Existe f R tal que x(f(x) < f(x + 1)) y rang(f) =. 2) 1) serto: x(x f(x)) Por inducción en la variable x: aso base: x = 0. Es obvio pues 0 f(0). Paso inductivo: x x + 1: x h.i. f(x) hip. < f(x + 1). Por tanto, x + 1 f(x + 1) Por tanto, se verifica el aserto. Demostremos ahora que es recursivo: Veamos que x z x(f(z) = x) x z(f(z) = x) serto z x(f(z) = x) Recíprocamente, es obvio que: z x(f(z) = x) x. 1) 2) omo no es vacío, existe el mínimo: a = minx : x } Definimos entonces la función: f(0) = a f(x + 1) = miny : y y > f(x)} omo es infinito, es inmediato probar (por inducción en x) que dicha función está bien definida y es total. Por tanto, f puede reescribirse así: f(0) = a f(x + 1) = µy(y y > f(x)) es decir, f es recursiva (pues está definida por recursión a partir de una constante y de la función recursiva h(x, t) = µy(y y > t)). demás, por construcción f es estrictamente creciente. Veamos finalmente que rang(f) =. Por definición, es obvio que rang(f). Probemos, ahora, la inclusión contraria: rang(f) Procedamos por reducción al absurdo: Supongamos que rang(f); es decir que rang(f). En este supuesto, sea b = min( rang(f)) y c = maxx : x x < b}. c existe pues a < b y, además, c rang(f). Por tanto, existe d N tal que f(d) = c. Entonces: f(d + 1) = µy(y y > f(d)) = µy(y y > c) = b: lo que es una contradicción pues suponíamos que b / rang(f). Ejercicios omputabilidad (V) (OMP.). J. Pérez, M.J.Pérez.- pág. 4

5 Ejercicio. Sean g, h : N N funciones recursivas. a) Probar que existe f recursiva tal que: x N, f(x) g(x) h(x) y además, si f(x) entonces f(x) = g(x) o bien f(x) = h(x). b) Podemos exigir, además, que si g(x), entonces f(x) y f(x) = g(x)? a) Sean e 1 y e 2 sendos índices de g y h respectivamente. Para probar que existe una tal f basta con definir: f(x) = µt(st EP (1) (x, e 1, t) ST EP (1) (x, e 2, t)). Si, además, queremos que f(x) = g(x) o f(x) = h(x) si f(x), bastará con definir: f(x) = l(µz(t 1 (x, e 1, z) T 1 (x, e 2, z)). b) En general, la respuesta es negativa. Pongamos un contraejemplo. ϕx (x) + 1 si ϕ Sean h(x) = 0 y g(x) = x (x) que son recursivas. e.o.c. Entonces como h es total, f estaría definida así: g(x) si g(x) f(x) = 0 e.o.c. es decir, f(x) = ϕx (x) + 1 si ϕ x (x) 0 e.o.c. que, como sabemos de un ejercicio anterior, no es recursiva. Ejercicio. Probar que las siguientes funciones, h 1 y h 2, son GOT O-computables: 1 si ϕx (x) h 1 (x) = si ϕ x (x) Sea = a 1,..., a n } finito tal ϕ ai (a i ) (1 i n), y definimos 1 si ϕ x (x) h 2 (x) = 0 si x en otro caso Basta observar que h 1 y h 2 pueden expresarse como sigue: h 1 (x) = 1 (µt(st EP (x, x, t))) h 2 (x) = l(µz[l(z) = 0 x ] [l(z) = 1 ST EP (x, x, r(z))]}) donde l y r son las funciones decodificadoras de la función par. Ejercicios omputabilidad (V) (OMP.). J. Pérez, M.J.Pérez.- pág. 5

Ejercicios resueltos. Computación. Tema 3

Ejercicios resueltos. Computación. Tema 3 Ejercicios resueltos. Computación. Tema 3 Ejercicio.- Sea f : N 3 N y g 1 : N N, g 2 : N 2 N y g 3 : N 3 N. a) En los siguientes casos, expresar f como composición de funciones de la misma aridad. 1. f(x,

Más detalles

Ejercicios resueltos. Teoría de la Computabilidad. Tema 3

Ejercicios resueltos. Teoría de la Computabilidad. Tema 3 Ejercicios resueltos. Teoría de la Computabilidad. Tema 3 Ejercicio.- Sea f : N 3 N y g 1 : N N, g 2 : N 2 N y g 3 : N 3 N. a) En los siguientes casos, expresar f como composición de funciones de la misma

Más detalles

a partir de otras funciones. Entonces C es la menor clase de funciones que contiene a las funciones básicas y es cerrada por los p. d.

a partir de otras funciones. Entonces C es la menor clase de funciones que contiene a las funciones básicas y es cerrada por los p. d. Tema 3: Funciones Primitivas Recursivas Caracterización de clases de funciones: Maneras básicas de definir una clase de funciones C: Descriptiva: C satisface ciertas propiedades. (Ejemplo: la clase GCOMP)

Más detalles

Tema 5: Programas Universales

Tema 5: Programas Universales Tema 5: Programas Universales Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2006 07 LC, 2006 07 Programas universales 5.1 Procedimientos

Más detalles

Tema 5: Funciones recursivas

Tema 5: Funciones recursivas Tema 5: Funciones recursivas Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2005 06 LC, 2005 06 Funciones Recursivas 5.1 Procedimientos

Más detalles

Tema 5: Procedimientos para obtener funciones computables

Tema 5: Procedimientos para obtener funciones computables Tema 5: Procedimientos para obtener funciones computables Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Procedimientos

Más detalles

Capítulo V: CONJUNTOS RECURSIVAMENTE ENUMERABLES

Capítulo V: CONJUNTOS RECURSIVAMENTE ENUMERABLES Capítulo V: CONJUNTOS RECURSIVAMENTE ENUMERABLES Mario de J. Pérez Jiménez Grupo de investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

Lenguaje de programación S (Davis/Sigal/Weyuker) Lógica y Computabilidad. Ejemplo 1. Ejemplo 2

Lenguaje de programación S (Davis/Sigal/Weyuker) Lógica y Computabilidad. Ejemplo 1. Ejemplo 2 Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 4 Lenguaje S, estado, descripción instantánea, cómputo, funciones parciales computables, minimización

Más detalles

1. Programas y funciones computables

1. Programas y funciones computables Computabilidad 1 Índice 1. Programas y funciones computables 3 1.1. El lenguaje S........................................... 3 1.2. Programas de S......................................... 3 1.3. Macros...............................................

Más detalles

Lógica y Computabilidad Capítulo 3

Lógica y Computabilidad Capítulo 3 Dpto. CCIA, Universidad de Sevilla 19 Lógica y Computabilidad. 2004 05 Capítulo 3 Capítulo 3 Funciones Recursivas 3.1. La clase de las funciones recursivas Comenzaremos presentando tres procedimientos

Más detalles

Capítulo IV: FUNCIONES RECURSIVAS

Capítulo IV: FUNCIONES RECURSIVAS Capítulo IV: FUNCIONES RECURSIVAS IV.2: FUNCIONES PRIMITIVAS RECURSIVAS Mario de J. Pérez Jiménez Grupo de investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial

Más detalles

Los números naturales. Definición y propiedades

Los números naturales. Definición y propiedades Los números naturales. Definición y propiedades Con la idea de abrir boca para empezar los estudios de matemáticas en bachillerato, en un artículo anterior se hablaba sobre la introducción al número real

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Teoremas de Tonelli y Fubini

Teoremas de Tonelli y Fubini Teoremas de Tonelli y Fubini Objetivos. Demostrar teoremas de Tonelli y Fubini, conocer contraejemplos que muestran la importancia de algunas condiciones de estos teoremas. Requisitos. Definición del producto

Más detalles

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S Tipos de datos en S Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 5 Codificación de programas, Halting problem, diagonalización, tesis de Church,

Más detalles

Resumen de aritmética de Peano

Resumen de aritmética de Peano Resumen de aritmética de Peano UDELAR/FING/IMERL 16 de febrero de 2017 1. Fundamentos de la Aritmética de Peano. Axioma 1.1. Existe un conjunto al que denotamos N, un elemento 0 N y una función s : N N

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Formulaciones equivalentes del Axioma de Elección

Formulaciones equivalentes del Axioma de Elección Formulaciones equivalentes del Axioma de Elección MARU SARAZOLA Resumen En este documento presentamos algunas formulaciones equivalentes del axioma de elección. En la primera sección, se presenta el enunciado

Más detalles

Funciones primtivas recursivas y clases PRC (parte I)

Funciones primtivas recursivas y clases PRC (parte I) Funciones primtivas recursivas y clases PRC (parte I) Hernán Czemerinski Miércoles 2 de febrero de 2011 Definición 1. Llamamos funciones iniciales a n(x) = 0 s(x) = x + 1 u n i (x 1,..., x n ) = x i con

Más detalles

El lenguaje P. Lógica y Computabilidad ( ) símbolos p. Verano convenciones. Lógica Proposicional - clase 1

El lenguaje P. Lógica y Computabilidad ( ) símbolos p. Verano convenciones. Lógica Proposicional - clase 1 Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Lógica Proposicional - clase 1 Lenguaje de lógica proposicional, semántica, tautología, consecuencia semántica, conjunto satisfacible,

Más detalles

Conjuntos computables y Teorema de Rice

Conjuntos computables y Teorema de Rice Lógica y Computabilidad Julián Dabbah (Robado de una clase de Franco Frizzo basada en una clase de María Emilia Descotte) 20 de septiembre de 2017 Repaso Conjuntos computables La función característica

Más detalles

Pauta 11 : Conjuntos Infinitos

Pauta 11 : Conjuntos Infinitos MA1101-5 Introducción al Álgebra Profesor: Mauricio Telias Auxiliar: Arturo Merino P1. [Varios de numerabilidad] a) Considere el conjunto Pauta 11 : Conjuntos Infinitos 2 de junio del 2017 C = {..., 16,

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

Conjuntos c.e., co-c.e. y otras yerbas

Conjuntos c.e., co-c.e. y otras yerbas 1/19 Conjuntos c.e., co-c.e. y otras yerbas Conjuntos c.e., co-c.e. y otras yerbas Ariel Bendersky Febrero 2018 2/19 Conjuntos c.e., co-c.e. y otras yerbas Conjuntos y función característica - Mini repaso

Más detalles

TEMA 4. Sucesiones de números reales.

TEMA 4. Sucesiones de números reales. Cálculo I E.T.S.I. de Minas Curso 2008-2009 TEMA 4. Sucesiones de números reales. Definición. Una sucesión de números reales es una aplicación que a cada número natural n 1leasignaunúnico número real x

Más detalles

La trascendencia de e y π

La trascendencia de e y π La trascendencia de e y π Comenzamos introduciendo unos convenios útiles de notación: Definición 1 Escribiremos h r = r!, de modo que si fz) = m c r z r C[z], entonces fh) representará fh) = m c r h r

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

Tema 4: Recursión e inducción en ACL2

Tema 4: Recursión e inducción en ACL2 Tema 4: Recursión e inducción en ACL2 José Luis Ruiz Reina Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Razonamiento automático, 2012/13 José L. Ruiz Reina

Más detalles

Lógica - Conjuntos inductivos

Lógica - Conjuntos inductivos Lógica - Conjuntos inductivos Matemática discreta y Lógica I Mayo de 2017 Las transparencias son tomadas del curso de Lógica del instituto de computación de Facultad de Ingeniería. Inducción - Plan Conjuntos

Más detalles

Modelos de Computación y Complejidad PRELIMINARES

Modelos de Computación y Complejidad PRELIMINARES Modelos de Computación y Complejidad Grado en Ingeniería Informática. Tecnologías Informáticas PRELIMINARES Mario de J. Pérez Jiménez Dpto. Ciencias de la Computación e Inteligencia Artificial E.T.S. Ingeniería

Más detalles

Ejercicios de Teoría de conjuntos

Ejercicios de Teoría de conjuntos Ejercicios de Teoría de conjuntos José A. Alonso Jiménez Mario J. Pérez Jiménez Sevilla, Octubre de 1997 Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla 1 Tema 1 :

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Funciones GOTO computables

Funciones GOTO computables Funciones GOTO computables Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica Matemática Curso 2011 12 LM, 2011 12 Lenguaje GOTO 4.1 Contenido El lenguaje GOTO Sintaxis

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 5 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Ejercicios y Problemas resueltos Tema 4: CÓDIGOS CÍCLICOS Mayo de 2017 Ejercicios Resueltos:

Más detalles

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida

Más detalles

Tema 1: Fundamentos.

Tema 1: Fundamentos. Tema 1: Fundamentos. 1. Nociones básicas de la Teoría de Conjuntos. Definición. Un conjunto es una colección de objetos. A los objetos de un conjunto se les llama elementos del conjunto. Se denominará

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

6.1. Anillos de polinomios.

6.1. Anillos de polinomios. 1 Tema 6.-. Anillo de polinomios. División y factorización. Lema de Gauss. 6.1. Anillos de polinomios. Definición 6.1.1. Sea A un anillo. El anillo de polinomios en la indeterminada X con coeficientes

Más detalles

Fracciones Parciales. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Fracciones Parciales. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Una expresión racional con coeficientes en un campo K, es una expresión de la forma ax ( ) bx ( ) donde ax ( ), bx ( ) K[ x] ax ( ) cx ( )

Más detalles

Clase práctica 8: Funciones Primitivas Recursivas

Clase práctica 8: Funciones Primitivas Recursivas Clase práctica 8: Funciones Primitivas Recursivas Laski (inspirado en Facundo Carreiro y Hernán Czemerinski) Primer Cuatrimestre 2014 1 Repaso de la teórica Para probar que una función es primitiva recursiva

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

Funciones continuas. Definición y propiedades

Funciones continuas. Definición y propiedades Funciones continuas. Definición y propiedades Para la lectura de este artículo es recomendable haber leído con anterioridad otros tres artículos relacionados con las sucesiones de números reales y las

Más detalles

INDUCCIÓN. Inducción - 2

INDUCCIÓN. Inducción - 2 INDUCCIÓN Inducción - 1 Inducción - Plan Conjuntos Inductivos Inducción como mecanismo primitivo para definir conjuntos Pruebas Inductivas Principios de inducción asociados a los conjuntos inductivos como

Más detalles

INDUCCIÓN Instituto de Computación Lógica Inducción - 1

INDUCCIÓN Instituto de Computación Lógica Inducción - 1 INDUCCIÓN Inducción - 1 Inducción - Plan Conjuntos Inductivos Inducción como mecanismo primitivo para definir conjuntos Pruebas Inductivas Principios de inducción asociados a los conjuntos inductivos como

Más detalles

Topología Segundo cuatrimestre Práctica 1 Espacios topológicos

Topología Segundo cuatrimestre Práctica 1 Espacios topológicos Topología Segundo cuatrimestre - 2015 Práctica 1 Espacios topológicos Ejemplos 1. Sea (X, τ) un espacio topológico y sea Y X. Muestre que τ Y = U Y : U τ} es una topología sobre Y. Llamamos a τ Y subespacio.

Más detalles

Teorema de Hahn-Banach

Teorema de Hahn-Banach Capítulo 3 Teorema de Hahn-Banach 3.1. Introducción Una vez introducidos los espacios vectoriales más importantes donde se tiene una estructura métrica a saber, los espacios de Hilbert y los espacios de

Más detalles

Reglas de derivación Sumas, productos y cocientes. Tema 4

Reglas de derivación Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, su significado analítico y sus interpretaciones geométrica y física, pasamos a desarrollar las reglas básicas para el cálculo de derivadas

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS RAÍCES MÚLTIPLES. Dado un polinomio con coeficientes en un cuerpo existirá siempre un elemento del cuerpo que anula el polinomio? Siempre existe un cuerpo donde podamos encontrar

Más detalles

5.- discontinuidad se dice esencial Ejemplo: f(x) = x - 2 es continua en a = 2 punto de acumulación de Dom(f) = lr. De Equivalentemente.

5.- discontinuidad se dice esencial Ejemplo: f(x) = x - 2 es continua en a = 2 punto de acumulación de Dom(f) = lr. De Equivalentemente. x a 5.- discontinuidad se dice esencial Continuidad Sí lim de f(x) funciones no existe en una ó variable no es finito real la x a Ejemlo: f(x) x - es continua en a unto de acumulación de Dom(f) lr (i)

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

Funciones continuas e inyectivas

Funciones continuas e inyectivas Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis

Más detalles

Lógica Instituto de Computación. 27 de febrero

Lógica Instituto de Computación. 27 de febrero Inducción Lógica 2018 Instituto de Computación 27 de febrero Instituto de Computación (InCo) Inducción Curso 2018 1 / 1 Inducción - Plan Conjuntos inductivos Inducción como mecanismo primitivo para definir

Más detalles

Funciones Recursivas Primitivas

Funciones Recursivas Primitivas Funciones Recursivas Primitivas Pablo Verdes LCC 1 de abril de 2016 Pablo Verdes (LCC) Funciones Recursivas Primitivas 1 de abril de 2016 1 / 16 Introducción Intentaremos construir modelos que nos permitan

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Cálculo I. Índice Continuidad. Julio C. Carrillo E. * 1. Introducción Continuidad puntual Continuidad en un intervalo 8

Cálculo I. Índice Continuidad. Julio C. Carrillo E. * 1. Introducción Continuidad puntual Continuidad en un intervalo 8 2.4. Continuidad Julio C. Carrillo E. * Índice 1. Introducción 1 2. Continuidad puntual 2 3. Continuidad en un intervalo 8 4. Conclusiones 18 * Profesor Escuela de Matemáticas, UIS. 1. Introducción Las

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Teoría de la Dimensión

Teoría de la Dimensión Capítulo II Teoría de la Dimensión En este capítulo introduciremos una de las propiedades más importantes que tienen los espacios vectoriales: la dimensión. Dos son los modos posibles de llegar a la noción

Más detalles

LOGICA Y ALGORITMOS. Profesores: Raúl Kantor Ana Casali. Año LyA-2003 / Inducción 1

LOGICA Y ALGORITMOS. Profesores: Raúl Kantor Ana Casali. Año LyA-2003 / Inducción 1 LOGICA Y ALGORITMOS Profesores: Raúl Kantor Ana Casali Año 2003 LyA-2003 / Inducción 1 LOGICA Y ALGORITMOS Módulos!Preliminares: Cardinalidad y conjuntos inductivos!lógica: Proposicional y de Predicados!Formalismos

Más detalles

8.1. Extensiones algebraicas. Grado.

8.1. Extensiones algebraicas. Grado. 1 Tema 8.-. Extensiones algebraicas. Cuerpos de descomposición. Elemento primitivo. 8.1. Extensiones algebraicas. Grado. Si k es un subcuerpo de K, diremos que K es una extensión de k, que notaremos K

Más detalles

Semana04[1/17] Funciones. 21 de marzo de Funciones

Semana04[1/17] Funciones. 21 de marzo de Funciones Semana04[1/17] 21 de marzo de 2007 Composición de funciones Semana04[2/17] Pensemos que tenemos tres conjuntos no vacíos A, B, C, y dos funciones, f : A B y g : B C, como en el siguiente diagrama: Figura:

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

La propiedad de compacidad

La propiedad de compacidad En un artículo anterior hemos obtenido dos importantes resultados relacionados con la continuidad de una función en un intervalo: el teorema de los ceros de Bolzano y el teorema del valor intermedio. De

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio 3.1.- Relación 3. Continuidad Sea G un abierto arbitrario de la recta euclídea. La continuidad de la aplicación X A equivale a ver que H = X

Más detalles

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos.

Estructuras Discretas. Conjuntos. Conjuntos & Funciones. Especificación de Conjuntos. Estructuras Discretas Conjuntos Conjuntos & Funciones Claudio Lobos clobos@inf.utfsm.cl niversidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: conjunto n conjunto es una colección

Más detalles

Apuntes de Lógica Matemática I

Apuntes de Lógica Matemática I Apuntes de Lógica Matemática I Héctor Olvera Vital 1. Primeras definiciones Definición 1 Un alfabeto A es un conjunto de símbolos. Definición 2 Una expresión del alfabeto A es una sucesión finita de símbolos

Más detalles

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 SOLUCIONES Ejercicio 1 (5 puntos). Sea A un anillo conmutativo y K un cuerpo. a) Definir: i) Unidad en A. ii) Elemento irreducible

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

1) Diga si los siguientes problemas son resolubles o no. Debe demostrar formalmente su respuesta.

1) Diga si los siguientes problemas son resolubles o no. Debe demostrar formalmente su respuesta. Relación de ejercicios de calculabilidad 1) Diga si los siguientes problemas son resolubles o no. Debe demostrar formalmente su respuesta. a) Dado un programa Q=(n,p,codigo), una entrada x N n y un número

Más detalles

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o

Definición 11.1 Sea f : A E F una aplicación r-veces diferenciable en un punto a A. o Capítulo 11 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor.

Más detalles

TOPOLOGIA I Hoja 7 Soluciones

TOPOLOGIA I Hoja 7 Soluciones UNIVERSIDAD DE ZARAGOZA FAULTAD DE IENIAS Sección de Matemáticas urso 003/004 TOPOLOGIA I Hoja 7 Soluciones [1] a) En primer lugar, si B πb, entonces B = B 1 B donde B 1 B X y B B Y, es decir, ambos son

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Estructuras Algebraicas Módulos noetherianos y Artinianos Zarate Sebastian 8 de julio de 2015 Índice 1. Preliminares 1 1.1. Grupos................................... 1 1.2. Anillos...................................

Más detalles

Álgebra Básica. Departamento de Álgebra.

Álgebra Básica. Departamento de Álgebra. Ejercicios de Álgebra Básica. Curso 2010/11 Ejercicio 1. Construir las tablas de verdad de las siguientes proposiciones: (1). p q (2). [(p q) q] p (3). [(p q) r] p (q r) (4). [(p q) q] p (5). [(p q) p]

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente

Más detalles

El teorema de los ceros de Hilbert (primera lección)

El teorema de los ceros de Hilbert (primera lección) El teorema de los ceros de Hilbert (primera lección) Alexey Beshenov (cadadr@gmail.com) Universidad de El Salvador. 6 de marzo de 2018 En estos apuntes voy a revisar un par de resultados básicos de la

Más detalles

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo

14/02/2017. TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo TEMA 3: EL CUERPO DE LOS NUMEROS REALES Esp. Prof. Liliana N. Caputo Así como al estudiar conjuntos hablamos de la existencia de términos primitivos (que no se definen), para definir algunos conjuntos,

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2018 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2018 1

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio.1.- Relación. Espacios topológicos. Operadores Sea X un conjunto y x 0 X. Queremos probar que la familia T x0 = {X} {A X;x 0 / A} es una topología

Más detalles

Conexión Motivación. Lección 10

Conexión Motivación. Lección 10 Lección 10 Conexión Estudiamos la propiedad topológica que nos va a permitir obtener una versión general para espacios métricos del teorema del valor intermedio que conocemos para funciones reales de variable

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍMITES DE FUNCIONES (resumen) LÍMITE DE UNA FUNCIÓN f(x) se lee: límite de la función f(x) cuando x tiende a k x k Límite Idea intuitiva del significado Representación gráfica Cuando x f(x) = l Al aumentar

Más detalles

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A}

diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A} Capítulo 6 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la

Más detalles

1 Introducción al Álgebra conmutativa

1 Introducción al Álgebra conmutativa 1 Introducción al Álgebra conmutativa Escrito por: Patrizio Guagliardo y Miguel Monsalve. A continuación, daremos algunas definiciones básicas de estructuras algebraicas para empezar a trabajar rápidamente

Más detalles

Teoría de la Computabilidad

Teoría de la Computabilidad Teoría de la Computabilidad Santiago Figueira Departamento de Computación, FCEyN, UBA Primer cuatrimestre 2017 1 Contenido clase 0 - Repaso de la parte de Computabilidad de LyC: p. 3 clase 1 - Funciones

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Departamento de Informática Primer semestre de 2009 Ejercicios resueltos de temas del Certamen n o 2

Departamento de Informática Primer semestre de 2009 Ejercicios resueltos de temas del Certamen n o 2 Universidad Técnica Federico Santa María Fundamentos de Informática I Departamento de Informática Primer semestre de 2009 Ejercicios resueltos de temas del Certamen n o 2 Conjuntos. Sean A, B, C y D los

Más detalles

Sucesiones monótonas Monotonía. Tema 6

Sucesiones monótonas Monotonía. Tema 6 Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 1 Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 9.1. Caracteres de un grupo. A la hora de resolver una ecuación f(x) = 0 con f(x) k[x], tomamos un

Más detalles

Cuatro Problemas de Algebra en la IMO.

Cuatro Problemas de Algebra en la IMO. Cuatro Problemas de Algebra en la IMO. Rafael Sánchez Lamoneda UCV. Escuela de Matemáticas Barquisimeto, 10 de Marzo de 2008 Introducción. El objetivo de esta conferencia es analizar cuatro problemas de

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

CARACTERIZACIONES DE LA COMPLETITUD DE R

CARACTERIZACIONES DE LA COMPLETITUD DE R CARACTERIZACIONES DE LA COMPLETITUD DE R 1 Definición 1. Diremos que un cuerpo ordenado K es arquimediano si lím n n que decir que N, visto como subconjunto de K, no está acotado en K. = 0 en K. Esto es

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Pedro Díaz Navarro * Abril de 26. Vectores en R 2 y R 3 2. Espacios Vectoriales Definición (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo

Más detalles