RENDIMIENTO de TRANSFORMADORES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RENDIMIENTO de TRANSFORMADORES"

Transcripción

1 ENDMENTO de TANSFOMADOES Norberto A. Lemozy NTODCCÓN El conocimiento del rendimiento de cualquier máquina, disositivo o sistema tiene una gran imortancia or el valor económico que ello reorta, tanto desde el unto de vista del costo de oeración como del ambiental. En general el rendimiento de una máquina, normalmente indicado con la letra griega eta η, está dado or el cociente de las otencias de salida y de entrada: η otencia de salida otencia de entrada En el caso articular de los transformadores se está en resencia de una máquina de características excecionales: su rendimiento es muy elevado y requieren muy bajo mantenimiento; todo ello debido a su condición de máquina estática. En las máquinas eléctricas, como en otros casos también, ocurre que las de mayor otencia son las más eficientes. Esto se uede demostrar analizando cómo varían las érdidas y cómo lo hace la otencia de la máquina. En efecto tanto las érdidas en el hierro como las del cobre deenden, a igualdad de condiciones de diseño y materiales, de los resectivos volúmenes de hierro V y cobre V, es decir del cubo de las dimensiones lineales: ( + ) V h k h f B n máx π a + 6ρ f B máx V [W] () Donde: h érdidas or histéresis [W/m 3 ]. érdidas or corrientes arásitas [W/m 3 ]. k h Constante del material magnético. f Frecuencia [Hz]. B máx Valor máximo de la inducción magnética [T]. n Exonente de Steinmetz. a Esesor de las chaas del núcleo [m]. ρ esistividad de las chaas del núcleo [Ωm]. ρ esistividad del cobre [Ωm]. J Densidad de corriente [A/m ]. or otro lado la otencia aarente de la máquina vale: ρ J V [W] () S 3 [VA] (3) Como en la mayoría de los casos la diferencia entre la tensión y la fuerza electromotriz inducida E es muy equeña, se uede oner:

2 S 3 E π 3 f N S B máx J S [VA] (4) Aquí también a igualdad de condiciones de diseño y de materiales, la fuerza electromotriz inducida deende de la sección del núcleo y la corriente de la sección del conductor; or lo tanto la otencia aarente es función de las dimensiones lineales a la cuarta otencia. Entonces a medida que aumentan las dimensiones de la máquina, crece más ráidamente su otencia que sus érdidas y or lo tanto mejora su rendimiento. Lamentablemente no todo es tan sencillo y en las máquinas de gran otencia aarecen otros factores que comlican su funcionamiento, or ejemlo la forma de evacuar el calor que roducen las érdidas ara mantener la temeratura de oeración dentro de los límites admitidos or los materiales aislantes. DETEMNACÓN DEL ENDMENTO. Medición directa na forma de obtener el rendimiento de una máquina es medir las otencias absorbida, la de salida y realizar su cociente: η (5) En la figura se muestra esquemáticamente un osible circuito ara hacer esas mediciones: ed de CA A W V V W A Carga Transformador Fig.. Determinación directa. Si bien en un transformador ambas otencias son eléctricas y or lo tanto fáciles de medir, se resentan otros roblemas. Los transformadores son máquinas que se construyen ara otencias muy grandes y uede resultar imosible disoner tales otencias en los laboratorios, lo mismo que las cargas donde disiarlas. Este roblema se resenta aún en los transformadores de distribución, que si bien son de otencias menores, son los más utilizados. n roblema adicional aarece en el cálculo de la otencia de érdidas er que resulta de la diferencia de dos magnitudes róximas entre sí y al hacer la roagación de errores, el resultado uede quedar con un error relativo inadmisible. n ejemlo numérico uede aclarar la situación: suóngase que las otencias valen kw y 95 kw lo que daría un rendimiento del 95% y una otencia de érdidas de 5 kw. Si cada una de las otencias se mide con un error relativo de aroximadamente %, es decir kw, la otencia indicada or el wattímetro de la entrada estaría comrendida entre los valores: Y la otencia entre: 99 kw

3 94 96 kw Si la mala suerte hace que uno de los wattímetro indique or defecto y el otro or exceso, la otencia de érdidas resultaría entre los valores: kw Entonces, resecto del valor exacto de 5 kw resultaría: er 5 ± 5 ± 4% kw er Error excesivamente alto y que invalida la medición. Lo anterior es absolutamente cierto y uede ocurrir toda vez que se hace una determinación como diferencia de dos magnitudes con valores róximos entre sí. Otro inconveniente de la determinación anterior es que no se sabe qué valor le corresonde a cada una de las érdidas or searado.. Determinación a artir del circuito equivalente Como en el caso del transformador el circuito equivalente es un modelo que se aroxima mucho a la realidad y sus arámetros se ueden determinar con facilidad y exactitud, aún en unidades de gran otencia, es referible determinar el rendimiento a artir del mismo, que es la forma indicada en las normas y or lo tanto se denomina convencional. El rendimiento se uede exresar como: En un transformador monofásico esas otencias valen: η (6) er (7) r (8) e (9) Donde generalmente es el valor nominal n que es constante; la corriente y el factor de otencia cos ϕ definen la carga ara la cual se quiere calcular el rendimiento, es decir se eligen. Como se está trabajando con magnitudes del secundario, los arámetros r e y deben estar referidos a ese arrollamiento. eemlazando resulta: η + r Si se reresenta el rendimiento, en función de la corriente de carga ara distintos valores de factor de otencia, resultan curvas como las de la figura, a las que les corresonde cos ϕ igual e + () 3

4 a y,7. Éstas, como todas las curvas de rendimiento, salen de cero, asan or un máximo y luego tienden asintóticamente a cero. Como es común en la ráctica corriente de máquinas eléctricas, se uede calcular el rendimiento utilizando valores en tanto or uno (u). La exresión () también es válida si se onen todas sus magnitudes y arámetros en tanto or uno; si además la tensión de salida se toma como la nominal: [ ] () n y además se recuerda que en condiciones nominales resulta: [ ] [ ] [ ] r () e cc [ ] [ ] G (3) Como la tensión secundaria del transformador varía muy oco con la carga, la otencia aarente de salida, que a veces se la indica como carga k, en or unidad, resulta rácticamente igual a la corriente de salida, también en or unidad: eemlazando en la exresión () queda: k [ ] S [ ] [ ] (4) nn n η (Todo en u) (5) + cc + Forma muy cómoda ya que utiliza las otencias medidas en los ensayos en cortocircuito y en vacío en u.,,,8,6,4 cos, cos,7 fe cu,,,,5, Fig.. endimiento y érdidas en función de la carga en u. En la exresión () se suone que tanto las érdidas en el cobre como las del hierro varían cuadráticamente con la corriente y con la tensión de salida resectivamente, otro tanto ocurre en la exresión (5) donde además a la tensión se la consideró constante e igual a la nominal. Esto 4

5 equivale a utilizar circuitos equivalentes aroximados ara la determinación de las érdidas. Los valores de rendimiento así obtenidos difieren muy oco de los reales del transformador y, ara la mayoría de las alicaciones, no se justifica erfeccionar su determinación. Si además, la otencia de cortocircuito se exresa a la temeratura normalizada, or ejemlo 75 C ara los transformadores en aceite, al rendimiento calculado de esa forma se lo denomina convencional es decir de acuerdo a una norma establecida de común acuerdo entre las artes interesadas..3 endimiento máximo La ubicación del máximo de rendimiento es imortante ya que conviene que el transformador trabaje la mayor arte del tiemo cerca de ese unto. ara hallar ese máximo hay que hacer la derivada de la exresión () o de la (5) e igualarla a cero. ara simlificar el roceso conviene dividir esas exresiones or la corriente, y luego hallar el mínimo de su denominador, haciendo su derivada e igualándola a cero. artiendo de la exresión () resulta: De donde: d d η + r e + (6) denominador) re (7) ( re (8) Es decir que el máximo del rendimiento se roduce cuando las érdidas en el cobre (cuadráticas) son iguales a las del hierro (constantes). La corriente de carga que roduce esta condición se obtiene desejándola de la ecuación (7): η (9) r e eemlazando este valor en la exresión () o (6) se obtiene el valor del rendimiento máximo: η ηmáx re + () η + En el ejemlo mostrado en la figura el máximo de rendimiento ocurre al 8,65 % de la carga nominal del transformador. Dado que en diseño del transformador se ueden variar los valores de las érdidas, el fabricante uede hacer que el rendimiento máximo del transformador se roduzca en el valor de carga más conveniente. rocediendo a artir de la exresión (5) se llega a: [ ] η () cc 5

6 η máx η η + + cc (Todo en u) () La conclusión obtenida más arriba, que el rendimiento máximo ocurre cuando las érdidas cuadráticas son iguales a las érdidas constantes, es válida aún cuando se tengan érdidas de variación lineal. Si bien estas érdidas no existen en los transformadores, ueden estar resentes en las máquinas rotativas, y resulta oortuno analizarlo. Suóngase el rendimiento de una máquina cuya otencia de érdidas tiene un término lineal: η + A + B + C C + A + B + Al hacer la derivada del denominador, ara hallar el máximo del rendimiento, el término lineal desaarece y el máximo ocurre cuando las érdidas cuadráticas son iguales a las constantes: 3 ENDMENTO CÍCLCO (3) A C (4) La imortancia del conocimiento del rendimiento de una máquina radica en que a artir del mismo se uede obtener la otencia de érdidas er y con ésta calcular el costo de oeración de esa máquina. er ( η) (5) η Como lo que se aga es la energía erdida W er ara obtenerla se deberá integrar la otencia de érdidas en el intervalo deseado: t W W + W dt (6) er A fin de obtener directamente esta energía de érdidas, se define un rendimiento, semejante al de la ecuación (6), ero en base a energías: er t er W W W η (7) W W + W W + W + W ara calcular las resectivas energías se debe establecer un determinado intervalo de tiemo y, or razones rácticas, conviene tomar un laso en el que las condiciones de carga del transformador se vuelvan a reetir, or ejemlo 4 horas, una semana, un mes, etc. Como ara que los resultados sen veraces, las condiciones de carga se deben reetir cíclicamente, al rendimiento calculado de esta forma se lo denomina rendimiento cíclico. La curva que relaciona la otencia consumida or la carga en función del tiemo se denomina curva de carga y uede tener distintas formas deendientes del tio de consumo, or ejemlo uede ser una carga constante, or ejemlo un roceso que rara vez se interrume; en este caso el rendimiento cíclico y el convencional resultan iguales. La curva de carga de un edificio de oficinas, donde se utiliza mayormente iluminación artificial, tendrá un valor casi constante durante las horas de trabajo y se reducirá a un mínimo en las horas nocturnas. Si en esas oficinas hay incidencia de la luz solar, aarecerá un ico de 6

7 consumo cuando baja la luz natural y aún se continúa trabajando. or el contrario en un sistema de alumbrado úblico, durante las horas diurnas, el consumo será mínimo y aumentará en el horario nocturno. En la figura 3 se muestra la curva de carga corresondiente a un día hábil de una facultad de la BA donde se trabaja en horarios diurnos y vesertinos y además hay equios de laboratorio en funcionamiento ermanente. 4 otencia Hora Fig. 3. rva de carga. ara el cálculo del rendimiento, utilizando la ecuación (7), se deben calcular las distintas energías. La energía que suministra el transformador está reresentada or el área encerrada or la curva de carga y el eje de abscisas la que se uede obtener or medio de algún método de integración gráfica; y si no se necesita una gran exactitud, se ueden tomar rectángulos de base t y de altura y realizar una sumatoria. N W dt k t k (8) Si se trabaja con la carga relativa, ecuación (4), la otencia de salida se uede escribir como: Y la energía como: k ( ) ϕ n (9) S S cos N n k ( ) W S k k tk (3) Con este mismo criterio la energía de érdidas en el cobre se uede oner como: W N cc k ( ) k tk (3) Si la tensión es constante, las érdidas en el hierro también lo serán y la energía de érdidas resulta: W N t t k c (3) k 7

8 Donde t c es el tiemo de conexión, es decir el tiemo durante el cual el transformador está conectado a la red y se roducen érdidas en el hierro. Si las energías son grandes, es muy robable que resulte más cómodo exresar las otencias en kva o kw y los tiemos en horas. eemlazando estas tres energías en la exresión (7) se uede calcular el rendimiento cíclico que le corresonde al transformador en ese intervalo de tiemo. 4 BBLOGAFÍA EE Staff del MT: Circuitos Magnéticos y Transformadores Editorial everté, 943. Corrales Martín J.: Teoría, Cálculo y construcción de Transformadores Editorial Labor, 945. Lawrence.. y ichards H. E.: rinciles of Alternating rrent Machinery Mc. Graw Hill Co Moeller F. y Werr Th.: Electrotecnia General y Alicada Tomo, rimera arte, Editorial Labor, 97. ng. Norberto A. Lemozy 9 8

ESTUDIO DE LA MÁQUINA DE C.C.

ESTUDIO DE LA MÁQUINA DE C.C. ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº 3: Sistemas Eléctricos ESTUDIO DE LA MÁQUINA DE C.C. Sistemas Eléctricos 2009-2010. La Máquina de Corriente Continua

Más detalles

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno:

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno: Unidad 5 Alicaciones de las derivadas Objetivos Al terminar la unidad, el alumno: Resolverá roblemas de ingreso utilizando el ingreso marginal. Resolverá roblemas de costos utilizando el costo marginal

Más detalles

9. Lección 9: Cambios de Fase

9. Lección 9: Cambios de Fase 9. Lección 9: Cambios de Fase Cuando un sistema consiste de más de una fase, cada fase uede ser considerada como un sistema searado del todo. Los arámetros termodinámicos del sistema entero ueden ser construidos

Más detalles

CONVERGENCIA ESTOCÁSTICA Y TEOREMAS LIMITE. Estadística aplicada a la empresa I Prof. D. Juan José Pérez Castejón

CONVERGENCIA ESTOCÁSTICA Y TEOREMAS LIMITE. Estadística aplicada a la empresa I Prof. D. Juan José Pérez Castejón CONVERGENCIA ESTOCÁSTICA Y TEOREMAS IMITE. Estadística alicada a la emresa I Prof. D. Juan José Pérez Castejón 1 CONVERGENCIA ESTOCÁSTICA Y TEOREMAS IMITE. En este tema se ersigue introducir el conceto

Más detalles

REACTOR. Norberto A. Lemozy

REACTOR. Norberto A. Lemozy INTRODUCCIÓN REACTOR Norberto A. Lemozy Los reactores o inductores son bobinas en aire o con núcleo ferromagnético que oseen diversas alicaciones en los sistemas eléctricos. Por ejemlo en media y alta

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

PUESTA A TIERRA Y CONDUCTORES DE PROTECCIÓN

PUESTA A TIERRA Y CONDUCTORES DE PROTECCIÓN PUESTA A TIERRA Y CONDUCTORES DE PROTECCIÓN 1. DEFINICIONES Puesta a tierra: Conjunto constituido or una o más tomas de tierra interconectadas y sus conductores de tierra corresondientes, conectados al

Más detalles

RESUMEN TEMA 8: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico

RESUMEN TEMA 8: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz RSUMN TMA 8: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se ocua de las relaciones

Más detalles

PRÁCTICA 4. De las dos primeras CPO operando y simplificando se obtiene la condición de tangencia:

PRÁCTICA 4. De las dos primeras CPO operando y simplificando se obtiene la condición de tangencia: .- Determine la exresión de la demanda del bien x ara la siguiente función de utilidad: Para calcular la del bien x hay que resolver el roblema de maximización de la utilidad condicionada a la renta disonible

Más detalles

TRANSFORMADOR REAL. Norberto A. Lemozy

TRANSFORMADOR REAL. Norberto A. Lemozy NTRODCCÓN TRANSFORMADOR RAL Norberto A. Lemozy n los transformadores reales no se cumplen las premisas que definían a los ideales, pero se les aproximan mucho, especialmente en las unidades de gran potencia,

Más detalles

Apellidos y nombre: Número de matrícula: DNI:

Apellidos y nombre: Número de matrícula: DNI: EXAMEN ESCRITO I Apellidos y nombre: Número de matrícula: DNI: ARTE : REGUNTAS DE TEST (5% del total del examen) Cada respuestas incorrectas descuentan una correcta º) ara un material rromagnético dado

Más detalles

Tema nº 10. Acciones Básicas de Control. Vicente Gómez Garay Dpto. de Ingeniería de Sistemas y Automática

Tema nº 10. Acciones Básicas de Control. Vicente Gómez Garay Dpto. de Ingeniería de Sistemas y Automática Tema nº 10 Acciones Básicas de Control Vicente Gómez Garay Dto. de Ingeniería de Sistemas y Automática Este tema forma arte de los auntes de teoría de la asignatura Automatización de Procesos Industriales,

Más detalles

Calor y Termodinámica

Calor y Termodinámica Calor y Termodinámica E S U E M A D E L A U N I D A D.. Historia y evolución del conceto ágina 4.. El equivalente entre trabajo mecánico y calor ágina 5.. Precisiones sobre calor y trabajo mecánico ágina

Más detalles

TEMA 6. TRANSISTOR BIPOLAR DE PUERTA AISLADA (IGBT)

TEMA 6. TRANSISTOR BIPOLAR DE PUERTA AISLADA (IGBT) INTROUCCIÓN ección de una celdilla elemental Fuente Puerta TEMA 6. TRANITOR BIPOLAR E PUERTA AILAA (IBT) 6.1. INTROUCCIÓN 6.2. TECNOLOÍA E FABRICACIÓN Y CURVA CARACTERÍTICA I-V 6.3. FUNCIONAMIENTO EL TRANITOR

Más detalles

TEMA 7 TRANSFORMADORES

TEMA 7 TRANSFORMADORES TEMA 7 TRASFORMADORES. Transformador monofásico. Transformador real.3 Transformador real.4 Transformador trifásico.5 Estructura del sistema eléctrico Cuestiones . TRASFORMADOR MOOFÁSCO Un transformador

Más detalles

UNIDAD. Transformadores

UNIDAD. Transformadores NIDAD 8 Transformadores Transformador de una subestación. (A.L.B.) E l transformador nos resulta muy familiar en el ámbito doméstico. Su uso más común y conocido es para adaptar la tensión de la red a

Más detalles

PRINCIPALES DISTRIBUCIONES DISCRETAS

PRINCIPALES DISTRIBUCIONES DISCRETAS PRINCIPALES DISTRIBUCIONES DISCRETAS Objetivos generales del tema En este tema definiremos y discutiremos diversas e imortantes distribuciones discretas, es decir, funciones masa de robabilidad o funciones

Más detalles

ESTUDIO DE LA MÁQUINA ASÍNCRONA

ESTUDIO DE LA MÁQUINA ASÍNCRONA ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica nº : Sistemas Eléctricos ESTUDIO DE LA MÁQUINA ASÍNCRONA Sistemas Eléctricos 009-00.La Máquina de Inducción o Asíncrona

Más detalles

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores

TRANSFORMADORES. (parte 2) Mg. Amancio R. Rojas Flores TRANSFORMADORES (parte ) Mg. Amancio R. Rojas Flores CRCUTO EQUALENTE DE UN TRANSFORMADOR La ventaja de desarrollar circuitos equivalentes de máquinas eléctricas es poder aplicar todo el potencial de la

Más detalles

T-22: COMPORTAMIENTO IDEAL DE SISTEMAS GASEOSOS

T-22: COMPORTAMIENTO IDEAL DE SISTEMAS GASEOSOS T-22: COMPORTAMIENTO IDEAL DE SISTEMAS GASEOSOS 1. Estados de equilibrio de un sistema. ariables de estado. Transformaciones 1 2. Ecuación de estado ara comortamiento ideal de un gas 2 3. olumen molar

Más detalles

Prof. Daniel Villar Escuela Técnica del Buceo 2009

Prof. Daniel Villar Escuela Técnica del Buceo 2009 Matemática: Teórico 009 Seguramente el lector ya conoce estructuras numéricas, naturales, enteros, racionales. Sus diferencias y carencias. Qué hizo necesario la creación de una estructura aún más amlia

Más detalles

Control de Fase. Capítulo 4. 4.1 Conceptos Teóricos

Control de Fase. Capítulo 4. 4.1 Conceptos Teóricos Caítulo 4 Control de Fase 4.1 Concetos Teóricos En este caítulo se resentará el método de control de fase ara convertidores AC/DC conmutados or línea, comúnmente conocidos como rectificadores controlados.

Más detalles

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna.

TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. TEMA 6. Fundamentos de las máquinas rotativas de corriente alterna. CONTENIDO: 6.1. El motor asíncrono trifásico, principio de funcionamiento. 6.2. Conjuntos constructivos. 6.3. Potencia, par y rendimiento.

Más detalles

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts)

Práctica 1 y 2: Medidas de tensión e intensidad. Adaptadores de medida. 1. Conceptos generales. 2. Resistencias en derivación (Shunts) Medidas de tensión e intensidad. daptadores de medida: Práctica y Práctica y : Medidas de tensión e intensidad. daptadores de medida. Conceptos generales La corriente eléctrica que circula por un instrumento

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA TALLER : Fabricación y medición de inductancia OBJETIVO: Lograr la habilidad ara imlementar inductore de caracterítica

Más detalles

11. CAMBIOS DE FASE. Transiciones de fase de primer orden en sistemas de un componente. 11. Cambios de fase

11. CAMBIOS DE FASE. Transiciones de fase de primer orden en sistemas de un componente. 11. Cambios de fase 11. CAMBIOS DE FASE Discutiremos en este Caítulo las transiciones de fase y el equilibrio de fases, o sea el estudio de las condiciones bajo las cuales ueden coexistir dos o más fases. Entre los temas

Más detalles

Principio de la Termodinámica

Principio de la Termodinámica ema.- Primer P Princiio de la ermodinámica..- El rabajo en la Mecánica. rabajo realizado or una fuerza externa F, que actúa sobre los límites del sistema, cuando su unto de alicación exerimenta un deslazamiento

Más detalles

REDES AUTOORGANIZATIVAS

REDES AUTOORGANIZATIVAS Tema 5: Redes Autoorganizativas Sistemas Conexionistas 1 REDES AUTOORGANIZATIVAS 1. Introducción a la Autoorganización. 2. Arendizaje Cometitivo. 3.1. Carácterísticas. 3.2. Ventajas y Limitaciones. 3.

Más detalles

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.

PROBLEMAS RESUELTOS DE TRANSFORMADORES. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo. PROBLEMAS RESUELTOS DE TRANSFORMADORES Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com Erving Quintero Gil Ing. Electromecánico Bucaramanga

Más detalles

TRANSFORMADOR NÚCLEOS

TRANSFORMADOR NÚCLEOS TRANSFORMADOR El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

Capítulo 4. Diseño de filtros digitales 1

Capítulo 4. Diseño de filtros digitales 1 53 Caítulo 4 Diseño de filtros digitales 1 Diseñar un filtro consiste en encontrar su función de transferencia (realizable y estable) ara su osterior realización mediante una estructura adecuada. En la

Más detalles

Modelo para la ubicación de aerogeneradores y paneles fotovoltaicos en proyectos de electrificación rural con microrredes

Modelo para la ubicación de aerogeneradores y paneles fotovoltaicos en proyectos de electrificación rural con microrredes Modelo ara la ubicación de aerogeneradores y aneles fotovoltaicos en royectos de electrificación rural con microrredes Pág.1 Resumen Una tercera arte de la oblación mundial, casi en su totalidad en comunidades

Más detalles

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico

TRANSFORMADORES. 7.1 Introducción. 7.2 Transformador monofásico TRASFORMADORES 7. ntroducción El transformador es un dispositivo que permite modificar potencia eléctrica de corriente alterna con un determinado valor de tensión y corriente en otra potencia de casi el

Más detalles

PIEZOMETRÍA (MEDIDA DE PRESIONES) Objetivo. Actividades. Equipos. Piezometría (medida de presiones) 1

PIEZOMETRÍA (MEDIDA DE PRESIONES) Objetivo. Actividades. Equipos. Piezometría (medida de presiones) 1 Piezometría (medida de resiones) 1 PEZOMERÍA (MEDDA DE PRESONES) Objetivo 1. Conocer diferentes disositivos utilizados ara la medición de resiones: barómetros y manómetros. Presiones en un fluido (ara

Más detalles

Máquinas eléctricas: El Transformador

Máquinas eléctricas: El Transformador Máquinas eléctricas: El Transformador Antes de desarrollar el presente tema no se nos debe olvidar que éste forma parte de la unidad Máquinas Eléctricas y que, como bien sabemos, toda máquina lleva asociada

Más detalles

Capítulo 3. Congruencias. 3.1. Clases residuales

Capítulo 3. Congruencias. 3.1. Clases residuales Caítulo 3 Congruencias 3.1. Clases residuales En su obra Disquisitiones Arithmeticae, ublicada en el año 1801, Gauss introdujo el conceto de congruencia. Suongamos que a, b y m > 0 son números enteros.

Más detalles

CAPÍTULO 4: FIJACIÓN DE LAS PRIMAS Y ANÁLISIS DE LA VARIABLE BORROSO ALEATORIA

CAPÍTULO 4: FIJACIÓN DE LAS PRIMAS Y ANÁLISIS DE LA VARIABLE BORROSO ALEATORIA arte III: Análisis de la determinación de las rimas en los seguros de vida y de la solvencia dinámica del asegurador cuando los tios de interés de valoración vienen estimados a través de números borrosos

Más detalles

Funciones. 2.8 Modelando con funciones CAPÍTULO

Funciones. 2.8 Modelando con funciones CAPÍTULO 1 CAPÍTULO Funciones.8 Modelando con funciones 1 Aora aremos uso de ejemlos concretos ara mostrar la manera en que odemos utilizar a las funciones ara modelar matemáticamente situaciones y roblemas reales.

Más detalles

MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama

MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama MECANICA DE FLUIDOS I Juan Chamorro González Deartamento de Metalurgia Universidad de Atacama PRESIÓN Y MANOMETRÍA La Presión El término resión se usa ara indicar la fuerza normal or unidad de área en

Más detalles

4.2 Transformadores de potencia

4.2 Transformadores de potencia 4. Transformadores de potencia 4.. Generalidades Descripción Circuito magnético Circuito eléctrico Refrigeración Aspectos constructivos 4.. Principio de funcionamiento El transformador ideal Funcionamiento

Más detalles

Regresión Logística. Introducción

Regresión Logística. Introducción Introducción En este tema estudiaremos cómo construir y analizar un modelo de regresión que retende reresentar la deendencia lineal de una variable resuesta con dos categorías (dicotómica) resecto a otras

Más detalles

Transformador trifásico

Transformador trifásico Transformador trifásico Profesor: Ing. César Chilet 3 transformadores monofásicos ϕ ϕ 2 1 Devanado con N 2 espiras Transformador trifásico ϕ 3 La suma de los tres flujos es 0: se pueden unir todas las

Más detalles

CAPÍTULO. Optimización

CAPÍTULO. Optimización 1 CAPÍTULO 10 Otimización 10.1 Problemas de otimización 1 Un roblema de otimización consiste en minimizar o maimizar el valor de una variable. En otras alabras se trata de calcular o determinar el valor

Más detalles

TEMA 5. El transformador. Generalidades

TEMA 5. El transformador. Generalidades TEMA 5. El transformador. Generalidades CONTENIDO: 5.. Finalidad de los transformadores 5.. Fundamento de los transformadores de potencia 5.3. Tipos de transformadores, designaciones y simbolismos. 5.4.

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

Equipo que transforma la energía. Figura 6.1 Flujo de energía

Equipo que transforma la energía. Figura 6.1 Flujo de energía ÉRDIDAS Y CALENTAMIENTO EN MÁQUINAS ELÉCTRICAS 6.1 Introducción En todo proceso de transformación de la energía, se produce una diferencia entre la potencia que entrega el equipo para su utilización (otencia

Más detalles

sección página desplazamiento

sección página desplazamiento 1 1.- PROBLEMA (30%) Un sistema de gestion de memoria soorta esacios de direcciones logicas de 32 bits y un modelo de memoria aginado con tama~nos de agina de 4K bytes. Con estos datos, la tabla de aginas

Más detalles

Guía para el cálculo de válvulas Ejemplos de cálculo de válvulas

Guía para el cálculo de válvulas Ejemplos de cálculo de válvulas Guía ara el cálculo de válvulas Ejemlos de cálculo de válvulas Inhalt Seite Ventilberechnung bei Flüssigkeiten Ventilberechnung bei Wasserdamf 5 Ventilberechnung bei Gas und Damf 7 Ventilberechnung bei

Más detalles

Las máquinas eléctricas de acuerdo a sus usos se dividen en:

Las máquinas eléctricas de acuerdo a sus usos se dividen en: MÁQUINAS ELÉCTRICAS 1. CLASIFICACIÓN DE LAS MÁQUINAS ELÉCTRICAS 1.1. CLASIFICACIÓN POR USOS Las máquinas eléctricas de acuerdo a sus usos se dividen en: A. Generadores.- Transforman la energía mecánica

Más detalles

Análisis de la Tarificación por Sobre-consumo de los Sectores Eléctrico y Sanitario

Análisis de la Tarificación por Sobre-consumo de los Sectores Eléctrico y Sanitario Análisis de la Tarificación or Sobre-consumo de los Sectores Eléctrico y Sanitario Fernando Fuentes H. * Diciembre, 2008 Resumen Este artículo analiza ara el caso de Chile los efectos sobre la asignación

Más detalles

Objetivos. Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2007

Objetivos. Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2007 Objetivos Transistor MOFET ELEMENTO ACTO EL07 EMETRE 007 El transistor de efecto de camo MOFET y la tecnología CMO (6 semanas Construcción, símbolo, clasificación. Funcionamiento. Curvas características

Más detalles

1.2. Estructura y principio de funcionamiento

1.2. Estructura y principio de funcionamiento Caítulo 1 IGBT 1.1. Introducción l IGBT (Insulated Gate Biolar Transistor, Transistor Biolar de Comuerta Aislada) es un disositivo de conmutación de otencia que combina características ositivas del BJT

Más detalles

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS

BLOQUE IV. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS Bloque I. Cilindros neumáticos y oleohidráulicos ág. 1 BLOQUE I. CIRCUITOS NEUMÁTICOS Y OLEOHIDRÁULICOS INTRODUCCIÓN La Neumática es la arte de la Tecnología que estudia los fenómenos y las alicaciones

Más detalles

LABORATORIO DE MAQUINAS

LABORATORIO DE MAQUINAS I. DATOS GENERALES SILABO 1. Nombre de la Asignatura : LABORATORIO DE MAQUINAS ELECTRICAS 2. Carácter : Obligatorio. 3. Carrera Profesional : INGENIERIA MECANICA Y ELECTRICA. 4. Código : IM0606 5. Semestre

Más detalles

EL PRIMER ESLABÓN DE LAS MATEMÁTICAS EN LASFACULTADES DE CC. ECONÓMICAS Y EMPRESARIALES: LOS ANÁLISIS ECONÓMICOS LINEALES

EL PRIMER ESLABÓN DE LAS MATEMÁTICAS EN LASFACULTADES DE CC. ECONÓMICAS Y EMPRESARIALES: LOS ANÁLISIS ECONÓMICOS LINEALES El Primer Eslabón de las Matemáticas en las Facultades de CC. Económicas y Emresariales: Los Análisis EL PRIMER ESLABÓN DE LAS MATEMÁTICAS EN LASFACULTADES DE CC. ECONÓMICAS Y EMPRESARIALES: LOS ANÁLISIS

Más detalles

Máquinas eléctricas: Máquinas rotativas de corriente alterna

Máquinas eléctricas: Máquinas rotativas de corriente alterna Máquinas eléctricas: Máquinas rotativas de corriente alterna Ya has visto en temas anteriores el estudio de los motores de corriente continua y la clasificación de las máquinas, pues bien, ahora vas a

Más detalles

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS

BLOQUE II CONCEPTOS Y FENÓMENOS ELECTROMAGNÉTICOS PARTAMENTO 1.- Un núcleo toroidal tiene arrolladas 500 espiras por las que circulan 2 Amperios. Su circunferencia media tiene una longitud de 50 cm. En estas condiciones la inducción magnética B total

Más detalles

Ejercicios Riesgo y Retorno Resueltos

Ejercicios Riesgo y Retorno Resueltos Ejercicios Riesgo y Retorno Resueltos Comentes:. ara lograr el efecto diversificación en un ortafolio debemos necesariamente invertir en activos que no se correlacionen o que tienen correlación negativa.

Más detalles

Uto-Fni Ingeniería Mecánica. Apuntes de Clase MEC 2250. Termodinámica de los compresores. Docente: Emilio Rivera Chávez

Uto-Fni Ingeniería Mecánica. Apuntes de Clase MEC 2250. Termodinámica de los compresores. Docente: Emilio Rivera Chávez Uto-Fni Ingeniería Mecánica Auntes de Clase MEC 50 ERMODINAMICA ECNICA II ermodinámica de los comresores Docente: Oruro, julio de 009 Auntes de Clase ermodinámica de los comresores de gas MEC50 0. Procesos

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 6 " FILTROS ACTIVOS "

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 6  FILTROS ACTIVOS UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 6 " FILTROS ACTIVOS " OBJETIVOS - Conocer algunas toologías ara el diseño de

Más detalles

5.2. Selección Adversa

5.2. Selección Adversa 5.2. Selección Adversa Matilde P. Machado matilde.machado@uc3m.es 5.2. Selección Adversa Asimetría de información se da siemre que una de las artes en una transacción tiene más información que otra. Ejemlos:

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

Ensayo de transformadores

Ensayo de transformadores 4 Ensayo de transformadores 4.1 Transformador en vacío Como hemos visto anteriormente, el transformador está basado en que la energía se puede transportar eficazmente por inducción electromagnética desde

Más detalles

VALUACIÓN DE BONOS. 4 Valuación de un bono en una fecha entre cupones

VALUACIÓN DE BONOS. 4 Valuación de un bono en una fecha entre cupones 1 VALUAIÓN DE BONOS 4 Valuación de un bono en una fecha entre cuones Hasta ahora hemos suuesto en (2.1) y (2.2) que la valuación se hace en el momento de emisión del bono o un instante osterior al ago

Más detalles

Densidad del Agua. Apasionados por la Metrología. La Guía MetAs, es el boletín electrónico de difusión periódica de MetAs & Metrólogos Asociados.

Densidad del Agua. Apasionados por la Metrología. La Guía MetAs, es el boletín electrónico de difusión periódica de MetAs & Metrólogos Asociados. LGM-10-06 010-junio Densidad del Agua En diferentes alicaciones metrológicas, el agua es usada amliamente como atrón de referencia de densidad ara las determinaciones de densidad volumen. En este boletín

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

6. Máquinas eléctricas.

6. Máquinas eléctricas. 6. Máquinas eléctricas. Definiciones, clasificación y principios básicos. Generadores síncronos. Campos magnéticos giratorios. Motores síncronos. Generadores de corriente continua. Motores de corriente

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 000-001 - CONVOCATORIA: ELECTROTECNIA EL ALUMNO ELEGIRÁ UNO DE LOS DOS MODELOS Criterios de calificación.- Expresión clara y precisa dentro del lenguaje

Más detalles

Cálculo del poder estadístico de un estudio

Cálculo del poder estadístico de un estudio Investigación: Cálculo del oder estadístico de un estudio /7 Cálculo del oder estadístico de un estudio Pértegas Día, S. sertega@canalejo.org, Pita Fernánde, S. sita@canalejo.org Unidad de Eidemiología

Más detalles

6. Métodos para resolver la ecuación completa.

6. Métodos para resolver la ecuación completa. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 6. Métodos ara resolver la ecuación comleta. Dedicamos esta sección a ver dos métodos que nos ermiten hallar una solución articular de la ecuación comleta y +

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Alicaciones de las derivadas Autores: Paco Martínez (jmartinezbos@uoc.edu), Patrici Molinàs (molinas@uoc.edu). ESQUEMA DE CONTENIDOS Concetos Ejemlos Alicaciones de las Derivadas

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 1 Tema: INSTRUMENTOS. ERRORES. CONTRASTE DE AMPERÍMETRO Y VOLTÍMETRO. Conceptos Fundamentales: Las indicaciones de los instrumentos

Más detalles

ASIGNATURA: MÁQUINAS ELÉCTRICAS. (Especialidad: Electrónica Industrial)

ASIGNATURA: MÁQUINAS ELÉCTRICAS. (Especialidad: Electrónica Industrial) ASIGNATURA: MÁQUINAS ELÉCTRICAS (Especialidad: Electrónica Industrial) (Código: 622024) 1. EQUIPO DOCENTE Dr. D. Antonio Colmenar. Profesor Titular de E. U. (Profesor responsable) D. Alfonso Vara de Llano.

Más detalles

MECÁNICA DE FLUIDOS Tema2. Impulsión de fluidos

MECÁNICA DE FLUIDOS Tema2. Impulsión de fluidos 0 MECÁNICA E FLUIOS Tema. Imulsión de fluidos This work is licensed under the Creative Commons Attribution-NonCommercial-Noerivs 3.0 Unorted License. To view a coy of this license, visit htt://creativecommons.org/licenses/by-ncnd/3.0/

Más detalles

CONSEJERÍA DE EDUCACIÓN

CONSEJERÍA DE EDUCACIÓN ANEXO VII (continuación) CONTENIDOS DE LA PARTE ESPECÍFICA DE LA PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR PARTE ESPECÍFICA OPCIÓN B EJERCICIO DE TECNOLOGÍA INDUSTRIAL 1. RECURSOS ENERGÉTICOS.

Más detalles

Termodinámica. L = F. Δx. Como se ve en la figura, la presión del gas provoca sobre la superficie del pistón una fuerza que lo hace desplazarse.

Termodinámica. L = F. Δx. Como se ve en la figura, la presión del gas provoca sobre la superficie del pistón una fuerza que lo hace desplazarse. Termodinámica Hemos visto cómo la energía mecánica se uede transformar en calor a través, or ejemlo, del trabajo de la fuerza de rozamiento ero, será osible el roceso inverso? La resuesta es si, y esto

Más detalles

dp=30 bar dp=200 bar dp=1 bar dp=2 bar 0Z1 dp=1 bar

dp=30 bar dp=200 bar dp=1 bar dp=2 bar 0Z1 dp=1 bar A L00 mm D? d? V4 d30 bar 0 t v 0,05 m/s V3 d00 bar d3 bar V d bar d3 bar V d bar 0V 0Z d bar Se disone de una grúa movida or un cilindro hidráulico ara mover masas de hasta 0 t. El esquema es el de la

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

Máquinas Eléctricas. Resultados de aprendizaje. Contenidos

Máquinas Eléctricas. Resultados de aprendizaje. Contenidos Máquinas Eléctricas Descripción general (*)Los objetivos que se persiguen en esta materia son: - La adquisición de los conocimientos básicos sobre la constitución y el funcionamiento de las máquinas eléctricas

Más detalles

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A)

FMM= Fuerza magnetomotriz en amperio-vuelta (Av) N = Número de espira I = Intensidad de corriente (A) Flujo magnético Φ El campo magnético se representa a través de las líneas de fuerza. La cantidad de estas líneas se le denomina flujo magnético. Se representa por la letra griega Φ; sus unidades son weber

Más detalles

GUIA DE EJERCICIOS SOBRE TRANSFORMADORES MONOFÁSICOS Y AUTOTRANSFORMADORES

GUIA DE EJERCICIOS SOBRE TRANSFORMADORES MONOFÁSICOS Y AUTOTRANSFORMADORES GUIA DE EJERCICIOS SOBRE TRANSFORMADORES MONOFÁSICOS Y AUTOTRANSFORMADORES N0VIEMBRE_2003 1.- El primario de un transformador, con fuerte acoplamiento, tiene una inductancia de 20 H, un coeficiente de

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Principio de Conservación de la Energía. ENERGÍA ELÉCTRICA. ENERGÍA MECÁNICA.

Principio de Conservación de la Energía. ENERGÍA ELÉCTRICA. ENERGÍA MECÁNICA. Introducción. rincipio de Conservación de la Energía. La energía, ni se crea ni se destruye, se transforma. Transformación de energía. (La transformación de energía de un tipo en otro tipo y también la

Más detalles

Controladores de Potencia Máquina de Corriente Continua

Controladores de Potencia Máquina de Corriente Continua Máquina de Corriente Continua 17 de febrero de 2012 USB Principio de Funcionamiento Figura 1: Principio de funcionamiento de las máquinas eléctricas rotativas USB 1 Figura 2: Esquema del circuito magnético

Más detalles

UNIVERSIDAD DE MATANZAS

UNIVERSIDAD DE MATANZAS ASPECOS FUNDAMENALES DE LAS LEYES DE LA ERMODINAMICA. UNIERSIDAD DE MAANZAS CAMILO CIENFUEGOS DPO QUÍMICA E INGENIERÍA MECÁNICA ASPECOS FUNDAMENALES REFERENES A LOS PRINCIPIOS DE LA ERMODINÁMICA. Dr. Andres

Más detalles

BLOQUE 2.1 CAMPO ELÉCTRICO

BLOQUE 2.1 CAMPO ELÉCTRICO BLOQUE 2.1 CAMPO ELÉCTRICO La electricidad, en una forma u otra, se encuentra en casi todo lo que nos rodea: se encuentra en los relámagos que se roducen durante las tormentas, en la chisa que salta bajo

Más detalles

PROBLEMAS DE TRANSFORMADORES

PROBLEMAS DE TRANSFORMADORES PROBLEMAS DE TRANSFORMADORES Problema 1: Problemas de transformadores Un transformador tiene N 1 40 espiras en el arrollamiento primario y N 2 100 espiras en el arrollamiento secundario. Calcular: a. La

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

UTN FRM MEDIDAS ELECTRÓNICAS I Página 1 de 6

UTN FRM MEDIDAS ELECTRÓNICAS I Página 1 de 6 UTN FRM MEDIDAS ELECTRÓNICAS I Página 1 de 6 TRABAJO PRACTICO N 7 ENSAYO DE UN TRANSFORMADOR DE INTENSIDAD Los Transformadores de medida (TM) vistos en teoría se utilizan para reducir los valores de tensión

Más detalles

TRANSFORMADORES TRIFÁSICOS

TRANSFORMADORES TRIFÁSICOS 1 INTRODUCCIÓN TRANSFORMADORES TRIFÁSICOS Norberto A. Lemozy La mayoría de los transformadores utilizados en la transmisión y distribución de energía eléctrica son trifásicos, por una cuestión de costos,

Más detalles

PROTECCIÓN ACÚSTICA DE MAMPARAS: EVALUACIÓN E ÍNDICES DE PROTECCIÓN

PROTECCIÓN ACÚSTICA DE MAMPARAS: EVALUACIÓN E ÍNDICES DE PROTECCIÓN PROTECCIÓN ACÚSTICA DE MAMPARAS: EVALUACIÓN E ÍNDICES DE PROTECCIÓN REFERENCIAS PACs: 4.Dk 4..Fn 4.55 Dt 4.55 Ev. J. Pfretzschner, R.Mª. Rodríguez, F. Simón, C. De la Colina, A. Moreno Instituto de Acústica

Más detalles

Planificaciones. 6506 - Máquinas Eléctricas. Docente responsable: RUIZ IGNACIO MANUEL. 1 de 7

Planificaciones. 6506 - Máquinas Eléctricas. Docente responsable: RUIZ IGNACIO MANUEL. 1 de 7 Planificaciones 6506 - s Eléctricas Docente responsable: RUIZ IGNACIO MANUEL 1 de 7 OBJETIVOS (Ing. Mecánica) La materia brinda conocimientos teóricos y prácticos fundamentales sobre máquinas eléctricas

Más detalles

Cálculo de corrientes de cortocircuito

Cálculo de corrientes de cortocircuito Electricidad avanzada ENTREGA 3 Cálculo de corrientes de cortocircuito Elaborado por Benoît de METZ-NOBLA, Frédéric DME y Georges THOMASSE Métodos presentados en este artìculo En este artìculo se estudian

Más detalles

Apellidos y nombre: Número de matrícula: DNI:

Apellidos y nombre: Número de matrícula: DNI: EXAMEN ESCRITO II Apellidos y nombre: Número de matrícula: DNI: PARTE 1: PREGUNTAS DE TEST (25% del total del examen). Cada 3 respuestas incorrectas descuentan una correcta 1º) Indique cual o cuales de

Más detalles

CAPITULO 1. Motores de Inducción.

CAPITULO 1. Motores de Inducción. CAPITULO 1. Motores de Inducción. 1.1 Introducción. Los motores asíncronos o de inducción, son prácticamente motores trifásicos. Están basados en el accionamiento de una masa metálica por la acción de

Más detalles

Tema 4. Experimentos aleatorios. Cálculo de probabilidades.

Tema 4. Experimentos aleatorios. Cálculo de probabilidades. Tema 4. Exerimentos aleatorios. Cálculo de robabilidades. Indice 1. Tios de sucesos. Sucesos robabilísticos.... 2 2. Álgebra de oole... 2 2.1. efiniciones... 2 2.2. Oeraciones. Tios de sucesos... 3 2.3.

Más detalles

Ducto de PVC. Conduit de Acero 10 6,6 3,9 2,6 1,6 0,240 0,223 0,207 0,213 0,210 1,0 0,82 0,62 0,49 0,197 0,194 0,187 0,187 0,39 0,33 0,25 0,20

Ducto de PVC. Conduit de Acero 10 6,6 3,9 2,6 1,6 0,240 0,223 0,207 0,213 0,210 1,0 0,82 0,62 0,49 0,197 0,194 0,187 0,187 0,39 0,33 0,25 0,20 www.viakon.com 63 RESISTENCIA ELECTRICA CA, REACTANCIA INDUCTIVA E IMPEDANCIA PARA CABLES DE 600 V, OPERANDO A 75 o C EN UN SISTEMA TRIFASICO A 60 HZ: 3 CABLES UNIPOLARES EN UN MISMO DUCTO Ω/km, al neutro

Más detalles

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA ASÍNCRONA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica

2003/2004. Boletín de Problemas MÁQUINAS ELÉCTRICAS: MÁQUINA ASÍNCRONA 3º DE INGENIEROS INDUSTRIALES. Dpto. de Ingeniería Eléctrica Dpto. de ngeniería léctrica.t.s. de ngenieros ndustriales Universidad de Valladolid 3/4 MÁQUNAS LÉCTCAS: MÁQUNA ASÍNCONA 3º D NGNOS NDUSTALS Boletín de roblemas MÁQUNA ASÍNCONA roblemas propuestos. Se

Más detalles

Maximización n de la Utilidad

Maximización n de la Utilidad aimización n de la Utilidad icroeconomía Eco. Douglas Ramírez Los elementos básicos Hemos descrito hasta el momento los elementos básicos del roblema de decisión del consumidor Su conjunto de elección

Más detalles