COMISIÓN NACIONAL DE ENERGÍA ATUMICA ESTUDIO DEL METABOLISMO DE LAS OXISALES DE IODO: IODATO Y PERIODATO (1-131)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "COMISIÓN NACIONAL DE ENERGÍA ATUMICA ESTUDIO DEL METABOLISMO DE LAS OXISALES DE IODO: IODATO Y PERIODATO (1-131)"

Transcripción

1 CNEA-16 REPÚBLICA ARGENTINA COMISIÓN NACIONAL DE ENERGÍA ATUMICA ESTUDIO DEL METABOLISMO DE LAS OXISALES DE IODO: IODATO Y PERIODATO (1-131) por L J. Anghileri BUENOS AIRES 1965

2

3 ESTUDIO DEL METABOLISMO DE LAS OXISALES DE YODO: IODATO Y PERIODATO (1-131) L. J. Anghileri Comisión Ncionl de Energí Atómic INTRODUCCIÓN Es extens l iliogrfí existente relciond con el metolismo delrdioioduro en rzón de su relción con el funcionmiento de l glándul tiroides. Por el contrrio en el cso del iodto es summente escs y se refiere en su csi totlidd spectos prticulres de su metolismo (1). Con respecto l periodto ningun referenci se h logrdo. El ojeto del presente trjo h sido estudir por medio del iodto y del periodto mrcdos con rdioiodo (1-131) sus respectivos metolismos.

4 PARTE EXPERIMENTAL Grupos de cinco rts Wistr dults (tres mchos y dos hemrs), fueron inyectdos en l ven de l col con 20 icu de iodto de potsio (1-131) de un ctividd específic de 5 fici/mg y con 10 fici de periodto de potsio (1-131) de un ctividd específic de 10 fici/mg. Estos grupos de nimles fueron scrificdos diversos intervlos y l ctividd de los diversos órgnos y tejidos en pool fué determind por medio de un cristl de centelleo. Igul contje se relizó sore ls excrets correspondientes ls primers 2 hors. Posteriormente l medición de sus ctividdes, los órgnos fueron homogeneizdos en solución fisiológic 0,01 N en HON. Luego de centrifugr el homogeneizdo, se relizó el nálisis cromtográfico de un muestr del sorendnte. Pr ello se empleó cromtogrfí sore ppel Whtmn 3MM, scendente y utilizndo como solvente n-propnol: H 2 0: HOÑH 15 N (30:10:5). En ests condu ciones experimentles los vlores de Rf son: Iodto 0,1-0,20 Ioduro 0,56-0,62 Periodto 0,00-0,02 Otros grupos de cinco nimles inyectdos con cd un de ls ctividdes fué sometido l medición de l ctividd totl del orgnismo (whole ody counting) diversos intervlos, pr sí determinr l velocidd de eliminción de l rdioctividd inyectd.(figur 1). RESULTADOS EXPERIMENTALES En l tl I están consigndos los vlores de l ctividd específic y del pjrciento de l ctividd inyectd presente diversos tiempos en los diferentes órgnos y tejidos pr el cso del iodto. L tl II contiene los vlores similres pr el periodto. L eliminción de l ctividd se reliz en mos csos, en su myor prte, trvés del trcto gstrointestinl. El estómgo present un lt ctividd durnte ls primers hors. En el cso del periodto, l relción entre ls ctividdes en el intestino y en el estómgo es mucho myor, esto indicrí un posile eliminción trvés de l pred intestinl. Los máximos pr el hígdo, intestino, estómgo y riñon se oservron más trde (=í6 hs. 1 dí) pr el cso del periodto. Est sl iodd es summente corrosiv los tejidos vivos y por tl rzón es posile un primer loclizción en ls cercnís del lugr de inyección. Un notle crcterístic oservd, es l coincidenci entre los máximos de ctividd en el hígdo y en el estómgo. Esto precerí indicr un eliminción primermente ví hígdo y completd posteriormente trvés de l mucos gástric. El nálisis cromtográfico de los diveros tejidos (Tl HJ), indic que l myor prte de l ctividd presente en el hígdo, lo está l estdo de iodto. En el cso de l inyección de iodto su vlor es 98% ls 2 hors y en el cso de l inyección de periodto es de 80% l primer hor.

5 5 Igulmente, tnto pr l inyección de iodto como pr el periodto, se encuentr ion iodto en el riñon. Luego de 1 hor de her dministrdo el periodto su cntidd es considerle. Es significtivo el hecho que l primer hor siguiente l inyección del periodto se encuentre un 20% de iodto en el estómgo y solutmente nd en los intestinos. El esquem de eliminción de los dos oxiácidos del iodo prece ser semejnte: L ctividd de I^lO^ o 1^1 Og ps l circulción y es elimind por dos vís, l hepátic y l renl. L primer que es l más importnte, reduce el periodto iodto y finlmente éste ioduro, el cul es elimindo trvés de l mucos gástric hci el intestino. En el intestino tod l ctividd se encuentr l estdo de ioduro y prolemente un prte de ell es resorid y vuelve l circulción snguíne, repitiéndose nuevmente su eliminción trvés del intestino y riñon. A este respecto existe un correlción entre los máximos oservdos pr el intestino y pr el riñon. L menor ctividd oservd en el riñon, indicrí su importnci secundri como ví de eliminción, quizás por su reducid cpcidd de trnsformr el iodto ioduro. Esto se corroor con l presenci de rdioiodo l estdo de iodto, tnto en el tejido renl como en l orin. Los ensyos relizdos invitro con homogeneizdos de diversos tejidos indicn que hígdo, intestino, estómgo, tejido musculr y riñon son cpces de reducir el periodto ioduro. L sngre present est crcterístic con menos intensidd, deteniéndose l reducción en su myor prte l estdo de iodto. Igulmente l inctivrse los homogeneizdos por el clor, l reducción se detiene en iodto, esto indicrí que un enzim termoláil es responsle de l reducción del iodto ioduro. DISCUSIÓN Los resultdos experimentles otenidos dn un ide del mecnismo de eliminción de ests dos exisles del iodo. Por supuesto, que vriciones de concentrción pueden producir un liger modificción del esquem de eliminción l incidir sore el umrl renl y l sorción metólic del rdioioduro. En generl, slvo el mecnismo de reducción loclizdo en especil en el hígdo, l eliminción es como correspondiente l ioduro (2, 3) l cul se reliz csi entermente l nivel de l mucos gástric. Los jos porcentjes oservdos en los distintos órgnos pueden conside - rrse como resultntes de l pequeñ cntidd inyectd, de su rápid eliminción y de l distriución generlizd del rdioioduro en todo el orgnismo. A este respecto, Regoeczi () h encontrdo que en conejo*; proximdmente 25 c í del pool de ioduro se encuentr en l piel.

6 6 TABLA I VALORES DE LA RADIOACTIVIDAD PROVENIENTE DEL IODATO INYECTADO EN LOS DIVERSOS ÓRGANOS Y TEJIDOS 1 hr. 3 hrs 6 hrs. 1 d. 5 d. 15 d. Riñon , , , , ,02 15 Hígdo , , , ,9 0,19 Intestino 975 6,08 1 2, ,68 5 2, , ,003 Estómgo , , ,1 392,1 67 0,2 52 0,001 Bzo ! 0,2 i 670 0, , ,0 15 0,006 3 Cerero 202 0, ,06 9 0, ,001 Corzón , , , , ,006 6 Pulmón , , , , , ,001 Prótid , , , , ,003 Testículo 958 0, , , , ,01 0,003 Ovrio , , , ,00 2 Tiroides i i ''-ósculo i , , , , , H «co ,55 : Actividd específic (cpm/g). : Porciento de l dosis inyectd ( X 10"^).

7 7 TABLA H VALORES DE LA RADIOACTIVIDAD PROVENIENTE DEL PERIODATO INYECTADO, EN LOS DIVERSOS ÓRGANOS Y TEJIDOS 2 hr. 3 hrs. 6 hrs. 1 i. 7d. 25 d. Riñon 351 0, 537 0, , , ,01 Hígdo 251 1, , , , , ,69 Intestino 38 3, ,16 661, , ,78 2 0,05 E stómgo , , , ,9 18 0,09 5 Bzo 287 0, , , , , ,006 Cerero 28 0, ,10 8 0,0 3 0, ,005 Corzón 308 0, ,2 85 0, ,18 8 0,006 - Pulmón 27 0, , , ,3 15 0,02 2 0,006 Prótid 262 0, , , ,09-1 0,02 Testículo 87 0, , ,1 16 0, ,00 0,005 Ovrio 378 0, , , , ,01 1 0,003 Tiroides 850 0, , , , , ,72 Músculo Hueso : Actividd específic (cpr/g). ; Porciento de l dosis inyectd.

8 8 TABLA III ANÁLISIS CROMATOGRAFICO DE DIVERSOS ÓRGANOS Y EXCRECIONES ( ls 2 hors) Mteril inyectdo: l^lq^k Riñon Ioduro 96 % Iodto % Hígdo Ioduro 2 % Iodto 98 % Estómgo Intestinos Orin Ioduro 87,7% Iodto 12,3% Heces Mteril inyectdo: 1^10 K Riñon Ioduro 3 % Iodto 3 96 % Hígdo Ioduro 3 20 % Iodto 3 80 % Estómgo Ioduro 3 80 % Iodto 3 20 % Intestino Ioduro % Orin Heces ; Vlores correspondientes 1 hor después de l inyección.

9

10 10 BIBLIOGRAFÍA 1. TAUROG, A.; HOWELLS, E. M. y NACHINSON, H. I. - Fred. Proc. 22 (2Pt. 1): 358 (1963). 2. BRICKER, M. S. y HLAD, C. J. - J. Clin. Inv. 3: 1057 (1955). 3. TAKEDA, Y. y REEVE, E. B. - L. nd Clin. Med. 60 (6): 9 (1962).. REGOECZI, E. - Proc. Soc. Exptl. Biol. Med. 112: 27 (1963).

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3

I.3.1.3 Hidroformilación bifásica de 1-octeno con sistemas de Rh/fosfina perfluorada P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 I.3 Discusión de resultdos I.3.1.3 Hidroformilción ifásic de 1-octeno con sistems de Rh/fosfin perfluord P(C 6 H 4 -p-och 2 C 7 F 15 ) 3 Como y se h comentdo en l introducción l ctálisis ifásic en sistems

Más detalles

Normativa de señalización exterior e interior

Normativa de señalización exterior e interior Normtiv de señlizción exterior e interior 6 Normtiv de señlizción exterior e interior L señlizción es un sistem de informción cuyo ojetivo principl es loclizr un lugr determindo, y se en l ví púlic, el

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE QUÍMICA

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE QUÍMICA UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE QUÍMICA EVALUACIÓN DEL EFECTO ANTIDIABÉTICO DE TORTILLAS DE HARINA DE MAÍZ (Ze mys L.) PREPARADAS CON DIFERENTES PROCESOS TECNOLÓGICOS TESIS QUE PARA OBTENER

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA. Págin 1 de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FISICA I/11 PRACTICA Nro. 8 MASA INERCIAL

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

EL MODELO Drosophila. Drosophila

EL MODELO Drosophila. Drosophila Curso Orgnizción, Función y vriilidd del Genom Eucriot 2010 Módulo II. Introducción l orgnizción del genom eucriot medinte estrtegis genétic de mpeo TEORICO: Recominción y Mpeo genético en Drosophil melnogster

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

HIDRATOS DE CARBONO. ND: no determinado

HIDRATOS DE CARBONO. ND: no determinado HIDRATOS DE CARBONO Ls RDA se sron en el rol que tienen los hidrtos de crono como fuente de energí primri del cerero; y ls AMDR se sron en el rol como fuente de energí pr mntener el peso corporl. Grupo

Más detalles

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff.

Resolución de circuitos complejos de corriente continua: Leyes de Kirchhoff. Resolución de circuitos complejos de corriente continu: Leyes de Kirchhoff. Jun P. Cmpillo Nicolás 4 de diciemre de 2013 1. Leyes de Kirchhoff. Algunos circuitos de corriente continu están formdos por

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Efecto de la dieta y del estrés agudo pre-faena sobre parámetros bioquímicos y físico-químicos en novillos británicos

Efecto de la dieta y del estrés agudo pre-faena sobre parámetros bioquímicos y físico-químicos en novillos británicos Efecto de l diet y del estrés gudo pre-fen sore prámetros ioquímicos y físico-químicos en novillos ritánicos Pighin D.G. * 1, 3, 4, Dvies P. 2, Pzos A.A. 1, 4, Ceconi, I. 2, Cunzolo S.A. 3, 4, Mendez D.

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS.

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS. EPARTAMENTO E QUÍMICA ANALÍTICA Y TECNOLOGÍA E ALIMENTOS FUNAMENTOS E ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN E PROBLEMAS..- Considerndo que un determindo compuesto AB present un vlor de 0 pr un sistem prticulr

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Cristal. Estado Sólido. Estructura Cristalina. Red. Celdas. Red

Cristal. Estado Sólido. Estructura Cristalina. Red. Celdas. Red Estdo Sólido Estructurs Cristlins Cristl Un cristl es un rreglo periódico de átomos o grupos de átomos que es construido por l repetición infinit de estructurs unitris idéntics en el espcio. L estructur

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

VOLUMETRIA ACIDO-BASE ó DE NEUTRALIZACIÓN

VOLUMETRIA ACIDO-BASE ó DE NEUTRALIZACIÓN Químic Anlític VOLUMETRIA ACIDO-BASE ó DE NEUTRALIZACIÓN Medinte l volumetrí ácido-bse se pueden vlorr sustncis que ctúen como ácidos o como bses y ls recciones que trnscurren según los csos pueden formulrse

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

SEPTIEMBRE 2015 NO.1

SEPTIEMBRE 2015 NO.1 SEPTIEMBRE 2015 NO.1 02 Cmpñ de Comunicción Autos Reinvéntte y Crece P r AXA es muy importnte mntenerte informdo sobre todos los tems relciondos l Rmo de Autos por eso prtir del 31 de gosto y hst el 20

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO.

CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. CASO PRÁCTICO SOBRE REESTRUCTURACIÓN DE LAS CONDICIONES DE LA DEUDA. CASO DE EMPRESAS EN CONCURSO. Gregorio Lbtut Serer http://gregorio-lbtut.blogspot.com.es/ Universidd de Vlenci L Norm de Registro y

Más detalles

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería.

Tratamiento contable y presupuestario de las operaciones de inversión de excedentes temporales de Tesorería. CONSULTA DE LA IGAE Nº 13/1995 FORMULADA POR VARIAS CORPORACIONES LOCALES, EN RELACIÓN CON EL TRATAMIENTO CONTABLE DE LA RENTABILIZACIÓN DE EXCEDENTES TEMPORALES DE TESORERÍA. CONSULTA En virtud de ls

Más detalles

Aproximación e interpolación mediante polinomios

Aproximación e interpolación mediante polinomios LA GACETA DE LA RSME, Vol. 5.3 (2002), Págs. 621 627 621 Aproximción e interpolción medinte polinomios por Miguel Mrno y Mrt Mrcolini En este trbjo se muestr un relción entre los conceptos de interpolción

Más detalles

(2132) Repuestos de maquinaria 80.000

(2132) Repuestos de maquinaria 80.000 3. Norms prticulres sobre el inmovilizdo mteril 80.000 25.000 800 (2131) Mquinri. Motores (75.000 + 5.000) (28132) Amortizción cumuld. Repuestos de mquinri (motores) (100.000/8) x 2 (472) Hciend Públic,

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Estudio de la Evolución de la Humedad de los Granos Individuales en Silobolsas de Maíz y Soja

Estudio de la Evolución de la Humedad de los Granos Individuales en Silobolsas de Maíz y Soja 1 Estudio de l Evolución de l Humedd de los Grnos Individules en Siloolss de Míz y Soj 1 Crdoso, M., 1 Brtosik, R., 1 Rodríguez, J. 1) INTA PRECOP Blcrce. EEA Blcrce. Rut 226 km 73,5 (7620) Blcrce, Buenos

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica.

Corriente eléctrica. 1. Corriente eléctrica: Intensidad y densidad de corriente. 2. Ley de Ohm. Resistencia. Conductividad eléctrica. Corriente eléctric 1. Corriente eléctric: ntensidd y densidd de corriente. 2. Ley de Ohm. Resistenci. Conductividd eléctric. 3. Potenci disipd en un conductor. Ley de Joule. Fuerz electromotriz. BBLOGRAFÍA:.

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

AUTOMATAS FINITOS Traductores

AUTOMATAS FINITOS Traductores Universidd de Morón Lengujes Formles y Autómts AUTOMATAS FINITOS Trductores AUTOMATAS FINITOS Un utómt finito es un modelo mtemático que posee entrds y slids. Un utomát finito recie los elementos tester

Más detalles

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización.

183.100.000 ptas. Con préstamo a largo plazo con la Entidad Bancaria X, interés del 13% y 14 años de plazo de amortización. FECHA EMISION 8 1 1992 ORGANO EMISOR INTERVENCIÓN GENERAL DE LA ADMINISTRACIÓN DEL ESTADO PUBLICACION BOLETÍN INFORMATIVO DE LA IGAE nº 5, ño 1992. TITULO CONSULTA Nº 8/1992, formuld por l Intervención

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

departamento de electricidad y electrónica elektrika eta elektronika saila

departamento de electricidad y electrónica elektrika eta elektronika saila ALGORITMOS Y ESTRUCTURAS DE DATOS Convoctori de junio Curso 2000/2001 Soluciones propuests 1. (1 punto) L complejidd temporl de un cierto lgoritmo, en términos del tmño del prolem n, viene dd por l siguiente

Más detalles

FICHA TÉCNICA. Cápsula dura. Cápsulas de gelatina dura de color rojo opaco e impresas con el nombre de Fortasec.

FICHA TÉCNICA. Cápsula dura. Cápsulas de gelatina dura de color rojo opaco e impresas con el nombre de Fortasec. FICHA TÉCNICA 1. NOMBRE DEL MEDICAMENTO Fortsec 2 mg cápsuls durs 2. COMOSICIÓN CUALITATIVA Y CUANTITATIVA Cd cápsul contiene 2 mg de hidrocloruro de lopermid. Excipiente con efecto conocido: 154 mg de

Más detalles

Ejercicios. Números enteros, fraccionarios e irracionales.

Ejercicios. Números enteros, fraccionarios e irracionales. CEPA Enrique Tierno Glván. Ámbito Científico-Tecnológico. Nivel Ejercicios. Números enteros frccionrios e irrcionles. Números enteros. Represent en l rect rel los siguientes números enteros - 0 - -. Qué

Más detalles

ESTABLECIMIENTO INICIAL DE CRISANTEMO (Crysanthemum x morifolium) WHITE DIAMOND BAJO DIFERENTES REGIMENES DE HUMEDAD EN CONTENEDOR

ESTABLECIMIENTO INICIAL DE CRISANTEMO (Crysanthemum x morifolium) WHITE DIAMOND BAJO DIFERENTES REGIMENES DE HUMEDAD EN CONTENEDOR Investigción Agropecuri. 2008. Volumen 5(2). p. 169-174. ESTABLECIMIENTO INICIAL DE CRISANTEMO (Crysnthemum x morifolium) WHITE DIAMOND BAJO DIFERENTES REGIMENES DE HUMEDAD EN CONTENEDOR Glori Alici Pérez-Aris,

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos: Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

UNIDAD 3 Números reales

UNIDAD 3 Números reales . Curiosiddes sobre lgunos Pág. 1 de 4 Hy tres números de grn importnci en mtemátics y que, prdójicmente, nombrmos con un letr: El número designdo con l letr grieg π = 3,14159 (pi) relcion l longitud de

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA BIVARIANTE

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA BIVARIANTE PREGUNTAS TIPO EXAMEN- ESTADÍSTICA BIVARIANTE Preg. 1. Si l clculr el coeficiente e correlción e os vriles X e Y, se tiene r=- 0.20 ocurre que L peniente e l rect e regresión es pequeñ. L peniente e l

Más detalles

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y

PROBLEMAS DE MÁQUINAS TÉRMICAS, REFRIGERADORES y PROBLEMAS DE DE MÁUINAS ÉRMICAS, REFRIGERADORES y BOMBAS BOMBAS DE DE CALOR CALOR Equipo docente Antonio J. Brero / Alfonso Cler / Mrino Hernández Dpto. Físic Aplicd. E..S. Agrónomos (Alcete) Plo Muñiz

Más detalles

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2

2Unidad. Expresiones algebraicas. fraccionarias EN ESTA UNIDAD APRENDERÁS A: 68 Unidad 2 Epresiones lgebrics Unidd frccionris EN ESTA UNIDAD APRENDERÁS A: Interpretr ls epresiones lgebrics frccionris como un generlizción de l opertori con frcciones numérics. Reconocer pr qué vlores un epresión

Más detalles

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN

1. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN http://www.cepmrm.es ACFGS - Mtemátics ESG - /0 Pág. de Polinomios: Teorí ejercicios. EXPRESIONES ALGEBRAICAS. CLASIFICACIÓN Tnto en mtemátics, como en físic, en economí, en químic,... es corriente el

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

TEMA 10 FINANCIACIÓN

TEMA 10 FINANCIACIÓN TEMA 10 FINANCIACIÓN 1.-Considerciones generles. 2.-Ptrimonio neto. 2.1.-Fondos propios. 2.2.-Subvenciones, donciones y legdos. 3.-Psivo. 3.1.-Provisiones contingentes. 3.2.-Deuds. 1.-CONSIDERACIONES GENERALES.

Más detalles

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS

EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS EL GRAFICO ABC COMO TECNICA DE GESTION DE INVENTARIOS Un specto importnte pr el nálisis y l dministrción de n inventrio es determinr qé rtíclos representn l myor prte del vlor del mismo - midiéndose s

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

(II)La contabilización del Impuesto sobre Sociedades

(II)La contabilización del Impuesto sobre Sociedades Cierre Contble y Fiscl I. SOCIEDADES (II)L contbilizción del Impuesto sobre Socieddes Luis Alfonso Rojí Chndro (Febrero 2012) L.A. Rojí Asesores Tributrios, S.L. - Inscrit en el Registro Mercntil de Mdrid,

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP)

PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) PROBLEMAS DE PROGRAMACIÓN LINEAL (LP) Plntemiento del prolem de progrmción Linel Un prolem de progrmción linel es cundo l función ojetivo es un función linel y ls restricciones son ecuciones lineles; l

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES

4º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa NÚMEROS REALES º ESO ACADÉMICAS NÚMEROS REALES DEPARTAMENTO DE MATEMÁTICAS. NÚMEROS REALES.- Escrie un número que cumpl: ) Pertenece N y I. ) Pertenece R pero no Q. c) No pertenece R. d) Pertenece Q pero no N. ) IMPOSIBLE

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

Determinización: Construcción de Safra

Determinización: Construcción de Safra Determinizción: Construcción de Sfr Ddo: Autómt de Büchi A = (Q,Σ,Q 0,δ,F) Supong que Q = {q 1,...,q n }. Vmos construir un utómt de Rin determinist B tl que L ω (A) = L ω (B), donde B está compuesto por:

Más detalles

SÍLABO DEL CURSO DE DERECHO ADMINISTRATIVO II

SÍLABO DEL CURSO DE DERECHO ADMINISTRATIVO II SÍLABO DEL CURSO DE DERECHO II I. INFORMACIÓN GENERAL:. Fcultd: Derecho y Ciencis Polítics.2 Crrer Profesionl: Derecho y Ciencis Polítics.3 Deprtmento: ---------------.4 Requisito: Derecho Administrtivo

Más detalles

Nutrientes del purín. Variabilidad Métodos rápidos de determinación nutrientes en el purín

Nutrientes del purín. Variabilidad Métodos rápidos de determinación nutrientes en el purín III Composición en nutrientes Uso del purín como fertiliznte Dosificción del purín Herrmients de gestión disponibles pr el sesormiento en fertilizción. de nálisis en purín porcino: nálisis e implicciones

Más detalles

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA

Matemáticas 3º ESO Fernando Barroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA Mtemátics º ESO Fernndo Brroso Lorenzo POLINOMIOS Y FACTORIZACIÓN POLINÓMICA. En cd cso escribe un polinomio que cumpl ls condiciones que se indicn. Con grdo coeficientes enteros. Trinomio de grdo sin

Más detalles

DIAGRAMA DE FLUJO 1. DETECCIÓN OPORTUNA DEL CANCER DE PRÓSTATA

DIAGRAMA DE FLUJO 1. DETECCIÓN OPORTUNA DEL CANCER DE PRÓSTATA Prevención y detección temprn del cáncer de próstt en el primer nivel de tención CIE 10 C61 Tumor mligno de l próstt GPC Prevención y detección temprn del cáncer de próstt en el primer nivel de tención

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21

SOLUCIONES DE LAS ACTIVIDADES Págs. 4 a 21 TEMA. NÚMEROS REALES SOLUCIONES DE LAS ACTIVIDADES Págs. Págin. Actividd personl, por ejemplo:,...,...,...,9...,8.... ) No, pues un deciml puede tener un número limitdo de cifrs o ser periódico. Por ejemplo,,

Más detalles

MEDIDAS DE REFLECTANCIA ESPECTRAL PARA ESPEJOS UTILIZADOS EN LA CAPTACIÓN DE ENERGÍA SOLAR

MEDIDAS DE REFLECTANCIA ESPECTRAL PARA ESPEJOS UTILIZADOS EN LA CAPTACIÓN DE ENERGÍA SOLAR ASADES Avnces en Energís Renovles y Medio Amiente Vol. 18, pp.08.27-08.34, 2014. Impreso en l Argentin ISSN 2314-1433 - Trjo seleciondo de Acts ASADES2014 MEDIDAS DE REFLECTANCIA ESPECTRAL PARA ESPEJOS

Más detalles

Casos prácticos resueltos

Casos prácticos resueltos Apéndice A Csos prácticos resueltos A.1. Introducción Hst hor, dentro de cd unidd temátic, se hn ido resolviendo supuestos concernientes l tem trtdo en el cpítulo. En éste, se pretenden desrrollr ejercicios

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

A3 Apéndice al capítulo 10 Puertas lógicas con transistores bipolares

A3 Apéndice al capítulo 10 Puertas lógicas con transistores bipolares A3 Apéndice l cpítulo 10 Puerts lógics con trnsistores ipolres El trnsistor ipolr como inversor El circuito ásico de un trnsistor en emisor común, según el esquem de l figur, reliz l operción oolen de

Más detalles

UNIVERSIDAD DE MURCIA

UNIVERSIDAD DE MURCIA UNIVERSIDD DE MURCI DEPRTMENTO DE MEDICIN Y CIRUGÍ NIML EVLUCIÓN DEL FLUJO SNGUÍNEO PERIFÉRICO MEDINTE ULTRSONOGRFÍ DUPLEX-DOPPLER EN CBLLOS CON LMINITIS Memori de Tesis presentd por Dª Crl N. guirre Pscsio

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

TEMA 5. Existencias. Procedimiento de Cuenta Única Administrativa: Existencias e Inmovilizado

TEMA 5. Existencias. Procedimiento de Cuenta Única Administrativa: Existencias e Inmovilizado TEMA 5 1 Procedimiento de Cuent Únic Administrtiv: e Inmovilizdo 2 - El procedimiento Administrtivo es el empledo pr el registro de l myor prte de los ctivos. INMOVILIZADO/EXISTENCIAS ENTRADAS VALORADAS

Más detalles

DESIGUALDADES < d < En el campo de los números reales tenemos una. Un momento de reflexión muestra que una

DESIGUALDADES < d < En el campo de los números reales tenemos una. Un momento de reflexión muestra que una DESIGUALDADES 7 60 < d < 7 70 En el cmpo de los números reles tenemos un propiedd de orden que se costumbr designr con el símbolo (

Más detalles

* Las secciones o subsecciones omitidas de la información de prescripción completa no figuran en esta lista TRULICITY inyección (dulaglutide),

* Las secciones o subsecciones omitidas de la información de prescripción completa no figuran en esta lista TRULICITY inyección (dulaglutide), ASPECTOS DESTACADOS DE LA INFORMACIÓN DE PRESCRIPCIÓN Estos spectos destcdos no incluyen tod l informción necesri pr usr de form segur y efectiv. Consulte l informción de prescripción complet pr. inyección

Más detalles

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE

DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Lbortorio de Físic Generl rimer Curso (Termodinánic) DETERMINACIÓN DEL COEFICIENTE ADIABÁTICO DEL AIRE Fech: 07/0/05. Objetivo de l práctic Medir el coeficiente dibático del ire relizndo un expnsión rápid..

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

FACULTAD DE DERECHO, CIENCIAS POLíTICAS Y SOCIALES CONSEJO DE FACULTAD

FACULTAD DE DERECHO, CIENCIAS POLíTICAS Y SOCIALES CONSEJO DE FACULTAD SEDE BOGOTÁ FACULTAD DE DERECHO, CIENCIAS POLíTICAS Y SOCIALES RESOLUCiÓN No. 186 de 2010 (Act Número 015 del 05 de gosto de 2010) "Por l cul se reglment el proceso de dmisión los progrms curriculres de

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles