DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DISPERSIÓN - ESPECTRÓMETRO DE PRISMA"

Transcripción

1 DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación d la curva d disprsión dl spctrómtro. INTRODUCCIÓN La spctroscopia s la rama d la física qu studia la intracción ntr la radiación lctromagnética y la matria. Ésta s una técnica muy mplada n la química y la física para studiar las propidads d la sustancia. El spctro caractrístico d una sustancia dada s único y propio solo d lla, por so podmos dcir qu l spctro d una mustra s como la hulla dactilar d sta qu la difrncia d las dmás. Existn varias técnicas spctroscópicas qu s difrncian n principio por l método utilizado, la rgión d frcuncias n qu s dsarrolla, l tipo d funt d radiación mplado, l tipo d mustra, las intraccions qu tinn lugar, tc, tc. Utilizando un spctrómtro d prisma qu trabaj n la rgión visibl s pud hacr spctroscopia d misión. Un spctrómtro óptico s utiliza para dscomponr (ANALIZAR) un haz d luz incidnt n sus rspctivas frcuncias o longituds d onda qu la componn. Est dispositivo spctral prmit visualizar cada una d las línas spctrals componnts d cirta radiación lctromagnética visibl y mdir su rspctiva longitud d onda. Un lmnto atómico gasoso a baja prsión sujto a una dscarga léctrica produc un spctro d misión discrto o d línas. Dbido a qu cada lmnto atómico mit su propio spctro caractrístico (único) y qu no xistn dos lmntos qu mitan las mismas línas spctrals; sta caractrística s utiliza para idntificar los lmntos prsnts n mustras dsconocidas. Para l studio d algunos spctros atómicos podmos utilizar los tubos spctrals. Los tubos spctrals continn uno o más lmntos gasosos atómicos o molculars a baja prsión. La nrgía s l suministra a través d un campo léctrico aplicado a los lctrodos d los tubos. Los ions y lctrons son aclrados por l campo; las colisions convirtn la nrgía cinética adquirida n otros tipos d nrgía, sindo la nrgía lctrónica una d llas. Los lctrons n los átomos xcitados ocupan uno d los muchos stados d nrgía prmitidos, qu son dtrminados por las lys d la física cuántica. Cada spci atómica xcitada mit las longituds d onda caractrísticas dtrminadas por las difrncias ntr los nivls d nrgía prsnts n tal spci (átomo o molécula). El análisis con un spctrómtro d prisma rvlará una sri d línas d misión d colors (monocromáticos) furts y nítidos. Estas línas con su rspctiva longitud d onda caractrizan a cada spci atómica. MARCO TEÓRICO Sgún la toría cuántica las sustancias no pudn absorbr o mitir radiación lctromagnética n forma continua sino n forma discrta, n porcions o cuantos d campo lctromagnético llamados fotons; n otras palabras s dic qu la nrgía stá cuantizada, y pud tomar los siguints valors d nrgía:

2 5 dond: E n m Z = ( n =,,... h n ), () n Estado nrgético dl átomo, m la masa dl lctrón, s la carga dl lctrón, h s la constant d Planck, y n s l númro cuántico principal. Cuando un fotón s mitido por un átomo xcitado, l lctrón raliza una transición radiativa dsd un stado d mayor nrgía a otro d mnor nrgía. El spctro d misión d una sustancia dada s una caractrística muy important, qu prmit dtrminar la composición fisicoquímica y algunas caractrísticas d la structura y las propidads d los átomos y las moléculas. Los átomos gasosos (H, H) a baja prsión s pudn considrar como átomos aislados o n stado libr qu al xcitarlos mitn un spctro d línas discrto, compusto por un grupo d línas spctrals sparadas, llamadas sris spctrals. El spctro más simpl s l dl átomo d Hidrógno. En una transición radiativa o d misión d radiación, la nrgía dl fotón, s l ngativo d la prdida d nrgía dl lctrón o sa: m E = E = f E = hω, () i h n n f i d dond s dsprnd qu: m = ω = R, () h n n f i n n f i dond ω s la frcuncia angular, m la masa dl lctrón, s la carga dl lctrón, h s la constant d Planck, R la constant d Rydbrg, y n s l númro cuántico principal (,,,..). Las longituds d onda d las línas spctrals s dtrminan por la formula d Balmr Rithz. = R λ n n En la cual: λ - Longitud d onda d la lína spctral, R Constant d Rydbrg, n Estado nrgético dl átomo al cual s raliza la transición dl lctrón dspués d la misión, n - Númro dl nivl atómico dsd l cual s raliza la transición dl lctrón n la misión d la radiación lctromagnética. El spctro más simpl s l dl átomo d Hidrógno. Las longituds d onda d sus línas spctrals s dtrminan por la formula d Balmr Rithz (). A cada sri dl spctro dl átomo d H l corrspond un dtrminado valor dl numro n. Al valor d n pud tnr una sri d númros ntros qu van dsd n + hasta +. Las sris dl átomo d Hidrógno más importants son: Sri n n Rgión dl E.E.M Lyman,,... Ultraviolta ( U.V ) Balmr,,5... Visibl ( VIS ) Pashn, 5, 6. Infrarroja ( I.R ) Braktt 5,6,7... Infrarroja ( I.R ) Pfund 5 6,7,8... Infrarroja ( I.R ) Dbido a qu n l prsnt laboratorio studiarmos l spctro d misión visibl dl átomo d Hidrógno l cual sta compusto por las cuatro primras línas d la sri d Balmr, llas son: H α - Lína Roja (transición d n = hasta n = ) H β - Lína Azul Clst (transición d n = hasta n = ). ()

3 6 Hγ - Lína Clst (transición d n =5 hasta n = ). H δ - Lína Violta (transición d n =6 hasta n = ) Entoncs tnmos qu la formula () para las longituds d onda d las línas visibls dl mrcurio s scrib así: λ α, β, γ, δ = R ; ( n n =,,5,6 ) (`) DESCRIPCIÓN DEL MONTAJE Y EQUIPAMIENTO La obsrvación d las línas spctrals y la mdición d las longituds d onda s ralizara con ayuda dl spctrómtro d prisma con óptica d vidrio. Las funts d radiación n sta práctica son los tubos spctrals d dscarga a baja prsión d los gass d Hlio Hidrógno n stado atómico. Los tubos posn forma capilar n l cntro, dond s produc la lctroluminiscncia más intnsa cuando ocurr la dscarga léctrica. Los tubos s dbn ncndr solo n l transcurso dl timpo n qu s va a rgistrar la obsrvación d las difrnts línas spctrals, no djarlo mucho timpo ncndido porqu la intnsidad d la luminiscncia dl tubo disminuy con l trabajo prolongado. Las tablas d las longituds d onda dl H y dl H s dan al final. Tara Nº. Calibración dl aparato spctral. EQUIPO REQUERIDO Espctrómtro d prisma Tubo spctral d Hlio Tubo spctral d Hidrógno Carrt d inducción d Rumkorff o bobina d Inducción (6V) Lámpara incandscnt 6V Cabls con bananas Funt d Podr 0-0 V Computador con Data Studio. La funt d radiación mplada (H) s dispon al frnt d la rndija d ntrada dl spctrómtro, la radiación ntrant pasa a través d un sistma colimador - prisma disprsor, al ntrar n l sistma disprsor (prisma), la luz s dscompon n sus rspctivas componnts spctrals monocromáticas, las cuals saln dl prisma formando ángulos difrnts dbido a la disprsión sufrida todas las componnts s rfractan d difrnt forma, obtniéndos así l spctro d la funt a la ntrada dl aparato spctral, l cual s pud visualizar con ayuda d un sistma tlscópico d obsrvación qu pud girar con rspcto al j vrtical. A través dl tlscopio s pud divisar la proycción d la scala d una rglilla sobr l spctro d línas, stas divisions s pudn utilizar para caractrizar l prisma d disprsión, sin st procdiminto sria imposibl hacr las rspctivas mdicions d la longitud d onda d cada componnt spctral.. S dispon l spctrofotómtro sobr una msa firm y s nivla dé tal forma qu ustd puda ajustar la altura d las funts d radiación.

4 7. Conct la funt d podr 0-6 V a la ntrada dl carrt d inducción (6V), y la salida d alta tnsión dl carrt conéctla a los lctrodos dl tubo spctral d H o H.. Encinda la funt d podr qu alimntará al carrt d inducción qu a la vz alimntará al tubo spctral, dj qu l tubo spctral s calint unos minutos ants d comnzar a obsrvar los spctros. 5. Dspués d visualizar los spctros procda a la calibración dl sistma spctral para lo cual ralic las siguints opracions: a. Conct l tubo d Hlio a la funt d alimntación d alto voltaj (Bobina d inducción). b. Lugo ncinda la funt d podr qu alimnta la lámpara d iluminación d la scala. c. Obsrv la posición d cada lína spctral sobr l fondo d la scala graduada tom nota d la posición y l color d la lína y rvis la tabla d las línas spctrals su color y longitud d onda dadas aquí. d. Lln la siguint Tabla d datos para l Hlio: Nº Color Lína λ (nm) Intnsidad Para-OrtoH Posición (cm) Roja 78, P Roja 706,5 5 O Roja 667,8 6 P Amarilla 587,6 0 O 5 Vrd 50,6 0 P 6 Vrd 9, P 7 Clst 7, O 8 Azul 7, 6 O 9 Azul 8,8 P 0 Violta, O Violta 0,6 5 O. Con los datos obtnidos, ralic un grafico d Posición d la lína spctral mdida n la scala contra longitud d onda n nm. (Utilic l programa Dato Studio). f. Con ayuda dl programa DataStudio hall la curva qu mjor ajust los datos xprimntals n la grafica obtnida. g. Copi la Gráfica, las tablas, y la cuación dada llévlas al inform d laboratorio final y saqu conclusions sobr llas. El grafico obtnido lo dnominarmos Gráfico d calibración o d las caractrísticas rfractivas dl matrial dl prisma, con bas n ésta s mdirán las longituds d onda dl spctro dl Hidrógno. Est gráfico d calibración ralizado con l spctro dl Hlio s adcuado pusto qu l s xtind por todas las longituds d onda dl spctro visibl dsd los 00 hasta los 700 nm. Como s pud obsrvar n la gráfica obtnida d posición contra longitud d onda, qu n principio xprsa la dpndncia dl índic d rfracción dl prisma utilizado n función d la longitud d onda, l coficint d rfracción pos difrnts valors para las difrnts longituds d onda; por lo tanto la disprsión dl aparato también s difrnt para los difrnts intrvalos dl spctro. Tara Nº. Mdición d la constant d Rydbrg. a. Sin movr l montaj antrior, cambi l tubo d H por l tubo d Hidrogno. b. Conct l tubo d Hidrogno a la funt d alimntación d alta tnsión. c. Lugo ncinda la funt d podr qu alimnta la lámpara d iluminación d la scala.

5 8 d. Obsrv la posición d cada lína spctral dl H sobr l fondo d la scala graduada tom nota d la posición y l color d la lína.. Lln la siguint Tabla d datos para l Hidrógno. f. g. h. i. j. k. l. m. Nº Color Lína λ (nm) To Posición λ (nm) Exp % Error Roja 656. Vrd Azul Violta I Violta II Violta III Con ayuda dl programa DataStudio y la curva ajustada hall la Posición d cada lína spctral mdida n la scala dl spctrómtro y ncuntr la longitud d onda rspctiva para cada color. Con ayuda d la formula () calcul la nrgía para los primros 6 nivls prmitidos dl átomo d H. Con ayuda d la formula (5) calcul la difrncia d nrgías para las primras 6 transicions prmitidas d la sri d Balmr para l átomo d H. Encuntr la nrgía para cada nivl d nrgía dl átomo d H n Jouls y n lctronvoltios. Calcul con ayuda d la formula (7) las posibls nrgías d los fotons mitidos para cada una d las línas visibls dl hidrógno, diga a qu transicions corrspond cada una d llas y su color. Con ayuda d la formula (7) calcul las frcuncias para cada lína spctral. Para cada lína dl H calcul la constant d Plank, hall promdio y % Error. Compar los valors xprimntals d λ, y d la constant d Ridbrg R con los valors tóricos, Hall l rror rlativo. n. Lln la siguint tabla. n Ε ( ) Ε (Balmr) ƒ ( ) λ ( ) % Error R ( ) % Error 5 6. Como s podrían utilizar los datos obtnidos para l spctro dl H para calcular la constant d Plank?. Qu información podmos obtnr d los spctros d los átomos?. Cómo cr ustd qu dbn sr los spctros d las moléculas?. Qu otro tipo d spctros xistn? 5. Qu aplicacions tin la spctroscopia? OBSERVACIONES CONCLUSIONES

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

Astrofísica de altas energías

Astrofísica de altas energías Astrofísica d altas nrgías Un ión cósmico d nrgía suprior a 10 15 V al ntrar n la atmósfra intracciona con los átomos d las capas altas d ésta, producindo una racción nuclar qu da como rsultado una sri

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

Tema 3 (cont.). Birrefringencia.

Tema 3 (cont.). Birrefringencia. Tma 3 (cont.). Birrfringncia. 3.8 Anisotropía. Dobl rfracción. 3.9 Modlo d Lorntz para la birrfringncia 3.10 Polarizadors dicroicos. Ly d Malus 3.11 Propagación a través d una lámina rtardadora 3.1 Aplicacions

Más detalles

Tuberías plásticas para SANEAMIENTO

Tuberías plásticas para SANEAMIENTO Tubrías plásticas para SANEAMIENTO SANIVIL Tubos compactos d PVC con Rigidz Anular SN 2 y SN 4 kn/m 2 d color tja para sanaminto sin prsión sgún UNE-EN 1401 y con prsión marca DURONIL sgún UNE-EN ISO 1452

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 10 IES Al-Ándalus. Dpto d Física y Química. Curso 9/ - - UNIVESIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO OPCIÓN A. a) Expliqu qué s ntind por vlocidad d scap y dduzca razonadamnt su xprsión. b) azon

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

168 Termoquímica y Cinética. Aspectos Teóricos

168 Termoquímica y Cinética. Aspectos Teóricos 168 Trmoquímica y Cinética 3..- Cinética química Aspctos Tóricos Como ya s ha indicado antriormnt, la trmodinámica tin como objtivo conocr n qu condicions una racción s pud producir d forma spontána. Sin

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

Energía. Reactivos. Productos. Coordenada de reacción

Energía. Reactivos. Productos. Coordenada de reacción CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)

Más detalles

Implementación de un sistema básico para Espectroscopia de gases atómicos ABSTRACT KEY WORDS RESUMEN

Implementación de un sistema básico para Espectroscopia de gases atómicos ABSTRACT KEY WORDS RESUMEN Implementación de un sistema básico para Espectroscopia de gases atómicos Heriberto Peña Pedraza Facultad de Ciencias Básicas. Departamento de Física Universidad de Pamplona Grupo de Investigaciones Ópticas

Más detalles

SECRETARIA DE ENERGIA

SECRETARIA DE ENERGIA Juvs 8 d octubr d 0 DIARIO OFICIAL (Primra Scción) 8 SECRETARIA DE ENERGIA NORMA Oficial Mxicana NOM-04-ENER-0, Caractrísticas térmicas y ópticas dl vidrio y sistmas vidriados para dificacions. Etiqutado

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja Funcions d Variabl Complja Modlos d Sistmas II Smstr 2008 Ing. Gabrila Ortiz L 1 Función Concpto Matmático Considrando los conjuntos X Y una función comprnd una rlación o rgla qu asocia a cada lmnto x

Más detalles

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS

INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS INTERCAMBIADOR DE CALOR AIRE AIRE PARA EL ACONDICIONAMIENTO TÉRMICO DE UNA CAMARA DE REPRODUCCION AGAMICA DE PLANTAS Aljandro Luis Hrnándz aljohr65@gmail.com Gracila Lsino lsino@gmail.com Univrsidad Nacional

Más detalles

Tema 3 La economía de la información

Tema 3 La economía de la información jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS. Nunca hace mucho el que reflexiona demasiado. Johann Fridich Vonchiller

CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS. Nunca hace mucho el que reflexiona demasiado. Johann Fridich Vonchiller CAPÍTULO 3. MEDICIONES ANEMOMÉTRICAS Nunca hac mucho l qu rflxiona dmasiado. Johann Fridich Vonchillr 3.1 Orign d la nrgía dl vinto La nrgía dl vinto procd n sncia dl sol. La Tirra rcib 1.74x10 17 Watts

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS Las opracions a las qu s rfir la fracción II d la Disposición 6.7.4, así como las garantías rals financiras o prsonals

Más detalles

Estudio de capas nanoestructuradas de TiO 2 para celdas fotoelectroquímicas

Estudio de capas nanoestructuradas de TiO 2 para celdas fotoelectroquímicas Univrsidad d la Habana Instituto d Matrials y Ractivos Estudio d capas nanostructuradas d TiO 2 para cldas fotolctroquímicas TESIS PRESENTADA EN OPCIÓN A GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS FÍSICAS

Más detalles

PROYECTO FIN DE CARRERA

PROYECTO FIN DE CARRERA UNIVERIDAD AUTONOMA DE MADRID ECUELA POLITECNICA UPERIOR PROYECTO FIN DE CARRERA DIEÑO DE ACOPLADORE DIRECCIONALE DE MICROONDA PARA MATRICE DE BUTLER INGENIERÍA DE TELECOMUNICACIÓN Ángl co Prito Mayo d

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO PROCEDIMIENTO DE CAPTACION Y ASIGNACION NIVEL SECUNDARIA ART, Clav: Página 1 d 7 1. Objtivo Asgurar qu: la captación, otorgaminto y asignación d bcas Académicas a los Estudiants d La Univrsidad dl Fútbol

Más detalles

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo,

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo, CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillrmo Bcrra Córdova Ára d Física, Dpto. Prparatoria Agrícola, Univrsidad Autónoma Chapingo, Chapingo, Txcoco, Estado d México, México, E-mail: gllrmbcrra@yahoo.com

Más detalles

PRIMERA PRÁCTICA SONIDO

PRIMERA PRÁCTICA SONIDO PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

TEMA 3 ESTRUCTURA ATÓMICA

TEMA 3 ESTRUCTURA ATÓMICA TEMA 3 ESTRUCTURA ATÓMICA ÍNDICE. Radiación lctromagnética.. Hipótsis d Planck. 3. Efcto fotoléctrico. 4. Espctros atómicos. 5. Modlo atómico d Bohr. 6. Nivls d nrgía y transicions lctrónicas. 7. Dualidad

Más detalles

Para reciclar hay 5 contenedores y cada uno con una función básica: -Azul: Papel,cartón -Verde: vidrios, -Amarillo:Envases(plástico..

Para reciclar hay 5 contenedores y cada uno con una función básica: -Azul: Papel,cartón -Verde: vidrios, -Amarillo:Envases(plástico.. s o m Có? r a l c i c r b d Para rciclar hay 5 contndors y cada uno con una función básica: -Azul: Papl,cartón -Vrd: vidrios, -Amarillo:Envass(plástico..) -Ngro:rstos y orgánico -Pilas. l u z A r o d n

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

Rack & Building Systems

Rack & Building Systems Rack & Building Systms La Emprsa RBS a nacido por la sinrgia y complmnto qu xist ntr sus productos y por l afán constant d nustra mprsa por difrnciars d la comptncia. En l ára d almacnaj industrial RBS

Más detalles

ANÁLISIS DE LA COMPRESIBILIDAD DE LOS RELLENOS SANITARIOS, COMPARACIÓN DE MODELOS TEÓRICOS

ANÁLISIS DE LA COMPRESIBILIDAD DE LOS RELLENOS SANITARIOS, COMPARACIÓN DE MODELOS TEÓRICOS ANÁLII DE LA COMPREIBILIDAD DE LO RELLENO ANITARIO, COMPARACIÓN DE MODELO TEÓRICO Turcumán, María (1) Instituto d Matrials y ulos, Facultad d Ingniría, Univrsidad Nacional d an Juan. Ingnira Civil. Espcilización

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional.

Sistemas de control: Elementos componentes, variables, función de transferencia y diagrama funcional. Sistmas d control: Elmntos componnts, variabls, función d transfrncia y diagrama funcional. Introducción Los sistmas d control automático han jugado un papl vital n l avanc d la cincia y d la ingniría.

Más detalles

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía Enfrntando Comportamintos Difícils Usando l Sistma d Guía R s o u r c & R f r r a l H a n d o u t Agrsión Obsrvación - Prguntas Trata la niña d hacr contacto d una manra inapropiada? Está tratando d sr

Más detalles

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO Antonio J. Barbro Mariano Hrnándz Alfonso Calra Pablo Muñiz José A. d Toro Mª Mar Artigao Dpto. Física Aplicada. UCLM. 1 Mdidas dl cuadrado d la vlocidad angular

Más detalles

Dinámica relativista Colisiones de fotones y electrones Efecto Compton

Dinámica relativista Colisiones de fotones y electrones Efecto Compton Dinámica rlativista Colisions d fotons y lctrons Efcto Compton Sbastián Nuza y Digo Zocco Laboratorio d Física 5, Facultad d Cincias Exactas y Naturals Univrsidad d Bunos Airs Bunos Airs, fbrro d 001 En

Más detalles

2º BACHILLERATO CINETICA QUÍMICA

2º BACHILLERATO CINETICA QUÍMICA VELOCIDAD DE REACCIÓN 1.- Escrib la xprsión d la vlocidad d racción n función d la concntración d cada una d las spcis qu intrvinn n l procso d obtnción d amoniaco. N + 3 H NH 3 d 1 v = [N] = 3 d 1 [H]

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3 DEPARAMENO DE INGENIERIA MECÁNICA INGENIERÍA INDUSRIAL DISEÑO MECÁNICO PRÁCICA Nº 3 DEERMINACIÓN DEL COEFICIENE DE ROZAMIENO ENRE CORREAS Y POLEAS Dtrminación dl coficint d rozaminto ntr corras y polas

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

MONITOREO DE CONTROLADORES PREDICTIVOS.

MONITOREO DE CONTROLADORES PREDICTIVOS. MONITOREO DE CONTROLADORES PREDICTIVOS. Rachid A. Ghraizi, Ernsto Martínz, César d Prada Dpt. Ingniría d Sistmas y Automática Facultad d Cincias, Univrsidad d Valladolid c/ Ral d Burgos s/n, 47, Valladolid,

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

Luis G. Cabral Rosetti. El Enigma del Radio de Carga del Neutrino p.1

Luis G. Cabral Rosetti. El Enigma del Radio de Carga del Neutrino p.1 E Enigma d Radio d Carga d Nutrino Luis G. Cabra Rostti Dpartamnto d Física d Atas Enrgías, ICNUNAM. E Enigma d Radio d Carga d Nutrino p.1 Pan d a Chara: 1. Introducción 2. Factors d forma d Nutrino 3.

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

X2500. Caja Estandár POTENCIAS. Tensión s. kw e 415/24 400/23 380/22

X2500. Caja Estandár POTENCIAS. Tensión s. kw e 415/24 400/23 380/22 X25 Rf. Motor 16V4G63F Rf. Altrnador LSA 51.2 VL9 Clas d ralizacións G3 CARACTERISTICAS GENERALES Frcuncia (Hz) 5 Tnsion (V) 4/23 Sncilla rglta d borns M8 TELYS APM82 Caja Estandár POTENCIAS DESCRIPTIVO

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS.

DEPARTAMENTO DE QUÍMICA ANALÍTICA Y TECNOLOGÍA DE ALIMENTOS FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 3ª RELACIÓN DE PROBLEMAS. 1.- En ausncia d autoabsorción, la intnsidad d fluorscncia d una mustra s proporcional a la concntración, solo a concntracions bajas. Calcular

Más detalles

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales MPRÉSTITOS Carn Badía, Hortènsia Fontanals, Mrch Galisto, José Mª Lcina, Mª Angls Pons, Trsa Prixns, Dídac Raírz, F. Javir Sarrasí y Anna Mª Sucarrats DPARTAMNTO D MATMÁTICA CONÓMICA, FINANCIRA Y ACTUARIAL

Más detalles

Digital Photo Professional Ver. 3.5 Instrucciones

Digital Photo Professional Ver. 3.5 Instrucciones ESPAÑOL Softwar d procsado, visualización y dición d RAW Digital Photo Profssional Vr.. Instruccions Contnido d stas instruccions DPP s utiliza para Digital Photo Profssional. En stas instruccions, las

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACT OF THE FAILURES AND INTERRUPTION IN PROCESS. AN ANALYSIS OF VARIABILITY IN PRODUCTION

Más detalles

Módulo 2 Herramientas para la búsqueda virtual en Internet. Internet. Internet?, qué es?, para qué sirve? y cómo funciona?

Módulo 2 Herramientas para la búsqueda virtual en Internet. Internet. Internet?, qué es?, para qué sirve? y cómo funciona? Módulo 2 Hrramintas para la búsquda virtual n Intrnt Intrnt Intrnt?, qué s?, para qué sirv? y cómo funciona? Algunas prsonas dfinn Intrnt como "La Rd d Rds", y otras como "La Autopista d la Información".

Más detalles

- SISTEMA DE INFORMACION DE GESTION -

- SISTEMA DE INFORMACION DE GESTION - - SISTEMA DE INFORMACION DE GESTION - INFORME Nº 4 Jf d División y Encargados d Cntros d Rsponsabilidad NIVEL 2 GOBIERNO REGIONAL DE MAGALLANES Y ANTARTICA CHILENA - DICIEMBRE 2008 - 1 Mta Mdidas Rsponsabl

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA 7 VERSIÓN:.0 FECHA: 19-06-01 I.E. COLEGIO ANDRÉS BELLO PÁGINA: 1 d 9 Nombrs y Apllidos dl Estudiant: Docnt: ALEXANDRA URIBE Ára: Matmáticas Grado: UNDÉCIMO Priodo: TERCERO GUIA 7 Duración: 0 horas Asignatura:

Más detalles

Aspectos Técnicos para la Determinación de la Prima de Riesgo en el Seguro de Gastos Médicos Mayores

Aspectos Técnicos para la Determinación de la Prima de Riesgo en el Seguro de Gastos Médicos Mayores Aspctos Técnicos para la Dtrminación d la Prima d Risgo n l guro d Gastos édicos ayors igul Angl Bltrán Prado Dicimbr 1992 ri Documntos d Trabajo Documnto d Trabajo No. 11 Índic Introducción 1 1. Objto

Más detalles

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Marita d Franco A Francisco José, Shrl, Marión, Paola, Constanc, Luis Migul Migul. AGRADECIMIENTOS Al Ing. Pdro Rangl por su comprnsión,

Más detalles

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN

LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando -PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos

Más detalles

EFECTO ZEEMAN. ν = ± eb 4πmc ν = 0. (cm 1 ) = B(cm 1 )

EFECTO ZEEMAN. ν = ± eb 4πmc ν = 0. (cm 1 ) = B(cm 1 ) EFECTO ZEEMAN Cuando s coloca un átomo n un campo magnético xtrno, s obsrva un dsdoblamimto d las línas spctrals y también una polarización d la luz mitida. Est fcto fu obsrvado por primra vz por Zman

Más detalles

Es un gas, gas natural

Es un gas, gas natural lan d la lcción - ágina 1 ESTDIANTES DE RIMARIA Tma Gas natural Funt trólo y gas natural, páginas 20 a 23 Objtivo Los alumnos aprndrán qu l gas natural s una sustancia qu s forma a través d millons d años

Más detalles

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL

INSTITUTO POLITECNICO NACIONAL PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL INSTITUTO POLITECNICO NACIONAL UNIDAD PROFESIONAL INTERDISCIPLINARIA DE BIOTECNOLOGIA PROBLEMARIO DE CALCULO DIFERENCIAL E INTEGRAL ELABORO: PROF. MARIO CERVANTES CONTRERAS DICIEMBRE DE 7 EJERCICIOS DE

Más detalles

DATOS DE LA EMPRESA Dirección:Juan B. Justo Código Postal: 1425 Teléfono: 4779-5100 int 6111 Fax: - E-Mail: jfontana@edenor.com

DATOS DE LA EMPRESA Dirección:Juan B. Justo Código Postal: 1425 Teléfono: 4779-5100 int 6111 Fax: - E-Mail: jfontana@edenor.com EDEO.A. AGEIA Modlos d FEM para l Control d uidos Aéros Dircción écnica, proycto d ubstacions d Alta nsión. Juan B. Justo 837. "Modlización Computacional por l método FEM para l Disño d istmas Fonoabsorbnts

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

LZ-2290A / IP-100 / SC-915

LZ-2290A / IP-100 / SC-915 R Máuina Pspuntadora n Zigzag, Pspunt calado, -aguja, Alta vlocidad, Impulsión dircta, controlada por computadora LZ-90A / IP-00 / SC-95 MANUAL DE INSTRUCCIONES NOTA : Ants d comnzar a usar sta máuina

Más detalles

TAMAÑO DE LA MUESTRA

TAMAÑO DE LA MUESTRA Rv. Epidm. Md. Prv. (003), : 8-4 TAMAÑO DE LA MUESTRA Enric Matu, Jordi Casal CRSA. Cntr d Rcrca n Sanitat Animal / Dp. Sanitat i Anatomia Animals, Univrsitat Autònoma d Barclona, 0893-Bllatrra, Barclona

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

núm. 51 lunes, 16 de marzo de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MERINDAD DE VALDEPORRES

núm. 51 lunes, 16 de marzo de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MERINDAD DE VALDEPORRES III. ADMINISTRACIÓN LOCAL C.V.E.: BOPBUR-2015-01676 AYUNTAMIENTO DE MERINDAD DE VALDEPORRES Bass para la bolsa d trabajo para sustitucions d Auxiliars d Griatría, Cocinros/as y Prsonal d Limpiza d la rsidncia

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de:

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de: Vignt a partir d: Clav: 15 d Julio d 2005 Vrsión: Página 1 d 12 1. Objtivo Asgurar qu la Entrga d Documntos al Instituto Hidalguns d Educación Mdia Suprior y Suprior (IHEMSYS) por part d la Coordinación

Más detalles

Facultad de Ingeniería, Universidad del Magdalena, A.A. 731, Santa Marta, Colombia;

Facultad de Ingeniería, Universidad del Magdalena, A.A. 731, Santa Marta, Colombia; Rvista Bistua ISSN 010411 Univrsidad d Pamplona, Pamplona-Colombia Estudio D La Variana Al Cambio D Escala Y Al Dsplaaminto En El Plano En Un JTC D Ordn Fraccional José Luis Aguilar Siado 1, y Yid Torrs

Más detalles

TEMA 14. ESTRUCTURA DEL ESTADO SOLIDO Y MOVIMIENTO ELECTRONICO

TEMA 14. ESTRUCTURA DEL ESTADO SOLIDO Y MOVIMIENTO ELECTRONICO TEMA 14. ESTRUCTURA DEL ESTADO SOLIDO Y MOVIMIENTO ELECTRONICO 14.1.- ESTRUCTURA DEL ESTADO SOLIDO Coo s sab la atria s prsnta n trs stado: gass, líquidos y sólidos. Los conductors y siconductors son sólidos

Más detalles

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012 Carrra: Tcnicatura Suprir n Análisis y Prgramación d Sistmas Asignatura: Arquitctura d cmputadras Prfsr: Ing. Gabril Duprut Trabaj práctic Nr. : Sistmas d numración y códigs A l larg d st práctic cnstruirá

Más detalles

(máxima) (mínima) (máxima) (mínima)

(máxima) (mínima) (máxima) (mínima) Ejrcicios d componnts lctrónicos. En l circuito d la figura, l amprímtro marca µa con la LD tapada y 4 ma con la LD compltamnt iluminada. Si la rsistncia d la bombilla s d 0 Ω, calcula la rsistncia máxima

Más detalles

Actividad VI.59 Dinámica relativista - Colisiones de fotones y electrones - Efecto Compton

Actividad VI.59 Dinámica relativista - Colisiones de fotones y electrones - Efecto Compton Actividad VI.59 Dinámica rlativista - Colisions d fotons y lctrons - Efcto Compton Objtivo Estudio xprimntal d los modlos clásicos y rlativistas para la intracción d rayos gama con lctrons librs. Dtrminación

Más detalles

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general III. ADMINISTRACIÓN local DIpuTACIÓN provincial D burgos scrtaría gnral cv: BOPBUR-2011-01058 El Plno d la Excma. Diputación Provincial, n ssión ordinaria clbrada l día 16 d novimbr d 2010, adoptó ntr

Más detalles