DEPTO. DE INGENIERIA MECANICA E INDUSTRIAL MECATRONICA 10

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DEPTO. DE INGENIERIA MECANICA E INDUSTRIAL MECATRONICA 10"

Transcripción

1 DEPTO. DE INGENIERIA MECANICA E INDUSTRIAL MECATRONICA 10 CONTROL DE MOTORES 1er. INFORME DE CONTROL DE MOTORES NAVARRO FUENTES JOSE BALMORE SIGIFREDO ERNESTO SORIANO GARCIA INSTRUCTOR: LUIS MANUEL CASTELLON Lunes, 08 de septiembre de 2008

2 INDICE Introducción Objetivos Controles realizados en taller Control sencillo para mantenido de un motor Control de arranque secuencial para dos motores.. Control para inversor de giro del motor.. Control Joggin para pulsos de trabajo de un motor Conclusiones Bibliografía..

3 Introducción El control de un motor consiste en, por medio de ciertos elementos que mas adelante listaremos, poder manipular el arranque, apagado, sentido de giro, etc. De un motor, sabiendo que en la práctica necesitaremos poder efectuar estas operaciones a largas distancias, de una manera segura y facilitando el control de las distintas operaciones que un motor eléctrico pueda realizar. En la actualidad las grandes empresas están dejando a un lado los controles que utilizan lógica de relés para recurrir a sistemas controladores automatizados, ya que disminuyen el mantenimiento y optimizan los procesos para los cuales fueron diseñados, la capacidad y versatilidad que poseen estos sistemas hace que los gastos disminuyan proporcional y progresivamente además de que el producto se elabore con mayor precisión, por lo tanto, son estos sistemas tan importantes en la industria actual que se requiere personal capacitado para implementarlos de manera que se les pueda sacar el mayor provecho.

4 Objetivo general Como grupo de trabajo tenemos como objetivo general el de proporcionar la información de los conocimientos obtenidos de lo que es un control de un motor eléctrico así como sus distintas aplicaciones. Objetivo especifico Nuestro objetivo específico trazado es crear un informe que especifique los controles de motores que hasta la fecha hemos estudiado, teniendo también la explicación de cada uno de ellos, teniendo en cuenta que en un futuro podrá ser de utilidad dicha información en procesos practico-laborales.

5 GENERALIDADES SOBRE LOS APARATOS DE MANIOBRA Y PROTECCIÓN Aparatos de maniobra Son todos aquellos aparatos que permiten el paso o la interrupción del flujo de corriente a una determinada carga, esta puede ser motores, bobinas, resistencias, entre otras. Existen dos grandes grupos de aparatos de maniobra: Aparatos de maniobra manuales Aparatos de maniobra automáticos Los aparatos de maniobra manuales son todos aquellos que necesitan de un operario para su accionamiento. Estos pueden ser con poder de corte (puede ser accionado en circuito bajo carga) y sin poder de corte (deben ser accionados sin carga). Entre estos aparatos tenemos: Los interruptores: Son dispositivos poder de corte, para cerrar o abrir circuitos, las secciones de las piezas que cierran o abren el circuito deben estar convenientemente dimensionadas, de tal manera que permitan el paso d corriente sin que se genere calentamiento excesivo. Al abrirse el circuito la chispa que se produce debe apagarse rápidamente, antes de que se forme un arco eléctrico, que dañe fácilmente los contactos. Por ello la operación de estos de be realizarse con un movimiento rápido, o mediante el sistema de apertura brusca. Existen varios tipos de modelos de interruptores como los basculantes, de cuchilla, entre otros. Pulsadores: Estos son dispositivos que se diferencian de los interruptores por que estos cierran y abren circuitos solamente mientras actúa sobre ellos una fuerza exterior, recuperando su posición de reposo (inicial) al cesar dicha fuerza, por acción de un resorte o muelle. Seccionadores: Son aparatos de maniobra sin poder de corte y que por consiguiente pueden abrir o cerrar circuitos únicamente cuando están sin carga (vacío).

6 Los aparatos de maniobra automáticos son diseñados para abrir o cerrar circuitos en función de los valores que adquieren ciertas magnitudes físicas como temperatura, presión, espacio, tiempo, entre otros. Los mas usados son los interruptores automáticos o disyuntores, cuya función especifica es la de abrir circuitos bajo condiciones anormales, aunque también pueden usarse como simple interruptores. El disyuntor puede actuar por sobrecargas, cortocircuitos, sobretensiones o subtensiones, al producirse cualquiera de estas anomalías se desconecta automáticamente, aislando el circuito, para recuperar su estado normal se hace el rearme manual. El contactor también pertenece a este grupo de aparatos automáticos de maniobra del cual se tratara mas detalladamente más adelante. Las principales características de un interruptor automático son: Capacidad de maniobra, que es el número mínimo de maniobras que se puede realizar con dicho aparato. Poder de corte, lo cual indica la máxima corriente que puede interrumpir sin peligro que se dañe. Aparatos de protección Son destinados a interrumpir el circuito cuando se presentan irregularidades o condiciones anormales en su funcionamiento, en su mayoría son aparatos de protección por sobrecarga o sobreintensidades (los mas usados en controles y automatismos), entre estos aparatos tenemos a: Fusibles: Estos son conductores calibrados únicamente para el paso de una determinada corriente, por consiguiente estos conductores son más débiles que el resto de los conductores del resto del circuito. De manera que al producirse un cortocircuito, este interrumpirá el flujo de corriente desenergizando el circuito que esta protegiendo, esto lo hace ya que el fusible se funde para valores de corriente mayores que el valor de trabajo del mismo debido a que su punto de fusión es muy bajo, logrando evitar daños mayores en las cargas o al mismo circuito en si. Existen muchos tipos de fusibles; de tapón, bayoneta, cartucho, cuchilla, etc.

7 EL CONTACTOR Es un aparato de maniobra automático con poder de corte, y que por consiguiente puede cerrar o abrir circuitos con carga o en vació. Se le define como un interruptor accionado o gobernado a distancia por acción de un electroimán. Partes del contactor Carcaza: soporte fabricado en material no conductor (plástico o baquelita) sobre el cual se fijan todos los componentes del contactor. Circuito electromagnético: esta compuesto por unos dispositivos cuya finalidad es transformar la electricidad en magnetismo, generando un campo magnético lo más intenso posible. Propiamente constituiría el electroimán de un contactor. Esta compuesto de bobina, núcleo y armadura. Bobina: es un arrollamiento de alambre, con un gran número de espiras, que al aplicársele tensión crea un campo magnético. El flujo generado da lugar a un par electromagnético, superior al par resistente de los muelles de la armadura, atrayéndolo hacia el núcleo Se construye con cobre electrolítico, arrollándolo sobre una formaleta. La intensidad absorbida por la bobina, al ser energizada, es relativamente elevada, debido a que no existe en el circuito nada más que la resistencia del conductor, por ser la reactancia mínima al tener el circuito electromagnético mucho entrehierro. Una vez cerrado el circuito magnético (cuando el núcleo atrae la armadura) aumenta la impedancia de la bobina, lo que reduce la corriente inicial a uno intensidad nominal baja. La tensión de alimentación puede ser la misma del circuito de fuerza o inferiores a ésta, reducidas por un transformador, o suministradas por otra fuente de alimentación. Por este motivo, al elegirse un contactor, debe tomarse muy en cuenta la tensión (y frecuencia) con que debe energizarse la bobina. Estos datos vienen claramente registrados en ella. La tensión que se aplica a la bobina, se realiza a través de una gran variedad de elementos (pulsadores, contactos auxiliares, contactos de elementos auxiliares de mando, etc.) de acuerdo o las necesidades o complejidad del circuito. Núcleo: El núcleo es una parte metálica, generalmente en forma de E, y que va fija en la carcaza. Su función es concentrar y aumentar el flujo magnético que genera la bobina (colocada en la parte central del núcleo), para atraer con mayor eficiencia la armadura. Se construye con una serie de láminas muy delgadas (chapas), ferromagnéticas y aisladas entre sí (pero que forman un solo bloque fuertemente unido), generalmente de

8 hierro silicoso, con la finalidad de reducir al máximo los corrientes parásitas o de Foucoult (corrieres eléctricas que circulan por el núcleo al estor sometidas a una variación del flujo magnético, originando pérdidas de energía por efecto joule). En los contactores cuyo circuito de mando va a ser alimentado por corriente alterna (no así cuando se alimenta con corriente continua), el núcleo debe tener un elemento adicional denominado espiras de sombra, espiras en cortocircuito, espiras de Frager o anillos de defasaje. Cuando circula corriente alterna por la bobina, cada vez que el flujo es cero, la armadura se separa del núcleo dos veces por segundo, porque el flujo magnético producido por la bobina es también dos veces cero. En realidad como el tiempo es muy pequeño (1/120 de segundo cuando la frecuencia es 60 Hz), es imposible que la armadura se separe completamente del núcleo, pero es suficiente para que se origine un zumbido y vibración, que de ser continuo estropearán el contactor. Para evitar este inconveniente se colocan en las dos columnas laterales del núcleo las espiras de sombra (construidas en cobre), para suministrar al circuito magnético un flujo cuando la bobina no lo produce, creando en consecuencia un flujo magnético constante, similar al que puede produciría la corriente continua. Armadura: elemento similar al núcleo, en cuanto a su construcción, pero que a diferencia de este es una porté móvil, cuya finalidad principal es cerrar el circuito magnético, cuando se energice la bobina, porque en estado de reposo debe estar separado del núcleo. Se aprovecha de esta propiedad de movimiento que tiene para colocar sobre el una serie de contactos (parte móvil del contacto) que se cerrarán o abrirán siempre que la armadura se ponga en movimiento. La armadura debe estar cubierta por un material aislante, para evitar que los diferentes contactos que se coloquen queden eléctricamente unidos. Contactos: elementos que tienen por objeto cerrar o abrir una serie de circuitos. Un contacto está compuesto por dos partes fijas (ubicadas en la carcaza) y una parte móvil (sujeta en la armadura). Ordinariamente están hechos de bronce fosforado, que es un buen conductor, tiene consistencia y al mismo tiempo cierta elasticidad. Normalmente en el punto en que se establece el contacto (extremos de la parte fija y móvil que deben unirse) se produce un arco eléctrico al abrirse el circuito bajo carga, por lo que es necesario que dichos puntos tengan una mayor consistencia y dureza. Para lograr esto se construyen dichos puntos en materiales aleados a base de plata-cadmio, plata-níquel, plata-paladio, etc. Estas partes deben tener una gran resistencia al desgaste por erosión que produce el arco, tener buena resistencia mecánica, poca resistencia eléctrica en el punto de contacto, no oxidable (el óxido se constituye en material aislante) y no ser susceptible a pegarse o soldarse. Todas estas exigencias hacen que los contactos (especialmente en el punto de contacto) sean la parte más delicada del contactor, y por consiguiente deben cuidarse con especial esmero, de manera que los circuitos que establecen funcionen normalmente.

9 Una de las precauciones que más debe cuidarse es la de hacerles un mantenimiento periódico, así como protegerlos del polvo, grasa, humedad, etc. En el contactor encontramos dos tipos de contactos: principales y auxiliares. a) Principales: son los contactos que tienen por finalidad realizar el cierre o apertura del circuito principal, a través del cual se transporta la corriente al circuito de utilización (carga). Deben estar debidamente calibrados, para permitir el paso de intensidades requeridas por la carga sin peligro de deteriorarse. Por la función que deben realizar estos contactos serán únicamente abiertos. b) Auxiliares: son aquellos contactos que tienen por finalidad el gobierno del contactor (específicamente de la bobina) y de su señalización. Pueden ser abiertos o cerrados, y como están hechos para dar paso únicamente a pequeñas corrientes (alimentación de la bobina y elementos de señalización), suelen ser normalmente más pequeños que los contactos principales. El número de contactos auxiliares por contactor varía de acuerdo a las necesidades de las diferentes maniobras, desde uno normalmente abierto, hasta varios abiertos y cerrados. En circuitos con cierta complejidad se usan frecuentemente contactores que tienen únicamente contactos auxiliares, denominados por esta rozón contactores auxiliares. Funcionamiento del contactor: Cuando la bobina es recorrida por la corriente eléctrica, genera un campo magnético intenso que hace que el núcleo atraiga a la armadura (parte móvil), de manera que al realizarse este movimiento, se cierran contemporáneamente todos los contactos abiertos (tanto principales como auxiliares) y se abren los contactos cerrados. Para volver los contactos a su estado de reposo basta desenergizar la bobina. RELÉ El relé es un dispositivo mecánico capaz de comandar cargas pesadas a partir de una pequeña tensión aplicada a su bobina. Básicamente la bobina contenida en su interior genera un campo magnético que acciona el interruptor mecánico. Ese interruptor es el encargado de manejar la potencia en sí, quedando al circuito electrónico la labor de "mover" la bobina. Permite así aislar mecánicamente la sección de potencia de la de control. Pero para accionar la bobina la corriente y tensión presente en un puerto paralelo no es suficiente.

10 Controles realizados en taller Control sencillo para mantenido de un motor Función de un enclavamiento El enclavamiento sirve para mantener la conexión después de presionar nuestro botón de arranque y al presionar nuestro botón de paro se para el motor y se bota el enclavamiento y el botón de arranque.

11

12 Control de arranque secuencial para dos motores DIAGRAMA DE FUERZA DIAGRAMA DE CONTROL Funcionamiento: Al presionar el botón start1 se energiza K1 y cierra el contacto NO de K1 permitiendo que la bobina del mismo quede energizada. Para desenergizar la bobina de K1 solo se presiona Stop1. Con el botón start2 es igual solo que acciona K2, si no se acciona primero K1 no se puede energizar k2. Cada contactor domina a un motor ósea que si se energiza K1 se moverá M1, y con K2 se moverá M2. Los contactos NC son protección del bimetalito.

13 DIAGRAMA DE CONTROL CASCADA

14 Control para inversor de giro del motor 3~ AC DIAGRAMA DE FUERZA DIAGRAMA DE CONTROL Funcionamiento: Al presionar el botón start1 se energiza K1 y cierra el contacto NO de K1 permitiendo que la bobina del mismo quede energizada, permitiendo el paso de L1, L2 y L3 al motor haciendo que el motor gire para un lado, también abre el contacto NC de K1 con esto no permite que K2 se energice al presionar Start2. Si se presiona Start2 sin que K1 este activado K2 se activa y no permite que K1 se active con el contacto (de K2) también cierra el contacto de K2 manteniendo energizada su bobina (la de K2) cuando esta energizado K2 pasan las líneas L1, L3 y L2 (una fase permutada) al motor (M) haciendo que gire para el otro lado Para desenergizar K1 o K2 se presiona el pulsador NC Stop.

15 Diagrama de control escalera.

16 Control de motor dahlander con alta y baja velocidad con inversión de giro Diagrama de control cascada Diagrama en escalera de control en el diagrama de control del motor dahlander se utilizo la cantidad de 5 contactores mas un timer como retardo ala conexión. En el momento en que se presiona F(forwad) o R(reverse) se cumple cualquiera de las dos conexiones actuando como auto enclavamientos por medio de su contacto normalmente abierto conectado en paralelo a el pulsador de cada arranque. Se a conectado también un contacto de cada bobina en serie a la otra bobina, de tal forma que si una esta activa la otra no tenga

17 oportunidad de hacerlo. En el momento que se a activado k1 o k2 se inicia el timer por medio de dos contactos en paralelo normalmente abiertos de k1 y k2. t1 tiene un contacto normalmente cerrado conectado a k3 y el contacto normalmente abierto esta conectado a k4 y k5 pero estos dos contactos están comandados por los dos en paralelo de k1 y k2 de tal forma que ninguno de estos se activara si k1 o k2 no se en enclavado DIAGRAMA DE FUERZA Fuerza Para el motor dhalander se puede ver que k2 o k1 deberían entrar para que se pueda producir cualquiera de los arranques ya que tras de este se activara el contactor tres que es el que forma la conexión de los tres vértices t1,t2,t3 y deja sueltos a t4,t5,t6 de tal forma que el motor arranca en baja velocidad, tiempo después queda activo k4 y k5 desconectando a su ves a k3, k4 y k5 se encargan de arrancar el motar a alta velocidad debido a que k4 forma un estrella en t1,t2,t3 y k5 manda los otros vértices hacia las fases de alimentación para el motor

18 Control de un motor por pulsos con un relay (Joggin) DIAGRAMA DE FUERZA DIAGRAMA DE CONTROL Funcionamiento: Al presionar el botón start1 se energiza el relay (CR) cerrando los contactos NO 10-6 y 11-7 permitiendo así la energizacion de K q cierra el contacto NO que sirven para mantener energizadas las bobinas de K y CR, al mantener energizado K1 el motor (M) se moverá. Para desenergizar K y CR solo se presiona el pulsador Stop. Cuando no esta energizado CR ni K al presionar el pulsador S2 energiza K mientras este presionado, esto permite que al presionar S2 se mueva el motor y detenerlo rápidamente al dejar de presionar (el motor funciona por pulsos). Los contactos NC son protección del bimetalito.

19 Diagrama de control escalera.

20 DIAGRAMA DE FUERZA Y CONTROL MOTOR TRIFASICO, 9 LINEAS DELTA SERIE-PARALELO. Diagrama de fuerza Diagrama de control escalera.

21 Diagrama de control cascada.

22 Control de motor monofasico con inversor de giro Diagrama eléctrico de control En el diagrama de control para el monofasico se nesecitaran tres contactores que están a cargo de la inversión de las bobinas, P(para general) comanda a las dos bobinas k2 y k3 y cada una de ellas tiene un auto enclavamiento gobernado por un contacto normalmente abierto de cada bobina y a su ves abren un contacto normalmente cerrado que esta conectado en serie a la otra bobina, k1 se activa cada ves que k2 o k3 se active

23 Diagrama de fuerza Como se puede ver en el diagrama de fuerza k1 es quien controla la bobina primaria y k2 y k3 comandan la posición de la bobina de arranque con respecto a la primaria es por eso que k1 entra cuando se halla activado k2 o k3 y como se puede ver k2 conecta la punta del condensador a neutro y la bobina a fase y k3 conecta la punta del condensador a fase y la de la bobona a neutro. Y es así como se produce una inversión de giro en un motor monofasico

24 Diagrama eléctrico de control para motor de 12 líneas en delta serie paralelo Diagrama en escalera de control En el diagrama de control de 12 líneas se utilizo la cantidad de 5 contactores mas un timer como retardo ala conexión. En el momento en que se persona F(forwad) o R(reverse) se cumple cualquiera de las dos conexiones actuando como auto enclavamientos por medio de su contacto normalmente abierto conectado en paralelo a el pulsador de cada arranque. Se a conectado también un contacto de cada bobina en serie a la otra bobina, de tal forma que si una esta activa la otra no tenga oportunidad de hacerlo. En el momento que se a activado k1 o k2 se inicia el timer por medio de dos

25 contactos en paralelo normalmente abiertos de k1 y k2. t1 tiene un contacto normalmente cerrado conectado a k3 y el contacto normalmente abierto esta conectado a k4 y k5 pero estos dos contactos están comandados por los dos en paralelo de k1 y k2 de tal forma que ninguno de estos se activara si k1 o k2 no se en enclavado Diagrama de fuerza

26 Diagrama de fuerza Como se pudo ver en el de control lo primero en activarse serian los contactores k1 o k2 y se pueden observar que son los que le darán la inversión de giro al motor debido a que a su salida, las líneas están conectadas de igual forma pero a su entrada tiene una línea invertida y es de ahí de donde se alimenta el motor, sabiendo que k1 o k2 se han activado es notable ver que k3 se activara en el mismo momento y se provocara un arranque en delta serie ya que k3 esta uniendo las líneas 4,7 5,8 6,9 y como es un motor de 12 líneas las 1,12 2,10 3,11 se han conectado por medio de cables para formar la posición del delta, después del tiempo del timer se desconecta k3 y se conecta k4 y k5 que son los que forman un estrella paralelo porque las líneas 1,12,7,6 2,10,8,4, y 3,11,9,5 están unidas y e así como se produce un arranque serie paralelo en delta con inversión de giro

27 Diagrama de fuerza DIAGRAMA DE FUERZA Y CONTROL SEMAFORO. Diagrama de control Al presionar start k1 se energiza cerrando el contacto NO del mismo logrando un mantenido que energiza todo el circuito, entra a la cuenta el timer 1(T1) y se energiza k2( encendiendo la luz verde) al cambiar T1 se desenergiza K2(apaga luz verde) y se energiza k3( enciende luz amarilla) también entra a la cuenta T2, al cambiar T2 se energiza K4(enciende luz roja) que el mismo hace que se abra un contacto NC que desenergiza K3(apaga luz amarilla) y entra a la cuenta T3. Al cambiar T3 se abre el contacto NC de T3 desenergizando parte del circuito, con esto logra un reset del sistema empezando de nuevo su función cíclica ( primero luz verde, después amarilla, y por ultimo roja)

28 Anexos. Contactor y auxiliar botoneras o pulsadores.

29 rele timer

30 Conclusiones. Debe ser analista, detallista, trabajar con mucha ética, con precisión y sin errores. En nuestra práctica de poner en funcionamiento el arranque de un motor a 120v concluimos que para que este funcione correctamente, debemos utilizar ciertos competentes que nos ayudaran al correcto control de este mismo. Estos componentes o elementos que utilizamos como son, botoneras, contactores, conductores, etc. Deben de ir correctamente conectados para que además este funcione, no ocurra un accidente como por ejemplo un corto circuito. Que los reles y contactores son muy útiles cuando deseamos controlar un motor a distancia, alejándonos más del peligro de toparnos con altas corrientes eléctricas y haciendo más sencillo el uso de esta. Nos complace como grupo concluir que de manera general sabemos como debe de ir un circuito de un arranque de motor sencillo, lo cual nos servirá de mucho en la práctica cuando deseemos controlar un motor, además nos servirá de pauta para manejar controles de motores más complejos.

31 Bibliografía. Instalaciones eléctricas, José Luis Sanz Serrano. control electrónico y simulación motores corriente alterna, Martínez Rodrigo ; herrero.

Tema: Dispositivos de control de motores.

Tema: Dispositivos de control de motores. Tema: Dispositivos de control de motores. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura Control Industrial. I. Objetivos. Que el estudiante: Conozca las diferentes partes de un contactor. Desarrolle

Más detalles

TEMA 2. ESQUEMAS ELÉCTRICOS (II)

TEMA 2. ESQUEMAS ELÉCTRICOS (II) TEMA 2. Esquemas eléctricos (II) 1 TEMA 2. ESQUEMAS ELÉCTRICOS (II) 1. SÍMBOLOS Y ESQUEMAS ELÉCTRICOS EN LAS NORMAS UNE EN 60.617...2 1.1. DISPOSITIVOS DE CONMUTACIÓN DE POTENCIA...2 1.1.1. Contactor...2

Más detalles

CONTROLES ELÉCTRICOS PRACTICA # 1: RELEVADOR Y CONTACTOR LIRA MARTINEZ MANUEL ALEJANDRO

CONTROLES ELÉCTRICOS PRACTICA # 1: RELEVADOR Y CONTACTOR LIRA MARTINEZ MANUEL ALEJANDRO CONTROLES ELÉCTRICOS PRACTICA # 1: RELEVADOR Y CONTACTOR LIRA MARTINEZ MANUEL ALEJANDRO ENTREGA: 8/31/2010 INTRODUCCIÓN El control eléctrico es básicamente establecer acciones deseadas con la ayuda de

Más detalles

CRUCIGRAMA #1 HORIZONTAL VERTICAL

CRUCIGRAMA #1 HORIZONTAL VERTICAL CRUCIGRAMA #1 HORIZONTAL 2. Controla y procesa todas las operaciones dentro del PLC 6. Patento el PLC en 1974. 8. Son dispositivos eléctricos y/o mecánicos que convierten magnitudes físicas en una señal

Más detalles

TEMA 5: APLICACIONES DEL EFECTO TÉRMICO

TEMA 5: APLICACIONES DEL EFECTO TÉRMICO Elementos de caldeo TEMA 5: APLICACIONES DEL EFECTO TÉRMICO Son resistencias preparadas para transformar la energía eléctrica en calor (Figura). Se utilizan para la fabricación de estufas, placas de cocina,

Más detalles

MÁQUINAS ELÉCTRICAS: MOTORES

MÁQUINAS ELÉCTRICAS: MOTORES MÁQNAS ELÉCTRCAS: MOTORES Se denomina máquina eléctrica a todo dispositivo capaz de generar, transformar o aprovechar la energía eléctrica. Según esto podemos clasificar las máquinas eléctricas en tres

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

AUTOMATISMOS INDUSTRIALES

AUTOMATISMOS INDUSTRIALES AUTOMATISMOS INDUSTRIALES Tema 2 Componentes en un Automatismo Eléctrico Normas utilizadas La norma Europea EN 60617 aprobada por la CENELEC (Comité Europeo de Normalización Electrotécnica) y la norma

Más detalles

Automatismos eléctricos

Automatismos eléctricos Automatismos eléctricos Circuito de Mando: representa el circuito auxiliar de control. Compuesto de : Contactos auxiliares de mando y protección Circuitos y componentes de regulación y control Equipos

Más detalles

TRANSFORMADORES TRANSFORMADORES

TRANSFORMADORES TRANSFORMADORES Sean dos bobinas N 1 y N 2 acopladas magnéticamente. Si la bobina N 1 se conecta a una tensión alterna sinusoidal v 1 se genera en la bobina N 2 una tensión alterna v 2. Las variaciones de flujo en la

Más detalles

Nota Técnica Abril 2014

Nota Técnica Abril 2014 LÁMPARAS LED QUE QUEDAN SEMIENCENDIDAS O PARPADEAN: En ocasiones ocurre que al realizar una sustitución en donde antes teníamos una halógena por una lámpara LED, la nueva lámpara se queda semiencendida

Más detalles

RELÉS ELECTRICIDAD INDUSTRIAL. www.portalelectrozona.com

RELÉS ELECTRICIDAD INDUSTRIAL. www.portalelectrozona.com CONTENIDO RELÉS Qué es un relé? Para qué sirve un relé? De qué partes consta un relé? Símbolo eléctrico de un relé Cómo funciona un relé? Ejemplo de funcionamiento Hay otros tipos de relés? Modelos comerciales

Más detalles

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín

Escuela 4-016 Ing. Marcelo Antonio Arboit - Junín Un transformador se compone de dos arrollamientos aislados eléctricamente entre sí y devanados sobre un mismo núcleo de hierro. Una corriente alterna que circule por uno de los arrollamientos crea en el

Más detalles

1.1 Qué es y para qué sirve un transformador?

1.1 Qué es y para qué sirve un transformador? TRANSFORMADORES_01_CORR:Maquetación 1 16/01/2009 10:39 Página 1 Capítulo 1 1.1 Qué es y para qué sirve un transformador? Un transformador es una máquina eléctrica estática que transforma la energía eléctrica

Más detalles

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9

Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 Por Guillermo Martín Díaz Alumno de: 1º Ingeniería Informática Curso 2005/2006 ËQGLFH Motores de Corriente Continua...3 Motores Paso a Paso...7 Bibliografía...9 2 0RWRUHVGH&RUULHQWHFRQWLQXD Son los mas

Más detalles

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa.

Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Electricidad: flujo o corriente de electrones. Electrón: partícula más pequeña de un átomo, que no se encuentra en el núcleo y que posee carga eléctrica negativa. Elementos básicos de un circuito: generador,

Más detalles

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA

UD. 4 MAQUINAS ELECTRICAS ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA ELECTROTECNIA APLICADA A LA INGENIERIA MECÁNICA UD. 4 MAQUINAS ELECTRICAS Descripción: Principios de electromagnetismo y funcionamiento y aplicaciones de las diferentes máquinas eléctricas. 1 Tema 4.4.

Más detalles

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL (BILBAO) Departamento de Ingeniería Eléctrica INDUSTRI INGENIARITZA TEKNIKORAKO UNIBERTSITATE-ESKOLA (BILBO) Ingeniaritza Elektriko Saila ALUMNO P9:

Más detalles

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO El motor eléctrico Física Liceo integrado de zipaquira MOTOR ELECTRICO Motores y generadores eléctricos, grupo de aparatos que se utilizan para convertir la energía mecánica en eléctrica, o a la inversa,

Más detalles

Curso sobre Controladores Lógicos Programables (PLC).

Curso sobre Controladores Lógicos Programables (PLC). CURSO Curso sobre Controladores Lógicos Programables (PLC). Por Ing. Norberto Molinari. Entrega Nº 9. Introducción a la Programación. Consideraciones previas sobre programación ladder Antes de empezar

Más detalles

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR

Máquinas Eléctricas. Sistema Eléctrico. Maquina Eléctrica. Sistema Mecánico. Flujo de energía como MOTOR. Flujo de energía como GENERADOR Máquinas Eléctricas Las máquinas eléctricas son convertidores electromecánicos capaces de transformar energía desde un sistema eléctrico a un sistema mecánico o viceversa Flujo de energía como MOTOR Sistema

Más detalles

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA

OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA OPTIMIZACIÓN DEL FACTOR DE POTENCIA y CALIDAD DE LA ENERGÍA Introducción En la gran mayoría de las industrias, hoteles, hospitales, tiendas departamentales, etc. existen gran cantidad de motores; en equipo

Más detalles

PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS.

PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS. PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS. Repaso de electricidad (1). Circuito eléctrico. Arranca Crocodile Clips y presta atención a la explicación del profesor. Él te guiará y te enseñará la electricidad,

Más detalles

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS

Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Ensayos Básicos con las Máquinas Eléctricas Didácticas EXPERIMENTOS CON LAS MÁQUINAS ELÉCTRICAS Experimentos con Máquinas Eléctricas Didácticas 2 ÍNDICE 1 Introducción...3 2 Máquinas de Corriente Continua...4

Más detalles

2.-Dispositivos para la protección contra sobreintensidades

2.-Dispositivos para la protección contra sobreintensidades 2.-Dispositivos para la protección contra sobreintensidades Sobrecargas: corrientes mayores que la nominal que se mantienen durante largo tiempo. Provienen de un mal dimensionado de la instalación. Producen

Más detalles

Diseño electrónico de relés de protección para minicentrales hidroeléctricas

Diseño electrónico de relés de protección para minicentrales hidroeléctricas Luminotecnia ENTREGA 1 Diseño electrónico de relés de protección para minicentrales hidroeléctricas Elaborado por: Ing. Avid Román González (IEEE) Sabiendo que en la región del Cusco (Perú) existen muchas

Más detalles

MOTOR DE INDUCCION MONOFASICO

MOTOR DE INDUCCION MONOFASICO MAQUINAS ELÉCTRICAS ROTATIVAS MOTOR DE INDUCCION MONOFASICO Mg. Amancio R. Rojas Flores 1. Principio de funcionamiento Básicamente, un motor de inducción monofásico está formado por un rotor en jaula de

Más detalles

INTRODUCCION A LA PROGRAMACION DE PLC

INTRODUCCION A LA PROGRAMACION DE PLC INTRODUCCION A LA PROGRAMACION DE PLC Esta guía se utilizará para estudiar la estructura general de programación de um PLC Instrucciones y Programas Una instrucción u orden de trabajo consta de dos partes

Más detalles

PLAN DE RECUPERACIÓN DE MATERIAS PENDIENTES

PLAN DE RECUPERACIÓN DE MATERIAS PENDIENTES PLAN DE RECUPERACIÓN DE MATERIAS PENDIENTES ACTIVIDADES DE RECUPERACIÓN DE LA ASIGNATURA DE TECNOLOGÍA 3 ESO Los alumnos que tienen pendiente la asignatura de Tecnología de 3º de la ESO encontrándose en

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA Mediciones Eléctricas Ing. Roberto Solís Farfán CIP 84663 APARATOS DE MEDIDA ANALOGICOS Esencialmente el principio de funcionamiento

Más detalles

Lección 2: Magnetismo

Lección 2: Magnetismo : Magnetismo : Magnetismo Introducción Esta lección describe la naturaleza del magnetismo y el uso de los imanes en varios componentes eléctricos para producir y controlar la electricidad. Objetivos Al

Más detalles

Enermol GRUPOS ELECTROGENOS SOLUCIONES EN ENERGIA www.grupos-electrogenos.com.ar

Enermol GRUPOS ELECTROGENOS SOLUCIONES EN ENERGIA www.grupos-electrogenos.com.ar 1 INTRODUCCION Con la finalidad de controlar el funcionamiento del grupo electrógeno como fuente alternativa de la red eléctrica es necesario contar con tableros que se detallan a continuación. Cabe destacar

Más detalles

MOTORES ASÍNCRONOS MONOFÁSICOS

MOTORES ASÍNCRONOS MONOFÁSICOS MOTORES ASÍNCRONOS MONOFÁSICOS INTRODUCCIÓN Los motores monofásicos, como su propio nombre indica son motores con un solo devanado en el estator, que es el devanado inductor. Prácticamente todas las realizaciones

Más detalles

CALENTAMIENTO DE LOS CONDUCTORES

CALENTAMIENTO DE LOS CONDUCTORES ELECTROTÈCNIA E3d3.doc Pàgina 1 de 5 CALENTAMIENTO DE LOS CONDUCTORES Uno de los efectos perjudiciales del efecto Joule es el calentamiento que se produce en los conductores eléctricos cuando son recorridos

Más detalles

Automatismos Industriales

Automatismos Industriales Del relé al contactor Si observamos un circuito eléctrico básico (figura ), la función del interruptor es dejar o no dejar pasar la corriente por el conductor evitando o favoreciendo que la lámpara reciba

Más detalles

PARTIDA DIRECTA. PARTIDA TENSIÓN REDUCIDA MÉTODOS DE PARTIDA: o Partida con resistencias en el estator. o Partida estrella delta. autotransformador.

PARTIDA DIRECTA. PARTIDA TENSIÓN REDUCIDA MÉTODOS DE PARTIDA: o Partida con resistencias en el estator. o Partida estrella delta. autotransformador. PARTIDA DIRECTA PARTIDA TENSIÓN REDUCIDA MÉTODOS DE PARTIDA: o Partida con resistencias en el estator. o Partida estrella delta. o Partida con autotransformador. Método de partida utilizado con motores

Más detalles

ELEL10. Fuerza contraelectromotriz (fcem)

ELEL10. Fuerza contraelectromotriz (fcem) Los motores de corriente directa transforman la energía eléctrica en energía mecánica. Impulsan dispositivos tales como malacates, ventiladores, bombas, calandrias, prensas, preforadores y carros. Estos

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...

Más detalles

Los Circuitos Eléctricos

Los Circuitos Eléctricos Los Circuitos Eléctricos 1.- LA CORRIENTE ELÉCTRICA. La electricidad es un movimiento de electrones, partículas con carga eléctrica negativa que giran alrededor del núcleo de los átomos. En los materiales

Más detalles

Capítulo 3. Magnetismo

Capítulo 3. Magnetismo Capítulo 3. Magnetismo Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

1.1. Sección del núcleo

1.1. Sección del núcleo 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario

Más detalles

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos.

SERVOMOTORES. Los servos se utilizan frecuentemente en sistemas de radiocontrol, mecatrónicos y robótica, pero su uso no está limitado a estos. SERVOMOTORES Un servomotor (también llamado Servo) es un dispositivo similar a un motor DC, que tiene la capacidad de ubicarse en cualquier posición dentro de su rango de operación y mantenerse estable

Más detalles

Características Generales Estándar:

Características Generales Estándar: Características Generales Estándar: Tensión de entrada: 127 Vac (220 opcional) Tensión nominal de salida: 120 ó 127 Vac (220 opcional) Frecuencia 50/60 hz. Rango de entrada: +15% -30% Vac de tensión nominal.

Más detalles

COMPENSACIÓN DE ENERGÍA REACTIVA CAPÍTULO XX

COMPENSACIÓN DE ENERGÍA REACTIVA CAPÍTULO XX COMPENSACIÓN DE ENERGÍA REACTIVA CAPÍTULO XX I N D I C E 1.- Disposiciones Reglamentarias con respecto a la Corrección de Energía Reactiva.Generalidades.... 1 2.- Sobrecompensación de Energía Reactiva....

Más detalles

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc.

Establecer el procedimiento para determinar la polaridad de las terminales de los devanados de un transformador, utilizando Vdc. Tema: EL TRANSFORMADOR MONOFASICO. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura CONVERSION DE ENERGIA ELECTROMECANICA I. I. OBJETIVOS. Establecer el procedimiento para determinar la polaridad

Más detalles

Unidad didáctica: Electromagnetismo

Unidad didáctica: Electromagnetismo Unidad didáctica: Electromagnetismo CURSO 3º ESO 1 ÍNDICE Unidad didáctica: Electromagnetismo 1.- Introducción al electromagnetismo. 2.- Aplicaciones del electromagnetismo. 2.1.- Electroimán. 2.2.- Relé.

Más detalles

TEMA 2. CIRCUITOS ELÉCTRICOS.

TEMA 2. CIRCUITOS ELÉCTRICOS. TEMA 2. CIRCUITOS ELÉCTRICOS. 1. INTRODUCCIÓN. A lo largo del presente tema vamos a estudiar los circuitos eléctricos, para lo cual es necesario recordar una serie de conceptos previos tales como la estructura

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA

Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA Tema 7. MOTORES ELÉCTRICOS DE CORRIENTE CONTINUA 1. MAGNETISMO Y ELECTRICIDAD...2 Fuerza electromotriz inducida (Ley de inducción de Faraday)...2 Fuerza electromagnética (2ª Ley de Laplace)...2 2. LAS

Más detalles

Componentes: RESISTENCIAS FIJAS

Componentes: RESISTENCIAS FIJAS ELECTRÓNICA ELECTRÓNICA Componentes: RESISTENCIAS FIJAS Componentes: RESISTENCIAS VARIABLES Componentes: RESISTENCIAS DEPENDIENTES Componentes: RESISTENCIAS DEPENDIENTES Componentes: CONDENSADORES Componentes:

Más detalles

MAXI AHORRADOR SEMI INDUSTRIAL, 60 Kw. Modelo: MAGI60 El mejor ahorrador para los grandes consumidores semi industriales. Ahorrador de Electricidad Industrial Trifásico, es perfecto para pequeños y medianos

Más detalles

AUTOMATIZACION. Identificar los grados de automatización y los tipos de accionamientos Definición de un controlador lógico programable

AUTOMATIZACION. Identificar los grados de automatización y los tipos de accionamientos Definición de un controlador lógico programable AUTOMATIZACION GUIA DE TRABAJO 1 DOCENTE: VICTOR HUGO BERNAL UNIDAD No. 3 OBJETIVO GENERAL Realizar una introducción a los controladores lógicos programables OBJETIVOS ESPECIFICOS: Identificar los grados

Más detalles

MAXI AHORRADOR SEMI INDUSTRIAL 60 Kw

MAXI AHORRADOR SEMI INDUSTRIAL 60 Kw MAXI AHORRADOR SEMI INDUSTRIAL 60 Kw Modelo: MASI60 El mejor ahorrador para los grandes consumidores semi industriales. Ahorrador de Electricidad Industrial Trifásico, es perfecto para pequeños y medianos

Más detalles

Medidas de Intensidad

Medidas de Intensidad Unidad Didáctica Medidas de Intensidad Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

Este circuito integra un conjunto de luces que funcionan cuando el vehículo va a realizar un cambio de dirección, adelantamiento, detención, etc.

Este circuito integra un conjunto de luces que funcionan cuando el vehículo va a realizar un cambio de dirección, adelantamiento, detención, etc. Circuito de maniobras CIRCUITO DE INTERMITENTES Este circuito integra un conjunto de luces que funcionan cuando el vehículo va a realizar un cambio de dirección, adelantamiento, detención, etc. Tanto las

Más detalles

28 = 16 + 8 + 4 + 0 + 0 = 11100 1

28 = 16 + 8 + 4 + 0 + 0 = 11100 1 ELECTRÓNICA DIGITAL 4º ESO Tecnología Introducción Imaginemos que deseamos instalar un sistema electrónico para la apertura de una caja fuerte. Para ello debemos pensar en el número de sensores que nos

Más detalles

Práctica 1. Programación y Simulación de un PLC

Práctica 1. Programación y Simulación de un PLC Automatización Avanzada (37800) Máster en Automática y Robótica Práctica 1. Programación y Simulación de un PLC Francisco Andrés Candelas Herías Grupo de Innovación Educativa en Automática 2011 GITE IEA

Más detalles

U.T. 4.- CIRCUITOS ELÉCTRICOS

U.T. 4.- CIRCUITOS ELÉCTRICOS U.T. 4.- CIRCUITOS ELÉCTRICOS Un circuito eléctrico es un conjunto de operadores eléctricos que, conectados entre sí de forma adecuada, permite la circulación y el control de la corriente eléctrica. OPERADORES

Más detalles

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia

Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y

Más detalles

Int. Cl. 6 : B60R 22/32. k 73 Titular/es: Luis García Díaz. k 72 Inventor/es: García Díaz, Luis. k 74 Agente: No consta

Int. Cl. 6 : B60R 22/32. k 73 Titular/es: Luis García Díaz. k 72 Inventor/es: García Díaz, Luis. k 74 Agente: No consta k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 k N. de publicación: ES 2 042 401 21 k Número de solicitud: 9200528 51 k Int. Cl. 6 : B60R 22/32 B60R 25/10 B60K 28/14 B60R 22/48 k 12 PATENTEDEINVENCION

Más detalles

ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS

ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS ARRANQUE DE MOTORES ASÍNCRONOS TRIFÁSICOS INTRODUCCIÓN Para una mejor comprensión del problema que se plantea, partamos en primer lugar del circuito equivalente por fase del motor asíncrono trifásico.

Más detalles

11º) APLICACIONES TÍPICAS DE LOS UPS s ON LINE:

11º) APLICACIONES TÍPICAS DE LOS UPS s ON LINE: 11º) APLICACIONES TÍPICAS DE LOS UPS s ON LINE: Los UPS s ON LINE de ENERGIT S.A., tienen la finalidad de proveer constantemente energía ESTABILIZADA EN TENSIÓN Y FRECUENCIA, FILTRADA Y LIBRE DE SOBRETENSIONES,

Más detalles

Control de Motores Eléctricos

Control de Motores Eléctricos Control de Motores Eléctricos Ingeniería en Automatización y Control Industrial 1 DIAGRAMAS ELECTRICOS Estos son la representación gráfica de un circuito o instalación eléctrica, en la que van indicadas

Más detalles

Curso sobre Controladores Lógicos Programables (PLC).

Curso sobre Controladores Lógicos Programables (PLC). CURSO Curso sobre Controladores Lógicos Programables (PLC). Por Ing. Norberto Molinari. Entrega Nº 6. Manejo, Instalación y Conexionado. Protecciones en los procesos.: Contactos de confirmación En la mayoría

Más detalles

CAPITULO 4: LA UPS SOLAR Y SISTEMAS PARECIDOS EN EL MERCADO

CAPITULO 4: LA UPS SOLAR Y SISTEMAS PARECIDOS EN EL MERCADO CAPÍTULO 4 46 CAPITULO 4: LA UPS SOLAR Y SISTEMAS PARECIDOS EN EL MERCADO 4.1 Introducción Este es el capítulo donde se presenta el proyecto, es decir, la UPS Solar que se ha diseñado junto con su explicación.

Más detalles

GUÍA DE USUARIO Motor paso a paso REV. 1.0

GUÍA DE USUARIO Motor paso a paso REV. 1.0 GUÍA DE USUARIO Motor paso a paso REV. 1.0 Ingeniería MCI Ltda. Luis Thayer Ojeda 0115 of. 1105, Providencia, Santiago, Chile. +56 2 23339579 www.olimex.cl cursos.olimex.cl info@olimex.cl GUÍA DE USUARIO:

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

CARACTERÍSTICAS TÉCNICAS

CARACTERÍSTICAS TÉCNICAS ECOTERMO CARACTERÍSTICAS TÉCNICAS 2 DESCRIPCIÓN DEL CALENTADOR 3 REGULACIÓN DE LA TEMPERATURA DEL AGUA _ 5 CONEXIÓN A LA RED DE AGUA POTABLE 5 CONEXIÓN A LA RED ELÉCTRICA 6 PRINCIPIO DE FUNCIONAMIENTO

Más detalles

ELECTRICIDAD. 1.- Circuito eléctrico

ELECTRICIDAD. 1.- Circuito eléctrico ELECTRICIDAD 1.- Circuito eléctrico 2.- Generadores y/o acumuladores 3.- Conductores y aislantes 4.- Receptores 5.- Elementos de protección 6.- Elementos de maniobra 7.- Tipos de corriente eléctrica. Transformadores.

Más detalles

Capítulo 9. Archivos de sintaxis

Capítulo 9. Archivos de sintaxis Capítulo 9 Archivos de sintaxis El SPSS permite generar y editar archivos de texto con sintaxis SPSS, es decir, archivos de texto con instrucciones de programación en un lenguaje propio del SPSS. Esta

Más detalles

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN

Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN Capítulo 1 GESTIÓN DE LA ALIMENTACIÓN 1 Introducción En un robot autónomo la gestión de la alimentación es fundamental, desde la generación de energía hasta su consumo, ya que el robot será más autónomo

Más detalles

Máquinas eléctricas: Máquinas rotativas de corriente alterna

Máquinas eléctricas: Máquinas rotativas de corriente alterna Máquinas eléctricas: Máquinas rotativas de corriente alterna Ya has visto en temas anteriores el estudio de los motores de corriente continua y la clasificación de las máquinas, pues bien, ahora vas a

Más detalles

DISPOSICIONES EN LAS INSTALACIONES ELÉCTRICAS CON NEUTRO CAPÍTULO XXVI

DISPOSICIONES EN LAS INSTALACIONES ELÉCTRICAS CON NEUTRO CAPÍTULO XXVI DISPOSICIONES EN LAS INSTALACIONES ELÉCTRICAS CON NEUTRO CAPÍTULO XXVI I N D I C E 1.- Esquemas de Distribución. Consideraciones Generales... 1 1.1.- Esquema TN... 2 1.2.- Esquema TT.... 3 1.3.- Esquema

Más detalles

Una vez descrita la constitución general de un robot, podemos empezar con la

Una vez descrita la constitución general de un robot, podemos empezar con la CAPÍTULO 2 Construcción y Mecanismo de Operación del Brazo Robótico Una vez descrita la constitución general de un robot, podemos empezar con la descripción de nuestro robot, cómo fue construido y cómo

Más detalles

6º Tema.- Accionamientos y actuadores eléctricos.

6º Tema.- Accionamientos y actuadores eléctricos. Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 6º Tema.- Accionamientos y actuadores eléctricos. Huelva, Noviembre 2008 Profesor: Rafael Sánchez Sánchez Página 1 de

Más detalles

Los transformadores. Inducción en una bobina

Los transformadores. Inducción en una bobina Los transformadores Los transformadores eléctricos han sido uno de los inventos más relevantes de la tecnología eléctrica. Sin la existencia de los transformadores, sería imposible la distribución de la

Más detalles

Farol de desvío en vías Märklin M en digital

Farol de desvío en vías Märklin M en digital Railwaymania Farol de desvío en vías Märklin M en digital Farol de desvío en vías Märklin M en digital Alimentación directa desde la vía Muchos colegas conservan material antiguo procedente de las maquetas

Más detalles

FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010

FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Proyecto: Transformador Casero

Más detalles

CALIDAD EN TUBOS T8 LED

CALIDAD EN TUBOS T8 LED CALIDAD EN TUBOS T8 LED Realizamos una comparación entre tres tipos de tubo LED, cada uno con diferente calidad; en este documento se explican sus diferencias. T8 120cm -18W Alta Calidad YAPI LED s Para

Más detalles

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento

ANTECEDENTES TEÓRICOS. EL OSCILOSCOPIO Puesta en funcionamiento ANTECEDENTES TEÓRICOS EL OSCILOSCOPIO Puesta en funcionamiento Poner a tierra Una buena conexión a tierra es muy importante para realizar medidas con un osciloscopio. Colocar a tierra el Osciloscopio Por

Más detalles

0. ÍNDICE...1 00. DIFERENCIAS MÁS IMPORTANTES ENTRE EL RBT 2002 Y EL RBT 1973...2

0. ÍNDICE...1 00. DIFERENCIAS MÁS IMPORTANTES ENTRE EL RBT 2002 Y EL RBT 1973...2 0. ÍNDICE 0. ÍNDICE...1 00. DIFERENCIAS MÁS IMPORTANTES ENTRE EL RBT 2002 Y EL RBT 1973....2 1. MANDO Y PROTECCIÓN. INTERRUPTOR DE...4 1.1 Situación...4 1.2 Composición y características de los cuadros....4

Más detalles

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA

TEMA 6 CORRIENTE ALTERNA TRIFÁSICA TEMA 6 CORRIENTE ALTERNA TRIÁSICA VI.1 Generación de la CA trifásica VI. Configuración Y-D VI.3 Cargas equilibradas VI.4 Cargas desequilibradas VI.5 Potencias VI.6 actor de potencia Cuestiones 1 VI.1 GENERACIÓN

Más detalles

ArduLab. 1. Qué te pasa Nerea? 2.Este robot no funciona bien y no sé que le pasa

ArduLab. 1. Qué te pasa Nerea? 2.Este robot no funciona bien y no sé que le pasa 5 ArduLab Nerea Iván 1. Qué te pasa Nerea? 2.Este robot no funciona bien y no sé que le pasa 3. Recuerda que puedes usar Ardulab para comprobar el funcionamiento de todas las partes de un robot sin necesidad

Más detalles

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO.

TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. CPI Antonio Orza Couto 3º ESO TECNOLOGÍA TEMA-2 ELECTRICIDAD: CIRCUITOS TEMA 2: CIRCUITOS ELÉCTRICOS: CIRCUITOS SERIE, PARALELO Y MIXTOS. CÁLCULO DE MAGNITUDES EN UN CIRCUITO. 1. CIRCUITO ELÉCTRICO Definición

Más detalles

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

CALIDAD DE LA ENERGIA ELECTRICA

CALIDAD DE LA ENERGIA ELECTRICA CALIDAD DE LA ENERGIA ELECTRICA ARMONICAS FENOMENO PERTURBADOR Alguna vez ha sido testigo de la presencia de distorsión armónica, cortes en el suministro de electricidad, oscilaciones de la tensión, caídas

Más detalles

Tipos de instalaciones

Tipos de instalaciones Tipos de instalaciones Existen este infinidad de configuraciones, pero como técnicos debemos referirnos a las normalizadas por la NTE, la cual diferencia cinco tipos basados en número de circuitos y programas,

Más detalles

1. Fenómenos de inducción electromagnética.

1. Fenómenos de inducción electromagnética. 1. Fenómenos de inducción electromagnética. Si por un circuito eléctrico, en forma de espira, por donde no circula corriente, se aproxima un campo magnético originado por la acción de un imán o un solenoide

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción Conseguir que la tensión de un circuito en la salida sea fija es uno de los objetivos más importantes para que un circuito funcione correctamente. Para lograrlo, se

Más detalles

TRANSFORMADOR NÚCLEOS

TRANSFORMADOR NÚCLEOS TRANSFORMADOR El transformador es un dispositivo que convierte energía eléctrica de un cierto nivel de voltaje, en energía eléctrica de otro nivel de voltaje, por medio de la acción de un campo magnético.

Más detalles

Prevención del Riesgo Eléctrico

Prevención del Riesgo Eléctrico Prevención del Riesgo Eléctrico El riesgo eléctrico se produce en toda tarea que implique actuaciones sobre instalaciones eléctricas de baja, media y alta tensión, utilización, manipulación y reparación

Más detalles

Todo sobre las bujias

Todo sobre las bujias Las Bujías utilizadas en el modelismo son denominada en ingles "Glow Plugs". Estas Bujías en el transcurso del tiempo han sido rediseñadas y modificadas para trabajar según las características del motor,

Más detalles

Circuito de Encendido. Encendido básico

Circuito de Encendido. Encendido básico Circuito de Encendido Encendido básico Objetivos del Circuito de Encendido 1º Generar una chispa muy intensa entre los electrodos de las bujías para iniciar la combustión de la mezcla Objetivos del Circuito

Más detalles

INTERRUPTORES DIFERENCIALES 4. SENSIBILIDAD DE LOS INTERRUPTORES DIFERENCIALES

INTERRUPTORES DIFERENCIALES 4. SENSIBILIDAD DE LOS INTERRUPTORES DIFERENCIALES INTERRUPTORES DIFERENCIALES 1. INTRODUCCIÓN 2. TIPOLOGÍA DE LOS INTERRUPTORES DIFERENCIALES 3. CLASE DE LOS INTERRUPTORES DIFERENCIALES 4. SENSIBILIDAD DE LOS INTERRUPTORES DIFERENCIALES 5. TIEMPO DE RESPUESTA

Más detalles

Práctica #2. By K. Ing.kieigi@misena.edu.co

Práctica #2. By K. Ing.kieigi@misena.edu.co Práctica #2 By K. Ing.kieigi@misena.edu.co Práctica #2. Transformadores e Inductores Integrantes: Gissette Ivonne Cortés Alarcón Presentado a: Instructor Leider Gaitán Tecnólogo en Mantenimiento Electrónico

Más detalles

INSTRUCCIÓN TÉCNICA DE TRABAJO MANTENIMIENTO PREVENTIVO DE MOLINOS (CAMBIO DE CRIBAS)

INSTRUCCIÓN TÉCNICA DE TRABAJO MANTENIMIENTO PREVENTIVO DE MOLINOS (CAMBIO DE CRIBAS) INSTRUCCIÓN TÉCNICA DE TRABAJO MANTENIMIENTO PREVENTIVO DE MOLINOS (CAMBIO DE CRIBAS) 1 1-. OBJETIVO.... 3 2-. ALCANCE.... 3 3-. RESPONSABILIDADES.... 3 4-. DEFINICIONES.... 3 5-. EQUIPOS DE TRABAJO Y

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

Figura 1. Tipos de capacitores 1

Figura 1. Tipos de capacitores 1 CAPACITOR EN CIRCUITO RC OBJETIVO: REGISTRAR GRÁFICAMENTE LA DESCARGA DE UN CAPACITOR Y DETERMINAR EXPERIMENTALMENTE LA CONSTANTE DE TIEMPO RC DEL CAPACITOR. Ficha 12 Figura 1. Tipos de capacitores 1 Se

Más detalles