PROBLEMAS DE MÓVILES. e t. e v. Organizaremos la información en una tabla MÓVIL VELOCIDAD TIEMPO ESPACIO A A. t A. t B. v A v B
|
|
- Nicolás Soler Mora
- hace 2 años
- Vistas:
Transcripción
1 PROLEMS DE MÓVILES e v = e= v t t Organizaremos la información en una tabla t = e v v v t t v t v t Para escribir la ecuación usaremos la relación e Tenemos dos tipos 1) PROLEMS DE ENCUENTROS 2) PROLEMS DE PERSECUCIONES = v t ya que tiene la ventaja de no tener denominadores. I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GG 1
2 1) PROLEMS DE ENCUENTROS Los dos móviles se mueven en sentidos contrarios, uno al encuentro del otro. Se encontrarán en un punto intermedio más cercano al punto de partida del móvil de menor velocidad. Tendremos en cuenta si salen a la misma hora o a horas distintas. Si salen a la misma hora el tiempo será el mismo para los dos, pero si salen a horas distintas habrá que tener en cuenta la diferencia entre las horas de salida. e + e = d v t v t v t v t v t+ v t = d I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GG 2
3 PROLEM 1 Dos pueblos, y, distan 155 km. la misma hora salen de cada pueblo un ciclista. El de viaja a una velocidad de 25 km/h y el de a 33 km/h. qué distancia de cada pueblo se encuentran? Cuánto tiempo ha transcurrido? I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GG 3
4 PROLEM 1 Dos pueblos, y, distan 155 km. la misma hora salen de cada pueblo un ciclista. El de viaja a una velocidad de 25 km/h y el de a 33 km/h. qué distancia de cada pueblo se encuentran? Cuánto tiempo ha transcurrido? Ciclista Ciclista I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GG 4
5 PROLEM 1 Dos pueblos, y, distan 155 km. la misma hora salen de cada pueblo un ciclista. El de viaja a una velocidad de 25 km/h y el de a 33 km/h. qué distancia de cada pueblo se encuentran? Cuánto tiempo ha transcurrido? Ciclista 25 km/h t 25 t Ciclista 33 km/h t 33t t es el tiempo transcurrido desde que ambos salen hasta que se encuentran Espacio recorrido por el ciclista + Espacio recorrido por el ciclista = 155 km e + e = t+ 33 t = t = 155 t = t 2,6724 h t 2h 40min 20s 155 e = ,81 km e e e ,81 88,19 km Solución Se encuentran a 66,81 km de y 88,19 km de. Han transcurrido 2 h 40 min 20 s. I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GG 5
6 2) PROLEMS DE PERSECUCIONES Los dos móviles se mueven en el mismo sentido, uno de ellos intentando alcanzar al otro. Los móviles pueden salir desde el mismo punto de partida, con un margen de tiempo entre ambos, o de puntos de partida distintos. La velocidad del móvil perseguidor tendrá que ser mayor que la del perseguido para que pueda alcanzarlo. Consideremos en primer lugar el caso en que ambos móviles salen del mismo punto de partida con un margen de tiempo t 0 entre ambos. En primer lugar sale el móvil y t 0 unidades de tiempo después sale el móvil. Tendrá que ser v < v y t > t para que el móvil pueda alcanzar al. t t = t t = t + t t = t t v t v t v t t0 El espacio recorrido por ambos móviles es el mismo y, por lo tanto, será ( ) v t t = v t 0 v ( t t ) I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GG 6 0
7 PROLEM 2 Un camión sale de una ciudad a una velocidad de 80 km/h y, dos horas más tarde, sale un coche de la misma ciudad a 120 km/h. qué distancia de la ciudad alcanzará el coche al camión? I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GG 7
8 PROLEM 2 Un camión sale de una ciudad a una velocidad de 80 km/h y, dos horas más tarde, sale un coche de la misma ciudad a 120 km/h. qué distancia de la ciudad alcanzará el coche al camión? Camión Coche I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GG 8
9 PROLEM 2 Un camión sale de una ciudad a una velocidad de 80 km/h y, dos horas más tarde, sale un coche de la misma ciudad a 120 km/h. qué distancia de la ciudad alcanzará el coche al camión? Camión 80 km/h t 80 t Coche 120 km/h 2 t 120( t 2) t es el tiempo transcurrido desde que el camión comienza su marcha hasta ser alcanzado por el coche En el instante que el coche alcanza al camión los dos habrán recorrido el mismo espacio, por lo tanto, la ecuación será Espacio recorrido por el coche = Espacio recorrido por el camión ( t ) = 80 t 120 t 240 = 80 t 120 t 80 t = t = t = 40 t = 6 las 6 horas de su salida el camión será alcanzado por el coche. El coche emplea 4 horas para alcanzar al camión. Camión: 80 6 = 480 Coche: = 480 La distancia recorrida será de 480 km. Solución: El coche alcanzará al camión a 480 km de la ciudad. I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GG 9
EJERCICIOS SOBRE : ECUACIONES DE PRIMER GRADO
1.- Igualdades. Las expresiones en donde aparecen el signo =, se llaman igualdades. Ejemplo: 5 = 7-2 ; x + 2 = 9 Toda igualdad consta de dos miembros, el primer miembro ( lo escrito antes del signo igual
Movimiento Rectilíneo Uniforme
Movimiento Rectilíneo Uniforme 1. Teoría La mecánica es la parte de la física encargada de estudiar el movimiento y el reposo de los cuerpos, haciendo un análisis de sus propiedades y causas. La mecánica
a) 2,8[m] ; 7,6 [m] b) 0,7[m/s]; 1,9[m/s]
1m F Í S I C MOVIMIENTO Curso : Tercero Cinemática. Un móvil describe una trayectoria como indica la figura, a) Determina el desplazamiento y la distancia recorrida desde el punto hasta el punto, b) Si
Sistemas de dos ecuaciones lineales con dos incógnitas
Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente
3ª Parte: Funciones y sus gráficas
3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
1º BACHILLERATO MATEMÁTICAS CCSS
PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente
La masa es la magnitud física que mide la inercia de los cuerpos: N
Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno
Ejercicios resueltos de cinemática
Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe
Ecuaciones de primer y segundo grado
Igualdad Ecuaciones de primer y segundo grado Una igualdad se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2.
RESOLUCIÓN DE PROBLEMAS
RESOLUCIÓN DE PROBLEMAS La resolución de problemas mediante ecuaciones tiene una serie de dificultades que nos llevan a plantear un tema separado del resto. Las dificultades, llegado este punto en que
1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.
1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad
CINEMÁTICA I FYQ 1º BAC CC.
www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula
Proporcionalidad. 1. Calcula:
Proporcionalidad 1. Calcula:. Resuelve los siguientes problemas: a. Tres kilos de naranjas cuestan,4. Cuánto cuestan dos kilos? b. Seis obreros descargan un camión en tres horas. Cuánto tardarán cuatro
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x
Juan de la Cruz González Férez
Curso 0: Matemáticas y sus Aplicaciones Vectores, Bases y Distancias Aplicaciones Juan de la Cruz González Férez IES Salvador Sandoval Las Torres de Cotillas (Murcia) 2012 Composición de movimientos Los
PLAN DIRECTOR DE LA BICICLETA DE ALHAMA DE MURCIA - PDIBIAM Una apuesta por la movilidad urbana sostenible
Porque cada día es más difícil encontrar en Alhama imágenes como ésta Porque cada día es más habitual encontrar en Alhama imágenes como ésta 15.608 vehículos a motor en Alhama, 5.000 más que hace 10 años.
CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS
CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)
Bachillerato 2006. DNL Español - Matemáticas. Sistemas lineales. Una tienda de música decide vender todas sus cintas en diferentes lotes :
Sistemas lineales I Una tienda de música decide vender todas sus cintas en diferentes lotes : el lote A contiene : 5 cintas de Disco, 2 de Jazz y 1 de Clásico ; el lote B se compone de : 4 cintas de Jazz
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si
Ejercicios de cinemática
Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 25 26 28
Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme
Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil
12 Límites. y derivadas. 1. Funciones especiales. Solución: Ent(x) Dec(x) x 3,6 3,6 0,8 0,8. Signo(x) Signo(x) 1 1 1 1
Límites y derivadas. Funciones especiales Completa la tabla siguiente: 3,6 3,6 0, 0, Ent() Dec() Signo() P I E N S A C A L C U L A 3,6 3,6 0, 0, Ent() 4 3 0 Dec() 0,4 0,6 0, 0, 3,6 3,6 0, 0, Signo() A
www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO:
Estes exercicios foron sacados de www.matyfyq.blogspot.com EJERCICIOS CINEMÁTICA 4ºESO: 1- Define brevemente los siguientes conceptos: Posición. Trayectoria. Espacio recorrido. Desplazamiento Velocidad
PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009. 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible.
PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES º ESO 009 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible. 1 A = 8 1 + 1 B = A = 8 1 = 8 = 8 = 6 4 B = = 4 4 = 4 16
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la
Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo.
1. EL MOVIMIENTO Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. Por ejemplo: el coche que se mueve cambia de posición respecto a unos
Recuerda lo fundamental
4 Problemas aritméticos Recuerda lo fundamental Curso:... Fecha:... PROBLEMAS EJEMPLO: REGLA DE TRES DIRECTA 2 30 3 x x EJEMPLO: REGLA DE TRES INVERSA 12 5 6 x x REGLA DE TRES COMPUESTA EJEMPLO: p. inversa
PROBLEMAS de EDADES. 5. Un padre tiene 42 años y su hijo 7. Dentro de cuánto tiempo la edad del hijo será la cuarta parte de la del padre?
PROBLEMAS de EDADES 1. Cuatro alumnos tienen juntos 50 años. Hallar sus edades respectivas sabiendo que cada uno tiene 3 años más que el que le sigue en edad. 2. Preguntado un padre por la edad de su hijo,
7Soluciones a los ejercicios y problemas PÁGINA 159
7Soluciones a los ejercicios y problemas PÁGINA 159 Pág. 1 S istemas de ecuaciones. Resolución gráfica x + y = 3 1 Representa estas ecuaciones: x y = 1 a) Escribe las coordenadas del punto de corte. b)escribe
RESULTADOS DE LA ENCUESTA A USUARIOS 2013
SEGURTASUN SAILA Segurtasun Sailburuordetza Trafiko Zuzendaritza DEPARTAMENTO DE SEGURIDAD Viceconsejería de Seguridad Dirección de Tráfico RESULTADOS DE LA ENCUESTA A USUARIOS 2013 ÁREA DE INVESTIGACIÓN
EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO
EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo
1. CARACTERÍSTICAS DEL MOVIMIENTO.
Tema 6. Cinemática. 1 Tema 6. CINEMÁTICA. 1. CARACTERÍSTICAS DEL MOVIMIENTO. 1.- Indica por qué un motorista que conduce una moto siente viento en su cara aunque el aire esté en calma. (2.R1) 2.- Se ha
PONER UN PROBLEMA EN ECUACIONES
PONER UN PROBLEMA EN ECUACIONES ESQUEMA DEL TEMA. Problema de introducción Regla para poner un problema en ecuaciones Uso de la regla Análisis de un enunciado de un problema que tiene cantidades que no
4 Ecuaciones y sistemas
Solucionario Ecuaciones y sistemas ACTIVIDADES INICIALES.I. Comprueba si las siguientes ecuaciones tienen como soluciones,,. a) 0 b) 5 () 8 a) 0 () () es solución. 0 8 9 6 0 6 0 0 9 5 5 6 5 es solución.
8Soluciones a las actividades de cada epígrafe
PÁGINA 128 Pág. 1 En una comarca hay una cierta especie de vegetal que se encuentra con frecuencia. Se ha estudiado la cantidad media de ejemplares por hectárea que hay a distintas alturas. El resultado
FUNCIONES 2º ESO. x(nº de bolígrafos) y (Coste en )
FUNCIONES 2º ESO (1) (a) Representa los siguientes puntos: (6,-5), (6,-3), (6,0) y (6,3). (b) Idem. (-4,2), (-1,2), (0,2), (4,2) y (6,2). (c) Halla el simétrico respecto al eje de abscisas del punto (3,4).
1. Magnitudes vectoriales
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICADORES DE LOGRO VECTORES 1. Adquiere
CUESTIONARIOS FÍSICA 4º ESO
DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 3 Fuerzas y movimientos circulares Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Cuestionarios
I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1
ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números
CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO
CINEMATICA El objetivo de este tema es describir los movimientos utilizando un lenguaje científico preciso. En la primera actividad veremos qué magnitudes se necesitan introducir para lograr este objetivo.
PROBLEMAS QUE SE RESUELVEN CON ECUACIONES
PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1º) El perímetro de un triángulo isósceles mide 15 cm. El lado desigual del triángulo es la mitad de cada uno de los lados iguales. Halla la longitud de cada uno
4Soluciones a los ejercicios y problemas
PÁGINA 75 Pág. 1 P RACTICA 1 Calcula mentalmente: a) 50% de 360 b)25% de 88 c) 10% de 1 375 d)20% de 255 e) 75% de 800 f) 30% de 150 a) 50% de 360 8 180 b) 25% de 88 8 22 c) 10% de 1 375 8 137,5 d) 20%
IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?
IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento
ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE REFUERZO
Pág. ENUNCIADOS Calcula mentalmente: a) 50% de 260 b) 0% de 500 c) 25% de 44 d) 20% de 500 e) 75% de 800 f) 6% de 250 2 Calcula: a) 2% de 242 b) 87% de 540 d) 2% de 600 e) 57% de 57 Por qué único número
Ideas básicas sobre movimiento
Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar
FRENADO. La distancia aproximada para detener un vehículo en movimiento es la suma de:
FRENADO La distancia aproximada para detener un vehículo en movimiento es la suma de: la distancia recorrida durante el tiempo que transcurre hasta que el conductor comienza a frenar (distancia de tiempo
Tema 1. Movimiento de una Partícula
Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento
PROBLEMAS DE SISTEMAS DE ECUACIONES
PROBLEMAS DE SISTEMAS DE ECUACIONES Problema nº 1.- Calcula un número sabiendo que la suma de sus dos cifras es 10; y que, si invertimos el orden de dichas cifras, el número obtenido es 36 unidades mayor
PROBLEMAS DE ONDAS. EFECTO DOPPLER. Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)
PROBLEMAS DE ONDAS. EFECTO DOPPLER Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Una sirena que emite un sonido de = 1000 Hz se mueve alejándose de un observador
EJEMPLOS DE CUESTIONES DE EVALUACIÓN
EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes
EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO
EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO NOTA DEL PROFESOR: La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que
ESTUDIO DEL MOVIMIENTO.
TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas
2. El largo de un buque, que es de 99 metros, excede en 3 metros a 8 veces el ancho. Hallar el ancho.
Problemas. Un comerciante compra 5 trajes y 5 pares de zapatos por 6, pesos. Cada traje costó el doble de lo que costó cada par de zapatos más 5 pesos. Hallar el precio de los trajes y de los pares de
5 8 8 22.50 ; 5 x 8 22.50; x 36 22.50 x
1 de 7 MAGNITUDES DIRECTAMENTE PROPORCIONALES Ejemplo 1: Un saco de patatas pesa 20 kg. Cuánto pesan 2 sacos? Un cargamento de patatas pesa 520 kg. Cuántos sacos se podrán hacer? CASO 3 Nº sacos 1 2 y
BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas
BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo
1 EL MOVIMIENTO Y SU DESCRIPCIÓN
EL MOVIMIENTO Y SU DESCRIPCIÓN EJERCICIOS PROPUESTOS. De una persona que duerme se puede decir que está quieta o que se mueve a 06 560 km/h (aproximadamente la velocidad de la Tierra alrededor del Sol).
Problemas de Cinemática. Movimiento rectilíneo uniforme y uniformemente variado. Cinemática
Problemas de Cinemática Movimiento rectilíneo uniforme y uniformemente variado 1.- Un móvil recorre una recta con velocidad constante. En los instantes t1= 0,5s. y t2= 4s. sus posiciones son: X1= 9,5cm.
Para revisarlos ponga cuidado en los paréntesis. No se confunda.
Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
Ecuaciones de 1er y 2º grado
Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:
Curso de fotografía Cámara y tiempo
Curso de fotografía Cámara y tiempo Paco Rosso, 2010. info@pacorosso.com Original: (11/10/10), versión: 19/09/14 Vamos a estudiar la relación entre la cámara y el tiempo. Objetivos:1 Adquirir criterio
Cuáles son esos números?
MATEMÁTICAS PROBLEMAS QUE SE RESUELVEN CON ECUACIONES Para resolver un problema de ecuaciones debes seguir los siguientes pasos: a) Identificar el dato desconocido y asignarle el valor x (si hay dos o
BLOQUE III Funciones y gráficas
BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con
EJERCICIOS DE REPASO 2º ESO
NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )
PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.
PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS Un arquero dispara una flecha que produce un fuerte ruido al chocar contra el blanco. La velocidad media de la flecha es de 150 m/s. El arquero escucha
COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.
COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;
Problemas de ecuaciones de primer grado
Problemas de ecuaciones de primer grado Roberto, un compañero de clase, asegura que podrá descifrar el número que cualquiera piense. El método se basa en los siguientes pasos Piense un numero Multiplícalo
Problemas de proporcionalidad
Problemas de proporcionalidad REGLA DE TRES SIMPLE DIRECTA E INVERSA. 1.- En 50 litros de agua de mar hay 1.300 g. de sal. Cuántos litros hacen falta para 5.200 g. de sal? 2.- Un coche gasta 5 litros de
CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO
CINEMÁTICA DEL PUNTO MATERIAL. ELEMENTOS Y MAGNITUDES DEL MOVIMIENTO Estudiar el movimiento es importante: es el fenómeno más corriente y fácil de observar en la Naturaleza. Todo el Universo está en constante
1. GRÁFICAS. Página 1
1. GRÁFICAS Página 1 Lectura, construcción e interpretación de gráficas Características globales y locales de las gráficas Página 2 1. LECTURA, CONSTRUCCIÓN E INTERPRETACIÓN DE GRÁFICAS. ETAPA CICLISTA
1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.
IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los
SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE
4 Pág. Página 60 FRIGORÍFICO 480 FACILIDADES DE PAGO EN TODOS LOS ARTÍCULOS: 25% A LA ENTREGA RESTO: EN 2 MENSUALIDADES SIN RECARGO En esta unidad vas a revisar algunas técnicas y razonamientos que se
2Soluciones a los ejercicios y problemas PÁGINA 54
PÁGINA 54 Pág. 1 S istema de numeración decimal 1 Copia y completa. a) 5 décimas = milésimas b)2 milésimas = millonésimas c) 6 cienmilésimas = centésimas d)8 millonésimas = milésimas a) 5 décimas = 500
Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO
página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple
5Soluciones a los ejercicios y problemas PÁGINA 114
5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 5 PRACTICA Interpretación de gráficas Se suelta un globo que se eleva y, al alcanzar cierta altura, estalla. La siguiente gráfica representa la altura, con el paso del tiempo, a la que se encuentra
FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas
1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad
Tema: Ecuaciones y sistemas de ecuaciones
Tema: Ecuaciones y sistemas de ecuaciones 1. Las siguientes ecuaciones tienen alguna solución entera. Intenta encontrarlas tanteando. Qué tipo de ecuación es cada una?. a) x + 6 = b) x x = 0 c) x x = 1
EJERCICIOS 4ºESO MOV. CIRCULAR
EJERCICIOS 4ºESO MOV. CIRCULAR 1. Describe las características del movimiento circular uniforme 2. Puede existir un movimiento que tenga aceleración y, sin embargo, el valor de la velocidad sea constante?
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado
8. (-16) (8)= 14. (9)(-7)(2) 6=
OPERACIONES DE NÚMEROS CON SIGNO GUIA DE ESTUDIO PARA EXAMEN BIMESTRAL MATERIA: MATEMÁTICAS GRADO: 2 DE MIDDLE SCHOOL MAESTRO: LAURA G. ACEVES PÉREZ V SEGUNDA PARTE NOMBRE BIMESTRE GRUPO 1. 9-18+34= 2.
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 60 PRACTICA Calcula mentalmente: a) 2% de 400 b) 2% de 400 c) 2% de 80 d) 2% de 80 e) 7% de 400 f) 7% de 600 g) 20% de 2 000 h) 20% de 2 000 a) 00 b) 00 c) 20 d) 00 e) 300 f) 00 g) 400 h) 2
GUÍA DE PROBLEMAS Nº 1: CINEMÁTICA DE LA PARTÍCULA
GUÍA DE PROBLEMAS Nº 1: PROBLEMA Nº 1: Un agrimensor realiza el siguiente recorrido por un campo: Primero camina 250m hacia el este; a partir de allí, se desvía 30º al Sur del Este y camina 500m; finalmente
PROPORCIONALIDAD - teoría
PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos
IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16
IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 3º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: FUNCIONES Y GRÁFICAS: 1. Ricardo ha quedado con sus amigos para dar una vuelta
3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011
1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un La mitad de un La décima parte de un Un más su cuarta parte El triple de un más el doble de otro La quinta parte
M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento
RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento
CUADERNO Nº 10 NOMBRE: FECHA: / / Funciones lineales
Funciones lineales Contenidos 1. Función de proporcionalidad directa Definición Representación gráfica 2. Función afín Definición Representación gráfica 3. Ecuación de la recta Forma punto-pendiente Recta
Problemas de funciones para 2º E.S.O
Problemas de funciones para 2º E.S.O 1º) Esboza una representación gráfica de las siguientes funciones: a) La altura a la que se encuentra el asiento de un columpio, al pasar el tiempo. b) La temperatura
13 FUNCIONES LINEALES Y CUADRÁTICAS
3 FUNCINES LINEALES CUADRÁTICAS EJERCICIS PRPUESTS 3. Indica cuáles de las siguientes funciones son lineales. a) y 5 d) y 0,3x ) y 0,04 3x e) y x c) y x f) y 0,5x Son lineales a,, d y f. 3. Expresa cada
C B. a) Qué velocidad lleva cada uno? b) Escribe la expresión analítica de estas funciones. Velocidad = 33, ) 3 m/min.
PÁGINA 161 Pág. 1 29 Esta es la gráfica del espacio que recorren tres montañeros que van a velocidad constante: 1 000 ESPACIO (m) C B 0 A TIEMPO (min) 10 1 a) Qué velocidad lleva cada uno? b) Escribe la
8 Proporcionalidad. 1. Razón y proporción
8 Proporcionalidad 1. Razón y proporción Calcula mentalmente la velocidad media a la que fue un ciclista que recorrió 150 km en 5 horas. En qué unidades expresarías la velocidad? 150 : 5 0 km/h P I E N
6Soluciones a los ejercicios y problemas PÁGINA 133
PÁGINA 33 Pág. P RACTICA Comprueba si x =, y = es solución de los siguientes sistemas de ecuaciones: x y = 4 3x 4y = 0 a) b) 5x + y = 0 4x + 3y = 5 x y = 4 a) ( ) = 5? 4 No es solución. 5x + y = 0 5 =
EJERCICIOS DE SISTEMAS DE ECUACIONES
EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve
FÍSICA Y QUÍMICA Solucionario CINEMÁTICA
FÍSICA Y QUÍMICA Solucionario CINEMÁTICA 1.* Indicad qué tipo o tipos de movimiento corresponden a cada afirmación. a) MRU b) MRUA c) MCU d) Caída libre e) No hay movimiento 1.1. Una piedra lanzada desde
Problemas de Física 1 o Bachillerato
Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte
Capítulo 15. Ultrasonidos
Capítulo 15 Ultrasonidos 1 Efecto Doppler El efecto Doppler consiste en el cambio de frecuencia que experimenta una onda cuando el emisor o el receptor se mueven con respecto al medio de propagación. La