INSTITUTO DE BIOTECNOLOGÍA, CROMATOGRAFÍA. Curso de Métodos. Romero García Aida Susana

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INSTITUTO DE BIOTECNOLOGÍA, CROMATOGRAFÍA. Curso de Métodos. Romero García Aida Susana"

Transcripción

1 INSTITUTO DE BIOTECNOLOGÍA, UNAM CROMATOGRAFÍA Curso de Métodos Romero García Aida Susana Semestre 2/2002

2 Historia de la Cromatografía Way y Thompson: Reconocieron el fenómeno de intercambio iónico en sólidos Runge, Schoenbein, y Goeppelsroeder: Estudiaron el análisis por capilaridad en papel Lemberg: Ilustró la reversibilidad y estequiometría del intercambio iónico en minerales como el silicato de alumino Reed: Separación en columna en tubos de kaolín usados para la separación de FeCI 3 y el CuSO Tswett: Inventó la cromatografía en columna con el uso de solventes puros para desarrollar un cromatograma, usó adsorventes suaves para resolver una mezcla de pigmentos, (ver más detalles abajo) Karrer, Kuhn, y Strain: Usó adsorventes como hidróxido de calcio activado, aluminio y magnesio 1935 Holmes y Adams: Sintetizó resinas orgánicas para intercambio iónico Reichstein: Introdujo la cromatografía líquida o fluida, así extendió las aplicaciones de la cromatografía a sustancias sin color Izmailov y Schraiber: Describieron el uso de la capa fina de alumina extendida sobre un vidrio Brown: Primero que usó la cromatografía circular en papel Martin y Synge: Introdujo la cromatografía por partición en columna Consden, Gordon, y Martin: Primeros que describieron la cromatografía de partición en papel Boyd, Tompkins, Spedding, Rieman, y otros: Cromatografía de intercambio iónico aplicada a varios problemas analíticos M. Lederer y Linstead: Cromatografía en papel aplicada a compuestos inorgánicos Kirchner: Introdujo la cromatografía de capa fina como es practicada ahora James y Martin: Desarrollaron de la cromatografía de gas Sober y Peterson: Prepararon las primeras celulosas para intercambio iónico Lathe y Ruthvan: Usaron almidón natural y modificado como tamiz para la estimación del peso molecular.

3 1959 Porath y Flodin: Introdujeron al dextrán entrecruzado como tamiz molecular 1964 J. C. Moore: Desarrolló la cromatografía de permeación en gel. En 1906, el botánico ruso Mikhail Tswett ( ) formalizó el uso de la cromatografía en estudios científicos, aplicándola a la separación de los pigmentos naturales que se encuentran en las plantas (conocidos como carotenoides y clorofilas). Además le dio ese nombre a la técnica. Tswett empacó una columna de vidrio vertical (de unos cuantos centímetros de diámetro) con material adsorbente. Luego, por la columna vertical virtió una solución que contenía la mezcla de pigmentos provenientes de las hojas molidas de una planta. Pasados unos minutos, el material empacado en la columna había adquirido una coloración diferente por segmentos. Es decir, había logrado la separación de los pigmentos naturales de la planta. En cada segmento de color definido había un pigmento diferente. CROMATOGRAFÍA La característica que distingue a la cromatografía de la mayoría de los métodos físicos y químicos de separación, es que se ponen en contacto dos fases mutuamente inmiscibles. La fase estacionaria y la móvil. Una muestra que se introduce en la fase móvil es transportada a lo largo de la columna que contiene una fase estacionaria distribuida. Las especies de la muestra experimentan interacciones repetidas (repartos) entre la fase móvil y la fase estacionaria. Cuando ambas fases se han escogido en forma apropiada los componentes de la muestra se separan gradualmente en bandas en la fase móvil. Al final del proceso los componentes separados emergen en orden creciente de interacción con la fase estacionaria. El componente menos retardado emerge primero, el retenido más fuertemente eluye al último. El reparto entre las fases aprovecha las diferencias entre las propiedades físicas y/o químicas de los componentes de la muestra. Los componentes adyacentes (picos) se separan cuando el pico que sale después es retardado lo suficiente para impedir la sobreposición con el pico que emergió antes. Una amplia gama de selección de materiales para las fases móvil y estacionaria, permite separar moléculas que difieren muy poco en sus propiedades físicas y químicas. En un sentido amplio, la distribución de un soluto entre dos fases es el resultado del balance de fuerzas entre las moléculas del soluto y las moléculas de cada fase. Refleja la atracción o repulsión relativas que presentan las moléculas o iones de las fases competidoras por el soluto y entre sí. Estas fuerzas pueden ser

4 de naturaleza polar, proviniendo de momentos dipolares permanentes o inducidos, o pueden deberse a fuerzas de dispersión del tipo London. Parámetros teóricos que afectan la separación cromatográfica Comportamiento cromatográfico de los solutos. El comportamiento cromatográfico de un soluto puede describirse de diversas formas. Considero ahora importante introducir las definiciones de algunos términos importantes para la cromatografía en columna (ver figura 1), como son: Tiempo de retención, t r. El tiempo que un soluto permanece en la columna, se mide desde el momento de la inyección hasta la elusión del pico máximo. Es característico del soluto para condiciones de operación constantes. Auxiliar en la identificación de los solutos. Tiempo muerto, t o. El tiempo requerido para eluir un soluto que no se retiene en la fase estacionaria. Tiempo que un soluto permanece en fase móvil. Representa el espacio vacío de la columna. Tiempo de retención ajustado, t r. Mide el tiempo que el componente permanece en fase estacionaria. t r = t r - t o Ancho a la base, W b. Es la porción de la línea base intersectada por las tangentes al pico. Para un pico gaussiano es igual a 4. Tradicionalmente usado en el cálculo de la eficiencia del sistema.

5 Ancho a la mitad de la altura, W_. Una medida mas reproducible, adecuada para evaluar manualmente la eficiencia del sistema (platos teóricos). Número de platos teóricos (N). Cada plato teórico representa un equilibrio teórico de distribución del soluto entre las fases. El número total de platos teóricos de una columna representa el poder de separación de la columna. Una buena columna tiene un número alto de platos teóricos. Se calcula con cualquiera de las ecuaciones: Comportamiento de retención El comportamiento de retención refleja la distribución del soluto entre la fase móvil y la estacionaria. El volumen de fase móvil necesario para transportar la banda de soluto desde el punto de inyección, a través de la columna, hasta el detector (en el máximo del pico del soluto) se define como el volumen de retención, V r. Se puede obtener directamente del cromatograma multiplicando el tiempo de retención correspondiente, t r, por el gasto o flujo volumétrico, F c, expresado como el volumen de fase móvil por unidad de tiempo. V r = t r F c El gasto o flujo volumétrico, en términos de los parámetros de la columna, depende la sección transversal de la columna vacía, la porosidad total del relleno (empaque) de la columna y la velocidad lineal promedio de la fase móvil. Coeficiente de repartición Cuando un soluto entra al sistema cromatográfico inmediatamente se reparte o distribuye entre la fase móvil y la estacionaria. Si la fase móvil se para en cualquier momento el soluto establece un equilibrio de distribución entre las dos fases. La concentración en cada fase está dada por el coeficiente termodinámico de partición (o reparto): K = C s / C m donde C s y C m son las concentraciones de soluto en la fase estacionaria y móvil, respectivamente. Cuando K = 1, el soluto se encuentra igualmente distribuido entre las dos fases. El coeficiente de

6 reparto determina la velocidad promedio de cada zona de soluto, más específicamente, del centro de la zona de soluto conforme la fase móvil avanza a lo largo de la columna. Resolución El grado de separación o resolución de dos bandas adyacentes se define como la distancia entre los picos (o centros) dividida entre el ancho promedio de las bandas. Si la retención y el ancho de la banda se miden en unidades de tiempo (ver figura 2), la resolución está dada por: 2(t r,2 t r,1 ) R s = (W b,2 +W b,1 ) donde los tiempos de retención y los anchos se expresan en las mismas unidades. La resolución mínima aceptable en mezclas sencillas es 1.0 (ver figura 3), una resolución de 1.5 representa separación a la línea base. La resolución alcanzada en un sistema es proporcional al producto de la selectividad, la eficiencia y la capacidad del sistema, que son los tres más importantes parámetros de control en una columna cromatográfica, siendo la expresión analítica para Rs la siguiente:

7 (a-1) k Rs = _ ( N ) a (1+k) selectividad capacidad eficiencia La resolución de picos adyacentes puede mejorarse ya sea aumentando la separación de los picos o disminuyendo los anchos de los picos individuales. Esto involucra la selectividad de la columna cuando se alejan más los picos y la eficiencia cuando se intenta disminuir el ancho del pico. Factor de Capacidad El factor de capacidad o retención k es la cantidad más importante de cromatografía en columna. Relaciona el equilibrio de distribución de la muestra dentro de la columna con las propiedades termodinámicas de la columna y con la temperatura. Para un conjunto dado de parámetros de operación, k es una medida del tiempo transcurrido en la fase estacionaria en relación el tiempo transcurrido en fase móvil. Se define como el cociente de los moles de un soluto en la fase estacionaria entre los moles en la fase móvil: C s V s V s Factor de capacidad k = = K C m V m V m La razón volumétrica de fases, V m / V s, se denota usualmente por b. Así, k = K / b. Dicho de otra forma, la razón de reparto es el tiempo adicional que una banda de soluto requiere para eluir, en comparación con un soluto no retenido (para el cual k = 0), dividido entre el tiempo de elusión de una banda no retenida: k = V r1 - V 0 V 0 Capacidad La capacidad en un intercambiador iónico es una medida cuantitativa de su habilidad de tomar contra-iones intercambiables. La capacidad puede ser expresada como la capacidad iónica total, capacidad disponible o capacidad dinámica. La capacidad iónica total es el número de sustituyentes cargados por gramo drenado de intercambiador iónico o por ml de gel hidratado. La capacidad total puede medirse por titulación con un ácido o base fuerte.

8 Eficiencia La eficiencia de la columna está relacionada con el ensanchamiento de la banda que se encuentra en la columna y puede ser calculada: 2 V r1 donde W 1/2 es el ancho del pico a una altura media N = 5.54 del pico W 1/2 y se expresa como un número de platos teóricos (N) para la columna bajo condiciones experimentales específicas. La eficiencia es conocida frecuentemente como el número de platos teóricos por metro de cama cromatográfica, o expresada como H que es la longitud de la cama (L) dividida por el número de platos teóricos. H = L / N A partir de que el valor observado de N depende de factores experimentales tales como la velocidad de flujo y la carga de la muestra, es importante que las comparaciones sean hechas bajo condiciones idénticas. En el caso de la cromatografía de intercambio iónico, la eficiencia se mide bajo condiciones isocráticas, usando una sustancia que no interacciona con la matriz como por ejemplo, la acetona. Mejorar la cinética del sistema aumenta la eficiencia de la separación. Una de las principales causas del ensanchamiento de zona en una cama cromatográfica es la difusión longitudinal de moléculas de soluto. El efecto se minimiza si las distancias disponibles para difusión, en ambos la fase móvil y la fase estacionaria, son mínimas. En la práctica esto se logra usando tamaños de cuentas uniformes y pequeños. La mayor eficiencia se logra con minicuentas de 3mm de diámetro, no porosas diseñadas para aplicaciones analíticas y micropreparativas. Después del tamaño de cama, el segundo factor importante es una buena técnica experimental. Las camas cromatográficas empaquetadas irregularmente y burbujas de aire en ellas, producirán canales, ensanchamiento de la zona y pérdida de la resolución. Las buenas separaciones requieren columnas bien empaquetadas. Selectividad La selectividad (a) se define la habilidad del sistema para separar los picos, por ejemplo la distancia entre dos picos. El factor de selectividad puede ser calculado del cromatograma usando la expresión: k 2 V r2 - V 0 V r2 a = = = k 1 V r1 - V 0 V r1

9 Una buena selectividad es un factor muy importante, mejorar la selectividad implica alterar la termodinámica del sistema cromatográfico. Rs está relacionada de forma lineal con la selectividad pero relacionada de forma cuadrática con la eficiencia. Esto significa que un incremento de cuatro veces en la eficiencia es necesario para duplicar la resolución en condiciones isocráticas. La selectividad en la cromatografía de intercambio iónico depende no solo de la naturaleza y número de grupos iónicos en la matriz, también depende del ph y fuerza iónica. Tipos de cromatografía La cromatografía puede clasificarse de acuerdo al tipo de equilibrio involucrado, mismo que es gobernado por el tipo de fase estacionaria utilizada. Así la cromatografía puede ser de (1) adsorción, (2) partición, (3) intercambio iónico, (4) exclusión, y (5) afinidad (ver figura 4). 1. Cromatografía de adsorción La fase estacionaria es un sólido en el que los componentes de la muestra son adsorbidos. La fase móvil puede ser un líquido (cromatografía líquido-sólido) o un gas (cromatografía gas-sólido); los componentes se distribuyen entre dos fases a través de la combinación de los procesos de adsorción y desorción. La cromatografía de capa fina (TLC) es un ejemplo especial de cromatografía por adsorción en la cual la fase estacionaria es un plano, en la forma de un soporte sólido en un plato inerte. 2. Cromatografía de partición La fase estacionaria de la cromatografía de partición es un líquido soportado en un sólido inerte. Otra vez, la fase móvil puede ser un líquido (cromatografía de partición líquido-líquido) o un gas (cromatografía de partición gas-líquido, GLC). La cromatografía en papel es un tipo de cromatografía de partición en la cual la fase estacionaria es una capa de agua adsorbida en una hoja de papel.

10

11 Estas son clasificaciones arbitrarias de la técnicas cromatográficas, y algunos tipos de cromatografía se les considera juntas como una técnica separada, como la cromatografía de gases para la cromatografía gas-sólido y gas-líquido. En cualquier caso, los equilibrios sucesivos son los que determinan cuanto tiempo el analito permanecerá unido o se moverá con el eluyente (fase móvil). La cromatografía de gases es la técnica a elegir para la separación de compuestos orgánicos e inorgánicos térmicamente estables y volátiles. La disponibilidad de detectores versátiles y específicos, y la posibilidad de acoplar el cromatógrafo de gases a un espectro de masas o a un espectrofotómetro de infrarrojo, amplían aún más la utilidad de la cromatografía de gases. Un cromatógrafo de gases consiste en varios módulos básicos ensamblados para: 1) proporcionar un gasto o flujo constante del gas transportador (fase móvil), 2) permitir la introducción de vapores de la muestra en la corriente de gas que fluye, 3) contener la longitud apropiada de fase estacionaria, 4) mantener la columna a la temperatura apropiada (o la secuencia del programa de temperatura), 5) detectar los componentes de la muestra conforme eluyen de la columna, y 6) proveer una señal legible proporcional en magnitud a la cantidad de cada componente. Sólo aprox. 20% de los compuestos conocidos permiten ser analizados por cromatografía de gases, ya sea por que son insuficientemente volátiles y no pasan a través de la columna, o porque son térmicamente inestables y se descomponen en las condiciones de separación. La cromatografía de líquidos de alto rendimiento (HPLC, de high-performance liquid chromatography) no está limitada por la volatilidad o la estabilidad térmica de la muestra. La HPLC es capaz de separar macromoléculas y especies iónicas, productos naturales lábiles, materiales poliméricos y una gran variedad de otros grupos polifuncionales de alto peso molecular. Con una fase móvil líquida interactiva, otro parámetro se encuentra disponible para la selectividad, en adición a una fase estacionaria activa. La separación cromatográfica en HPLC es el resultado de las interacciones específicas entre las moléculas de la muestra con ambas fases, móvil y estacionaria. Tales interacciones esencialmente no existen en la fase móvil para la cromatografía de gases. La HPLC ofrece una mayor variedad de fases estacionarias, lo que permite una mayor gama de estas interacciones selectivas y más posibilidades para la separación. El recobro de la muestra es fácil en la HPLC. Las fracciones separadas se recolectan en forma sencilla, colocando un recipiente abierto al final de la columna. El recobro es usualmente

12 cuantivativo (exceptuando la adsorción irreversible en la columna) y los componentes separados son fácilmente asilados del disolvente de la fase móvil. Adicionalmente al tipo usual de compuestos orgánicos, la cromatografía líquida en columna puede manejar separaciones de compuestos iónicos, productos lábiles de origen natural, materiales poliméricos y compuestos polifuncionales de alto peso molecular. En el modo normal de operaciones de partición líquido-líquido, una fase estacionaria polar (p. ej. agua, metanol) se usa con una fase estacionaria no polar (p. ej. hexano). Esto favorece la retención de compuestos polares y la elusión de compuestos no polares y se le conoce como cromatografía fase normal. Si se utiliza una fase estacionaria no polar con una fase móvil polar, entonces los solutos no polares serán retenidos y los solutos polares eluidos. Esto se conoce como cromatografía por fase reversa. El mecanismo de separación en cromatografía de fase reversa depende de interacciones hidrofóbicas entre las moléculas de soluto en la fase móvil y el ligando hidrofóbico inmovilizado en la fase estacionaria. La naturaleza actual de las interacciones de unión hidrofóbica asume que la interacción de unión es el resultado de un efecto entrópico favorable. Las condiciones iniciales de unión de la fase móvil usadas en la cromatografía de fase reversa son acuosas lo cual indica un grado alto de estructuras de agua organizadas alrededor de las moléculas de soluto y el ligando inmovilizado. A medida que el soluto que une al ligando hidrofóbico inmovilizado disminuye el área hidrofóbica expuesta hacia el disolvente. Así, el grado de organización de la estructura de agua disminuye con un favorable aumento de entropía en el sistema. 3. Cromatografía de intercambio iónico La separación en la cromatografía de intercambio iónico depende la adsorción reversible de moléculas de soluto cargadas, a una resina con grupos iónicos de carga opuesta. El mecanismo de separación se basa en un equilibrio de intercambio iónico. Muchos de los experimento de intercambio iónico se llevan a cabo en cinco etapas. La primera etapa es un equilibrio en el cual el intercambiador iónico se encuentra en las condiciones apropiadas de ph y fuerza iónica, lo que permitirá la unión de las moléculas de soluto. En este estado inicial, los grupos que se intercambiarán están asociados con sus respectivos contra-iones (usualmente aniones o cationes simples, como cloruro o sodio).

13 En una segunda etapa se encuentra la aplicación de la muestra y su adsorción, en la cual las moléculas del soluto llevan a cabo el apropiado desplazamiento de carga de los contra-iones y se unen reversiblemente al gel. Las substancias que no se unen son eluídas de la cama del intercambiador usando el buffer inicial. En la tercera etapa, se lleva a cabo la desorción de la muestra cambiando las condiciones de elusión, al desfavorecer la formación del enlace iónico de las moléculas de la muestra y la cama del intercambiador. Esto normalmente se logra aumentando la fuerza iónica del buffer de elusión o cambiando su ph. En las cuarta y quinta etapas corresponden a la remoción de sustancia no eluídas bajo las condiciones experimentales previas y regresar al equilibrio de las condiciones iniciales para la siguiente purificación. La separación de diferentes sustancias se lleva a cabo porque éstas tienen diferentes grados interacción con el intercambiador iónico debido a diferencias en sus cargas, densidades de carga y distribuciones de carga en su superficie. Estas interacciones pueden ser controladas variando condiciones como la fuerza iónica y el ph. Las diferencias en propiedades de carga de compuestos biológicos son a menudo considerables, y tomando en cuenta que la cromatografía de intercambio iónico es capaz de separar especies con propiedades poco diferentes. Se pueden llevar a cabo separaciones por intercambio iónico en una columna, mediante un procedimiento en lote o por adsorción en cama extendida. La matriz. Un intercambiador iónico consiste de una matriz sólida insoluble a la cual se unen de forma covalente grupos cargados. Los grupos cargados se asocian a contra-iones móviles. Estos contra-iones pueden intercambiarse reversiblemente a otros iones de la misma carga sin alterar la matriz. La matriz puede tener carga positiva o negativa y los contra-iones también. Los intercambiadores cargados positivamente tienen contra-iones cargados negativamente (aniones) disponibles para ser intercambiados por lo que son llamados intercambiadores aniónicos. Intercambiadores cargados negativamente tienen contra-iones cargados positivamente (cationes) y se les conoce como intercambiadores catiónicos. La matriz puede estar hecha de compuestos inorgánicos, resinas sintéticas o polisacáridos. Las características de la matriz determinan sus propiedades cromatográficas tales como su eficiencia,

14 capacidad y recuperación, así como su estabilidad química, fuerza mecánica y fluidez. La naturaleza de la matriz afectará su comportamiento hacia sustancias biológicas y el mantenimiento de la actividad biológica Grupos cargados. La presencia de grupos cargados es una propiedad fundamental de un intercambiador iónico, y el tipo de grupo determina el tipo y fuerza del intercambiador iónico; su número total y disponibilidad determina la capacidad. Hay una variedad de grupos que pueden escogerse para usarse en intercambiadores iónicos; algunos de estos se muestran a continuación. Intercambiadores aniónicos Grupo funcional Dietilaminoetil (DEAE) -O-CH 2 -CH 2 -N + H(CH 2 CH 3 ) 2 Aminoetil cuaternario (AEC) -O-CH 2 -CH 2 -N + H(CH 2 CH 5 ) 2 -CH 2 -CHOH-CH 3 Amonio cuaternario (C) -O-CH 2 -CHOH-CH 2 -O-CH 2 -CHOH-CH 2 -N + H(CH 3 ) 3 Intercambiadores catiónicos Grupo funcional Carboximetil (CM) -O-CH 2 -COO - Sulfopropil (SP) - -O-CH 2 -CHOH-CH 2 -O-CH 2 -CH 2 -CH 2 SO 3 Metil sulfonato (S) - -O-CH 2 -CHOH-CH 2 -O-CH 2 -CHOH-CH 2 SO 3 Se usan los grupos sulfónico y amino cuaternario para formar intercambiadores iónicos fuertes, los otros grupos formar intercambiadores iónicos débiles. Los términos fuerte y débiles se refieren a la extensión de variación de ionización con ph y no a la fuerza del enlace. Los intercambiadores iónicos fuertes están completamente ionizados en un amplio rango de ph mientras que con los intercambiadores iónicos débiles, el grado de disociación y la capacidad de intercambio varia más marcadamente con el ph. 4. Cromatografía de exclusión por tamaño En la cromatografía de exclusión puede separarse moléculas solvatadas de acuerdo a su tamaño y habilidad a penetrar en una estructura tamiz (la fase estacionaria). La separación en cromatografía de partición y en cromatografía de intercambio iónico se logra de diferentes interacciones de solutos con la fase móvil y la fase estacionaria. En contraste, las separación en cromatografía de exclusión por tamaño se lleva a cabo por diferencias en tamaño molecular y la habilidad de diferentes moléculas para penetrar los poros de la fase estacionaria a diferentes tamaños o magnitudes.

15 La cromatografía de exclusión por tamaño se usa extensivamente para las separaciones preparativas de macromoléculas de origen biológico, así como para la purificación de polímeros orgánicos sintéticos. 5. Cromatografía de afinidad Este tipo de cromatografía utiliza interacciones altamente específicas entre un tipo de moléculas de soluto y una segunda molécula unida covalentemente (inmovilizada) a la fase estacionaria. Por ejemplo, la molécula inmovilizada podría ser un anticuerpo específico para un proteína particular. Cuando una mezcla cruda que contiene miles de proteínas se pasa a través de una columna, sólo una proteína reacciona con el anticuerpo que está unido a la columna. Después de lavar todos los otros solutos de la columna, la proteína deseada es desplazada del anticuerpo cambiando el ph, la fuerza iónica o la polaridad. Las interacciones entre las moléculas del ligando y blanco pueden ser el resultado de interacciones hidrofóbicas o interacciones electrostáticas, fuerzas de van der Waals y/o puentes de hidrógeno. La purificación por afinidad requiere un ligando bioespecífico que puede ser unido covalentemente a una matriz cromatográfica. El ligando acoplado debe retener su afinidad específica de enlace hacia las moléculas blanco, y después de lavar el material no unido, la unión entre la molécula blanco y el ligando debe ser reversible y permitir que las moléculas blanco sean removidas en forma activa. Cualquier componente puede ser usado como un ligando para purificar a su compañero respectivo. Algunas interacciones biológicas típicas usadas frecuentemente en cromatografía de afinidad son: Enzima sustrato análogo, inhibidor, cofactor. Anticuerpo antígeno, virus, célula. Lecitina polisacárido, glicoproteína, receptor de superficie celular, célula. Ác. nucleico secuencia base complementaria, histonas, polimerasa de ácidos nucleicos, proteína de unión al DNA. Hormona, vitamina receptor, proteína acarreadora. Glutatión glutatión-s-transferasa o proteínas de fusión GST Iones metálicos proteínas de fusión poli (his), proteínas nativas con histidina, residuos de cisteína y/o triptofano en sus superficies.

16 La matriz. Es un soporte inerte al cual un ligando puede ser directa o indirectamente acoplado. Algunas características importantes para ésta son: adsorción no específica extremadamente baja es esencial ya que el éxito de la cromatografía de afinidad depende de interacciones específicas, los grupos hidroxilo en los residuos de azúcar pueden servir para unirse a un ligando, proporcionando una plataforma ideal del desarrollo del medio de afinidad, la estructura de poro abierta asegura una capacidad de unión alta, aún para biomoléculas grandes porque el interior de la matriz estaría disponible para el ataque de ligandos, propiedades de fluido buenas para la rápida separación, estabilidad bajo un rango de condiciones experimentales tales como ph alto y bajo, detergentes y agentes disociadores. El ligando. Es la molécula que se une reversiblemente a moléculas específicas o grupo de moléculas, capacita la purificación por cromatografía de afinidad. La selección del ligando para cromatografía de afinidad está influenciado por dos factores: El ligando debe presentar una afinidad de unión específica y reversible para la sustancia blanco y debe tener grupos químicamente modificables que permitan ser unidos a la matriz sin destruir su capacidad de unión. Brazo espaciador. El sitio de unión de una proteína blanco a menudo se localizan dentro de la molécula y un medio de afinidad preparado con pequeños ligandos acoplados directamente a la columna puede exhibir una capacidad de unión baja debido a interferencias estéricas, por ejemplo, el ligando no podría accesar al sitio de unión de la molécula blanco. En estas circunstancias un brazo espaciador se pone entre la matriz y el ligando para facilitar la unión específica. El brazo espaciador puede ser diseñado para máximar la unión específica. APLICACIONES La cromatografía de adsorción es particularmente adecuada para el análisis de moléculas no ionizantes, insolubles en agua y relativamente simples, que frecuentemente son isómeros o compuestos muy relacionados. El intervalo de compuestos que pueden separarse se extiende desde los hidrocarburos muy polares hasta compuestos polifuncionales fuertemente polares. Esta cromatografía se ve poco influida por las diferencias en peso molecular y más por los grupos

17 funcionales específicos. En consecuencia, la separación por adsorción de compuestos que difieren solamente en el grado o tipo de sustitución alguilo, como en los miembros de las series homólogas, es pobre. Esta cromatografía se utiliza en la separación de la vitamina D 3 y sus metabolitos las vitaminas A, D y E (y compuestos muy relacionados a estas vitaminas), muchas drogas de abuso (LSD, por ejemplo), antidepresivos tricíclicos, bloqueadores beta y los PTHamino ácidos. Los aceites naturales y los extractos de esencias se analizan fácilmente y los pigmentos menos polares de las plantas, tales como los carotenoides y las porfirinas, se han separado con éxito durante muchas décadas. Los ésteres también son factibles de ser separados, siendo los glicéridos y los ftalatos típicos de esta clase de compuestos. También han sido separadas en clumnas de sílice las aflatoxinas y otras micotoxinas. En química clínica cada vez se realiza con más frecuencia el análisis cuantitativo de las drogas de abuso por medio de la cromatografía de fase reversa. Los productos farmacéuticos que se analizan en forma rutinaria incluyen a los barbitúricos, drogas antiepilépticas, analgésicos y sedantes. Aplicaciones adicionales de los métodos de fase reversa son los conservadores alimentarios, herbicidas y azúcares. En el campo farmacéutico ha venido en aumento el uso de esta técnica a costa de la cromatografía de adsorción. Un amplio espectro de biomoléculas, lipofílicas o iónicas, pequeñas o grandes, pueden ser separadas debido a que el contenido de agua en la fase móvil puede variar desde el 100% hasta porcentajes muy bajos o ninguno en absoluto. Los compuestos lipofílicos, tal como los triglicéridos, que tienen una solubilidad muy pobre en los disolventes acuosos de la fase inversa, con frecuencia pueden separarse con una fase inversa no acuosa utilizando una columna empacada de octadecilo y disolventes orgánicos polares como el acetonitrilo o el tetrahidrofurano. En la actualidad, la cromatografía ha alcanzado tal nivel de fineza y especialización que cada uno de sus tipos constituyen herramientas imprescindibles en las áreas de la ciencia y la tecnología, en la industria química, farmacéutica, cosmética, en estudios ambientales, en la clínica, en alimentos, etc. Bibliografía Willard, HH., Instrumental Methods of Analysis, Wadsworth, Inc., U.S.A., Handbooks of Amersham Pharmacia Biotech: Ion Exchange Chromatography, Affinity Chromatography, Hydrophobic Interaction Chromatography, Reversed Phase Chromatography, Sweden,

MÉTODOS CROMATOGRÁFICOS: 1. Exclusión molecular 2. Intercambio iónico 3. Afinidad SSN

MÉTODOS CROMATOGRÁFICOS: 1. Exclusión molecular 2. Intercambio iónico 3. Afinidad SSN MÉTODOS CROMATOGRÁFICOS: 1. Exclusión molecular 2. Intercambio iónico 3. Afinidad SSN Propiedades de una proteína que son útiles para su purificación por cromatografía Peso molecular Carga iónica Hidrofobicidad

Más detalles

La Absorción del Agua

La Absorción del Agua La Absorción del Agua Importancia del Agua en las Plantas Es el cons5tuyente principal del protoplasma celular, en ocasiones representa hasta el 95% del peso total de la planta. Es el solvente en el que

Más detalles

TIPOS DE CROMATOGRAFÍA

TIPOS DE CROMATOGRAFÍA TIPOS DE CROMATOGRAFÍA Existen diferentes criterios de clasificación de la cromatografía: Por la naturaleza de sus fases: Cromatografía líquido - líquido Cromatografía gas - líquido Cromatografía líquido

Más detalles

SEPARACIONES POR CROMATOGRAFÍA

SEPARACIONES POR CROMATOGRAFÍA SEPARACIONES POR CROMATOGRAFÍA Conceptos generales. Clasificación de los métodos cromatográficos. Separación cromatográfica Esquema básico de un cromatógrafo Cromatografía líquida de alta resolución. HPLC.

Más detalles

MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN

MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN MÓDULO: GESTIÓN DE RESIDUOS TEMA: DESMINERALIZACIÓN DOCUMENTACIÓN ELABORADA POR: NIEVES CIFUENTES MASTER EN INGENIERIÁ MEDIOAMBIENTAL Y GESTIÓN DEL AGUA ÍNDICE 1. INTRODUCCIÓN 2. INTERCAMBIO IÓNICO 3.

Más detalles

INTRODUCCIÓN A LA METODOLOGÍA MOLECULAR. 2002 `Derechos Reservados Pontificia Universidad Javeriana Instituto de Genética Humana Bogotá COLOMBIA

INTRODUCCIÓN A LA METODOLOGÍA MOLECULAR. 2002 `Derechos Reservados Pontificia Universidad Javeriana Instituto de Genética Humana Bogotá COLOMBIA INTRODUCCIÓN A LA METODOLOGÍA MOLECULAR 2002 `Derechos Reservados Pontificia Universidad Javeriana Instituto de Genética Humana Bogotá COLOMBIA Equipos de Laboratorio Un equipo de laboratorio es un conjunto

Más detalles

Práctica No 1. Separación de Cationes por Cromatografía de Papel

Práctica No 1. Separación de Cationes por Cromatografía de Papel Práctica No 1 Separación de Cationes por Cromatografía de Papel La cromatografía es un técnica de separación basada en el principio de retención selectiva, que permite separar los distintos componentes

Más detalles

1.2 SISTEMAS DE PRODUCCIÓN

1.2 SISTEMAS DE PRODUCCIÓN 19 1.2 SISTEMAS DE PRODUCCIÓN Para operar en forma efectiva, una empresa manufacturera debe tener sistemas que le permitan lograr eficientemente el tipo de producción que realiza. Los sistemas de producción

Más detalles

EQUILIBRIO QUÍMICO: REACCIONES ÁCIDO-BASE

EQUILIBRIO QUÍMICO: REACCIONES ÁCIDO-BASE Página: 1/7 DEPARTAMENTO ESTRELLA CAMPOS PRÁCTICO 8: EQUILIBRIO QUÍMICO: REACCIONES ÁCIDO-BASE Bibliografía: Química, La Ciencia Central, T.L. Brown, H. E. LeMay, Jr., B. Bursten; Ed. Prentice-Hall, Hispanoamérica,

Más detalles

Electrólisis. Electrólisis 12/02/2015

Electrólisis. Electrólisis 12/02/2015 Electrólisis Dr. Armando Ayala Corona Electrólisis La electrolisis es un proceso mediante el cual se logra la disociación de una sustancia llamada electrolito, en sus iones constituyentes (aniones y cationes),

Más detalles

Ablandamiento de agua mediante el uso de resinas de intercambio iónico.

Ablandamiento de agua mediante el uso de resinas de intercambio iónico. Ablandamiento de agua por intercambio iónica página 1 Ablandamiento de agua mediante el uso de resinas de intercambio iónico. (Fuentes varias) Algunos conceptos previos: sales, iones y solubilidad. Que

Más detalles

Solubilidad. y se representa por.

Solubilidad. y se representa por. Solubilidad Solubilidad. La solubilidad mide la cantidad máxima de soluto capaz de disolverse en una cantidad definida de disolvente, a una temperatura determinada, y formar un sistema estable que se denomina

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA PROGRAMA DE INGENIERIA DE ALIMENTOS 211612 TRANSFERENCIA DE MASA ACTIVIDAD 11 RECONOCIMIENTO UNIDAD 3 BOGOTA D.C. Extracción líquido - líquido La extracción líquido-líquido,

Más detalles

La electrólisis CONTENIDOS. Electrolitos. Iones. Carga eléctrica negativa. www.codelcoeduca.cl

La electrólisis CONTENIDOS. Electrolitos. Iones. Carga eléctrica negativa. www.codelcoeduca.cl La electrólisis Las moléculas de ciertos compuestos químicos, cuando se encuentran en disolución acuosa, presentan la capacidad de separarse en sus estructuras moleculares más simples y/o en sus átomos

Más detalles

ISOTERMA DE ADSORCIÓN DE ÁCIDO OXÁLICO SOBRE CARBÓN ACTIVO. Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara

ISOTERMA DE ADSORCIÓN DE ÁCIDO OXÁLICO SOBRE CARBÓN ACTIVO. Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara ISOTERMA DE ADSORCIÓN DE ÁCIDO OXÁLICO SOBRE CARBÓN ACTIVO Eva Mª Talavera Rodríguez y Francisco A. Ocaña Lara 1. Objetivos 1.- Verificar la adsorción de las moléculas de un soluto en una disolución líquida

Más detalles

TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN

TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN 1. Destilación 2. Extracción 3. Sublimación 4. Cristalización 5. Cromatografía 6. Fórmulas empíricas y moleculares 2 Tema 11 TEMA 11. Métodos físicos

Más detalles

CROMATOGRAFIA DE INTERCAMBIO IONICO

CROMATOGRAFIA DE INTERCAMBIO IONICO [ESCRIBIR EL NOMBRE DE LA COMPAÑÍA] CROMATOGRAFIA DE INTERCAMBIO IONICO Integrantes: Álvarez - Costanzo - Diaz Zegarra -Gerez- Hollman- Hurtado- Lucero- Macuso- Ruggieri- Strack INTRODUCCIÓN. La cromatografía

Más detalles

TRANSDUCTORES CAPACITIVOS

TRANSDUCTORES CAPACITIVOS CLASE 10 -- TRANSDUCTORES CAPACITIVOS Un capacitor o condensador consiste en dos superficies conductivas separadas por un material dieléctrico, el cual puede ser un sólido, líquido, gas o vacío. La capacitancia

Más detalles

TEMA 2. CROMATOGRAFÍA: PRINCIPIOS GENERALES

TEMA 2. CROMATOGRAFÍA: PRINCIPIOS GENERALES TEMA 2. CROMATOGRAFÍA: PRINCIPIOS GENERALES 2.1. CLASIFICACIÓN DE LOS MÉTODOS CROMATOGRÁFICOS 2.2. COMPORTAMIENTO CROMATOGRÁFICO DE LOS SOLUTOS 2.2.1. Comportamiento de retención 2.2.2. Coeficiente de

Más detalles

Estudio de la evaporación

Estudio de la evaporación Estudio de la evaporación Volumen del líquido Tipo de líquido Superficie del recipiente Altura del recipiente Forma del recipiente Presencia de una sal disuelta Introducción Todos hemos observado que una

Más detalles

Bolilla 7: Propiedades de los Líquidos

Bolilla 7: Propiedades de los Líquidos Bolilla 7: Propiedades de los Líquidos 1 Bolilla 7: Propiedades de los Líquidos Estudiaremos propiedades de los líquidos, derivadas de las fuerzas de cohesión entre las moléculas que lo componen. Además

Más detalles

Sustancias peligrosas para el medio ambiente

Sustancias peligrosas para el medio ambiente ANEXOS Anexo 1 Sustancias peligrosas para el medio ambiente La Directiva 67/548/CEE establece para las sustancias consideradas peligrosas para el medio ambiente un conjunto de 10 frases «R» 51, las cuales

Más detalles

TEMA 4 INTRODUCCIÓN AL ANÁLISIS VOLUMÉTRICO

TEMA 4 INTRODUCCIÓN AL ANÁLISIS VOLUMÉTRICO TEMA 4 INTRODUCCIÓN AL ANÁLISIS VOLUMÉTRICO Las valoraciones se emplean extensivamente en Química Analítica para la cuantificación de diversas especies químicas. En este tema se describen los principios

Más detalles

Conductividad en disoluciones electrolíticas.

Conductividad en disoluciones electrolíticas. Conductividad en disoluciones electrolíticas. 1.- Introducción 2.- Conductores 3.- Definición de magnitudes 3.1- Conductividad específica 3.2 Conductividad molar " 4. Variación de la conductividad (, ")

Más detalles

Tema 7: Solubilidad. (Fundamentos de Química, Grado en Física) Equilibrio químico Enero Mayo, 2011 1 / 24

Tema 7: Solubilidad. (Fundamentos de Química, Grado en Física) Equilibrio químico Enero Mayo, 2011 1 / 24 Tema 7: Solubilidad. Producto de solubilidad. Efecto del ion común en la solubilidad. Limitaciones al producto de solubilidad: K ps. Criterios para la precipitación de la sal. Precipitación fraccionada.

Más detalles

PRÁCTICA 4 DETERMINACIÓN DE LA CONCENTRACIÓN IÓNICA TOTAL DEL AGUA POTABLE, USANDO LA CROMATOGRAFÍA DE INTERCAMBIO IÓNICO

PRÁCTICA 4 DETERMINACIÓN DE LA CONCENTRACIÓN IÓNICA TOTAL DEL AGUA POTABLE, USANDO LA CROMATOGRAFÍA DE INTERCAMBIO IÓNICO PRÁCTICA 4 DETERMINACIÓN DE LA CONCENTRACIÓN IÓNICA TOTAL DEL AGUA POTABLE, USANDO LA CROMATOGRAFÍA DE INTERCAMBIO IÓNICO 1.- FUNDAMENTO TEÓRICO. 1.1.- Materiales de intercambio iónico. El intercambio

Más detalles

Capitulo 8 Fuerzas intermoleculares.

Capitulo 8 Fuerzas intermoleculares. Fuerzas intermoleculares 97 Capitulo 8 Fuerzas intermoleculares. En este tema se estudian las propiedades físicas de las sustancias moleculares en base a la magnitud de las fuerzas intermoleculares: fuerzas

Más detalles

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad 1. INTRODUCCIÓN 1.1. MARCO TEÓRICO Distribución vertical del agua en el suelo [1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad Figura 1 se pueden distinguir la

Más detalles

Destilación. Producto 1 más volátil que Producto 2 (P 0 1 > P0 2 ) Figura 1

Destilación. Producto 1 más volátil que Producto 2 (P 0 1 > P0 2 ) Figura 1 Destilación La destilación es una técnica que nos permite separar mezclas, comúnmente líquidas, de sustancias que tienen distintos puntos de ebullición. Cuanto mayor sea la diferencia entre los puntos

Más detalles

CAPITULO 4. Inversores para control de velocidad de motores de

CAPITULO 4. Inversores para control de velocidad de motores de CAPITULO 4. Inversores para control de velocidad de motores de inducción mediante relación v/f. 4.1 Introducción. La frecuencia de salida de un inversor estático está determinada por la velocidad de conmutación

Más detalles

FÍSICA Y QUÍMICA 3º E.S.O. - Repaso 3ª Evaluación GAS LÍQUIDO SÓLIDO

FÍSICA Y QUÍMICA 3º E.S.O. - Repaso 3ª Evaluación GAS LÍQUIDO SÓLIDO Nombre echa de entrega ÍSICA Y QUÍMICA 3º E.S.O. - Repaso 3ª Evaluación. El aire, es materia? Por qué? Las propiedades fundamentales de la materia son la masa (cantidad de materia, expresada en kg en el

Más detalles

CONCEPTOS FUNDAMENTALES DE CROMATOGRAFÍA

CONCEPTOS FUNDAMENTALES DE CROMATOGRAFÍA CONCEPTOS FUNDAMENTALES DE CROMATOGRAFÍA INTRODUCCIÓN En 1910, el botánico ruso M. Tswett describió por vez primera esta técnica, que fue aplicada a la separación de pigmentos de plantas, dándole el nombre

Más detalles

INTRODUCCION A LOS METODOS CROMATOGRAFICOS

INTRODUCCION A LOS METODOS CROMATOGRAFICOS Introducción a los Métodos Cromatográficos 2 Tema 10 INTRODUCCION A LOS METODOS CROMATOGRAFICOS Los métodos que se utilizan en análisis químico presentan una selectividad más o menos alta, si bien, existen

Más detalles

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad)

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) CAPITULO 5. PROCESO DE SECADO. 5.1 Descripción general del proceso de secado. El secado se describe como un proceso de eliminación de substancias volátiles (humedad) para producir un producto sólido y

Más detalles

CROMATOGRAFÍA DE GASES APLICADA A ANÁLISIS DE GRASAS. Mª Luisa Fernández de Córdova Universidad de Jaén

CROMATOGRAFÍA DE GASES APLICADA A ANÁLISIS DE GRASAS. Mª Luisa Fernández de Córdova Universidad de Jaén CROMATOGRAFÍA DE GASES APLICADA A ANÁLISIS DE GRASAS CROMATOGRAFÍA DE GASES 1. Técnicas analíticas de separación: Cromatografía 2. Cromatografia de Gases: Fundamento, parámetros, instrumento 3. Columnas

Más detalles

1. INTRODUCCIÓN 1.1 INGENIERÍA

1. INTRODUCCIÓN 1.1 INGENIERÍA 1. INTRODUCCIÓN 1.1 INGENIERÍA Es difícil dar una explicación de ingeniería en pocas palabras, pues se puede decir que la ingeniería comenzó con el hombre mismo, pero se puede intentar dar un bosquejo

Más detalles

EXTRACCION CON SOLVENTES. Esp. Farm. María Alejandra

EXTRACCION CON SOLVENTES. Esp. Farm. María Alejandra EXTRACCION CON SOLVENTES Esp. Farm. María a Alejandra EXTRACCION CON SOLVENTES Se empezó a emplear durante la segunda guerra mundial. El motor de este cambio de procesos fue la obtención de metales nucleares

Más detalles

CONTRATO DE SUMINISTROS PLIEGO DE PRESCRIPCIONES TÉCNICAS IÓNICO. OBJETO DEL CONTRATO: SUMINISTRO E INSTALACIÓN DE UN CROMATÓGRAFO

CONTRATO DE SUMINISTROS PLIEGO DE PRESCRIPCIONES TÉCNICAS IÓNICO. OBJETO DEL CONTRATO: SUMINISTRO E INSTALACIÓN DE UN CROMATÓGRAFO UNIVERSIDAD DE JAÉN CONTRATO DE SUMINISTROS PLIEGO DE PRESCRIPCIONES TÉCNICAS OBJETO DEL CONTRATO: SUMINISTRO E INSTALACIÓN DE UN CROMATÓGRAFO IÓNICO. NÚMERO DE EXPEDIENTE 2013/06 PROCEDIMIENTO DE ADJUDICACIÓN

Más detalles

1. Fundamento teórico

1. Fundamento teórico 1 1. Fundamento teórico Los métodos espectroscópicos atómicos y moleculares figuran entre los métodos analíticos instrumentales más utilizados. La espectroscopia molecular basada en la radiación ultravioleta,

Más detalles

LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503. GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN

LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503. GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN LABORATORIO DE QUÍMICA ANALÍTICA E INSTRUMENTAL 502503 GUÍA No 2.3- METODOS DE SEPARACIÓN POR DESTILACIÓN I. EL PROBLEMA Dos líquidos completamente miscibles se pueden separar por métodos físicos llamados

Más detalles

CARACTERÍSTICAS DE LA MATERIA

CARACTERÍSTICAS DE LA MATERIA LA MATERIA CARACTERÍSTICAS DE LA MATERIA - Todo lo que existe en el universo está compuesto de Materia. - La Materia se clasifica en Mezclas y Sustancias Puras. - Las Mezclas son combinaciones de sustancias

Más detalles

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos.

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos. Unidad 3 Ácidos, Hidróxidos y Sales: óxidos básicos, óxidos ácidos, hidróxidos, hidrácidos o ácidos binarios, ácidos ternarios, sales binarias, ternarias y cuaternarias. Formación y nomenclatura. Enlaces

Más detalles

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia. INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA 1. Qué es la Química Física? "La química física estudia los principios que gobiernan las propiedades el comportamiento de los sistemas químicos" El estudio de los

Más detalles

Tema 4 Tratamientos físico-químicos EUETI Escola Universitaria de Enxeñería Técnica Industrial

Tema 4 Tratamientos físico-químicos EUETI Escola Universitaria de Enxeñería Técnica Industrial Tratamiento de Residuos Tema 4 Tratamientos físico-químicos EUETI Escola Universitaria de Enxeñería Técnica Industrial Tecnología disponible para el tratamiento de residuos Técnicas mecánicas Son aquellas

Más detalles

Química Biológica I TP 1: ESPECTROFOTOMETRIA

Química Biológica I TP 1: ESPECTROFOTOMETRIA Química Biológica I TP 1: ESPECTROFOTOMETRIA OBJETIVOS: - Reforzar el aprendizaje del uso del espectrofotómetro. - Realizar espectro de absorción de sustancias puras: soluciones de dicromato de potasio.

Más detalles

Completar: Un sistema material homogéneo constituido por un solo componente se llama.

Completar: Un sistema material homogéneo constituido por un solo componente se llama. IES Menéndez Tolosa 3º ESO (Física y Química) 1 Completar: Un sistema material homogéneo constituido por un solo componente se llama. Un sistema material homogéneo formado por dos o más componentes se

Más detalles

atmosférico es mayor; más aún, si las posibilidades de reciclado natural de mismo se reducen al disminuir los bosques y la vegetación en general.

atmosférico es mayor; más aún, si las posibilidades de reciclado natural de mismo se reducen al disminuir los bosques y la vegetación en general. TODAS LAS PREGUNTAS SON DE SELECCIÓN MÚLTIPLE CON ÚNICA RESPUESTA. RESPONDA LAS PREGUNTAS 45 A 51 DE ACUERDO CON Ciclo del Carbono El ciclo del carbono es la sucesión de transformaciones que presenta el

Más detalles

El agua como disolvente

El agua como disolvente hidrofobicas El agua como disolvente El elevado momento dipolar del agua y su facilidad para formar puentes de hidrógeno hacen que el agua sea un excelente disolvente. Una molécula o ión es soluble en

Más detalles

DESARROLLO DE MATERIAL MULTIMEDIA MULTIDISCIPLINAR

DESARROLLO DE MATERIAL MULTIMEDIA MULTIDISCIPLINAR DESARROLLO DE MATERIAL MULTIMEDIA MULTIDISCIPLINAR Mª Luisa García, Mª Antonia Egea, Marta Espina, Mª Angeles Salvadó, Oriol Valls, Mª José García-Celma GIDAIF (Grup d Innovació Docent en Anàlisi Instrumental

Más detalles

INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS

INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS INTRODUCCION AL CONTROL AUTOMATICO DE PROCESOS El control automático de procesos es parte del progreso industrial desarrollado durante lo que ahora se conoce como la segunda revolución industrial. El uso

Más detalles

MEDICIÓN Y ANÁLISIS DE CONTAMINANTES DEL AIRE

MEDICIÓN Y ANÁLISIS DE CONTAMINANTES DEL AIRE CAPÍTULO 8 MEDICIÓN Y ANÁLISIS DE CONTAMINANTES DEL AIRE Fuente: National Geographic - Noviembre 2000 INTRODUCCIÓN La medición de los contaminantes sirve para varias funciones tales como: Provee un criterio

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD

CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD DE SUSTANCIAS QUE, AUNQUE A TEMPERATURA AMBIENTE TIENEN LA APARIENCIA

Más detalles

TEMA 1 Conceptos básicos de la termodinámica

TEMA 1 Conceptos básicos de la termodinámica Bases Físicas y Químicas del Medio Ambiente TEMA 1 Conceptos básicos de la termodinámica La termodinámica es el estudio de la transformación de una forma de energía en otra y del intercambio de energía

Más detalles

Extracción sólido-líquido

Extracción sólido-líquido Extracción sólido-líquido Objetivos de la práctica! Determinar la concentración de saturación del soluto en el disolvente en un sistema ternario arena-azúcar-agua, estableciendo la zona operativa del diagrama

Más detalles

Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor

Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor 1. Generalidades 2. Qué se necesita para comenzar? 3. Qué hacer para sistemas opacos y translúcidos? 4. Qué hacer

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la 34 CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO 4.1 Lecho fluidizado con vapor sobrecalentado Potter [10], ha demostrado en una planta piloto que materiales sensibles a la temperatura pueden

Más detalles

Capítulo 10. Gráficos y diagramas

Capítulo 10. Gráficos y diagramas Capítulo 10. Gráficos y diagramas 1. Introducción Los gráficos y diagramas que se acostumbran a ver en libros e informes para visualizar datos estadísticos también se utilizan con propósitos cartográficos,

Más detalles

Actividad de Biología: Cromatografía de Pigmentos Vegetales Guía del Estudiante

Actividad de Biología: Cromatografía de Pigmentos Vegetales Guía del Estudiante Actividad de Biología: Cromatografía de Pigmentos Vegetales Guía del Estudiante Objetivos: Los estudiantes serán capaces de Explicar cuáles moléculas hacen que muchas de las plantas tengan hojas verdes

Más detalles

Procesos científicos básicos: Comunicar (Cómo trabajar en la sala de clases), 2ª. Parte

Procesos científicos básicos: Comunicar (Cómo trabajar en la sala de clases), 2ª. Parte Profesores Básica / Media / Recursos Procesos científicos básicos: Comunicar (Cómo trabajar en la sala de clases), 2ª. Parte 1 [Nota: material previsto para 8º básico y enseñanza media] Cómo construir

Más detalles

1. - DEFINICION DE LOS ÁCIDOS Y DE LAS BASES 2. - REACCIONES ENTRE LOS ACIDOS Y LAS BASES CH 3 COOH + NH 3 CH 3 COO - + NH 4 H 2 O OH - + H +

1. - DEFINICION DE LOS ÁCIDOS Y DE LAS BASES 2. - REACCIONES ENTRE LOS ACIDOS Y LAS BASES CH 3 COOH + NH 3 CH 3 COO - + NH 4 H 2 O OH - + H + 1 1. - DEFINICION DE LOS ÁCIDOS Y DE LAS BASES Se define un ácido como cualquier ión o molécula capaz de ceder protones. Por lo contrario, una base es cualquier ión o molécula capaz de fijar protones.

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

CONTABILIZACIÓN DE INVERSIONES EN ASOCIADAS. NEC 20 Norma Ecuatoriana de Contabilidad 20

CONTABILIZACIÓN DE INVERSIONES EN ASOCIADAS. NEC 20 Norma Ecuatoriana de Contabilidad 20 CONTABILIZACIÓN DE INVERSIONES EN ASOCIADAS CONTENIDO NEC 20 Norma Ecuatoriana de Contabilidad 20 Contabilización de Inversiones en Asociadas Alcance Definiciones Influencia significativa Métodos de contabilidad

Más detalles

Unión de ligandos. Un ligando es cualquier molécula que se una específicamente a una proteína

Unión de ligandos. Un ligando es cualquier molécula que se una específicamente a una proteína Unión de ligandos Un ligando es cualquier molécula que se una específicamente a una proteína Características de los ligandos: a) Tamaño y naturaleza química variable b) El sitio de unión es específico

Más detalles

Dar a conocer la capacidad de disolución del agua frente a otras sustancias.

Dar a conocer la capacidad de disolución del agua frente a otras sustancias. MINISTERIO DE EDUCACION Actividad 1: Agua en la vida II. Laboratorio: Solubilidad del agua 1. Tema: AGUA DISOLVENTE UNIVERSAL 2. Objetivo: Dar a conocer la capacidad de disolución del agua frente a otras

Más detalles

A continuación se presenta los resultados obtenidos en las pruebas realizadas en

A continuación se presenta los resultados obtenidos en las pruebas realizadas en 6.0 RESULTADOS, COMPARACIÓN Y ANALISIS. 6.1 PERMEABILIDAD. A continuación se presenta los resultados obtenidos en las pruebas realizadas en el laboratorio para la determinación del coeficiente de permeabilidad

Más detalles

Del total de agua dulce que hay en la Tierra, casi el 80 % está en forma de hielo. Bajo forma líquida, cerca de un 1 % se considera superficial, y de

Del total de agua dulce que hay en la Tierra, casi el 80 % está en forma de hielo. Bajo forma líquida, cerca de un 1 % se considera superficial, y de AGUA en el SUELO Del total de agua dulce que hay en la Tierra, casi el 80 % está en forma de hielo. Bajo forma líquida, cerca de un 1 % se considera superficial, y de ella, en los suelos, habría entre

Más detalles

LA MEDIDA Y SUS ERRORES

LA MEDIDA Y SUS ERRORES LA MEDIDA Y SUS ERRORES Magnitud, unidad y medida. Magnitud es todo aquello que se puede medir y que se puede representar por un número. Para obtener el número que representa a la magnitud debemos escoger

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Validación de Métodos

Validación de Métodos Validación de Métodos Francisco Rojo Callejas Validación de Métodos Definiciones Parámetros básicos Requisitos Validación de Métodos El proceso de definir las condiciones analíticas y confirmar que el

Más detalles

TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO)

TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) Existen 2 clases de electrización, la positiva (que se representa con + ), y la negativa (que se representa con - ). Hay una partícula

Más detalles

ELECTROQUÍMICA. químicas que se producen por acción de una corriente eléctrica.

ELECTROQUÍMICA. químicas que se producen por acción de una corriente eléctrica. ELECTROQUÍMICA La electroquímica estudia los cambios químicos que producen una corriente eléctrica y la generación de electricidad mediante reacciones químicas. Es por ello, que el campo de la electroquímica

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

TEMA 1 INTRODUCCIÓN AL ANÁLISIS QUÍMICO

TEMA 1 INTRODUCCIÓN AL ANÁLISIS QUÍMICO TEMA 1 INTRODUCCIÓN AL ANÁLISIS QUÍMICO Este tema aporta una revisión panorámica del Análisis Químico, sus distintas vertientes y su terminología básica. La importancia de la Química Analítica queda plasmada

Más detalles

CÁTEDRA: QUIMICA GUIA DE PROBLEMAS Nº 10

CÁTEDRA: QUIMICA GUIA DE PROBLEMAS Nº 10 CÁTEDRA: QUIMICA GUIA DE PROBLEMAS Nº 10 TEMA: ph, NEUTRALIZACIÓN Y EQUILIBRIO ÁCIDO BASE OBJETIVOS: Clasificar ácidos y bases de acuerdo al potencial de hidrógeno. PRERREQUISITOS: Tener conocimiento de

Más detalles

DL CH12 Reactor químico combinado

DL CH12 Reactor químico combinado DL CH12 Reactor químico combinado Introducción La reacción química es la operación unitaria que tiene por objeto distribuir de una forma distinta los átomos de unas moléculas (compuestos reaccionantes

Más detalles

2.3 SISTEMAS HOMOGÉNEOS.

2.3 SISTEMAS HOMOGÉNEOS. 2.3 SISTEMAS HOMOGÉNEOS. 2.3.1 DISOLUCIONES. Vemos que muchos cuerpos y sistemas materiales son heterogéneos y podemos observar que están formados por varias sustancias. En otros no podemos ver que haya

Más detalles

LABORATORIO DE QUÍMICA FACULTAD DE FARMACIA CRISTALIZACIÓN.

LABORATORIO DE QUÍMICA FACULTAD DE FARMACIA CRISTALIZACIÓN. CRISTALIZACIÓN. Un compuesto orgánico cristalino está constituido por un empaquetamiento tridimensional de moléculas unidas principalmente por fuerzas de Van der Waals, que originan atracciones intermoleculares

Más detalles

TRABAJO DE RECUPERACIÓN DEL PRIMER PARCIAL 2012-2013

TRABAJO DE RECUPERACIÓN DEL PRIMER PARCIAL 2012-2013 TRABAJO DE RECUPERACIÓN DEL PRIMER PARCIAL 2012-2013 ÁREA: QUÍMICA CURSO: SEGUNDO DE BACHILLERATO NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INDICACIONES GENERALES: El trabajo deberá ser entregado a

Más detalles

(Estudios in vivo y estudios in vitro)

(Estudios in vivo y estudios in vitro) (Estudios in vivo y estudios in vitro) IN VIVO: es la experimentación con un todo, que viven organismos en comparación. Ensayos con animales y ensayos clínicos son dos formas de investigación in vivo.

Más detalles

PRACTICA No. 9 PREPARACION DE DISOLUCIONES

PRACTICA No. 9 PREPARACION DE DISOLUCIONES 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS QUÍMICAS Y FARMACIA ESCUELA DE QUÍMICA DEPARTAMENTO DE QUÍMICA GENERAL QUÍMICA GENERAL II PRACTICA No. 9 PREPARACION DE DISOLUCIONES INTRODUCCION:

Más detalles

REACCIONES DE IONES METÁLICOS

REACCIONES DE IONES METÁLICOS Actividad Experimental 4 REACCIONES DE IONES METÁLICOS Investigación previa -Investigar las medidas de seguridad para trabajar con amoniaco -Investigar las reglas de solubilidad de las sustancias químicas.

Más detalles

Cadena de Valor y Estrategias Genéricas 1. Prof. Marcelo Barrios

Cadena de Valor y Estrategias Genéricas 1. Prof. Marcelo Barrios Cadena de Valor y Estrategias Genéricas 1 1 Nota Técnica Preparada por el del Área de Política de Empresa de EDDE.. Primera versión: Noviembre 2001. Noviembre de 2003. 1 Cadena de Valor y Estrategias Genéricas

Más detalles

Movimiento a través de una. José San Martín

Movimiento a través de una. José San Martín Movimiento a través de una curva José San Martín 1. Introducción Una vez definida la curva sobre la cual queremos movernos, el siguiente paso es definir ese movimiento. Este movimiento se realiza mediante

Más detalles

PROGRAMACIÓN ORIENTADA A OBJETOS Master de Computación. II MODELOS y HERRAMIENTAS UML. II.2 UML: Modelado de casos de uso

PROGRAMACIÓN ORIENTADA A OBJETOS Master de Computación. II MODELOS y HERRAMIENTAS UML. II.2 UML: Modelado de casos de uso PROGRAMACIÓN ORIENTADA A OBJETOS Master de Computación II MODELOS y HERRAMIENTAS UML 1 1 Modelado de casos de uso (I) Un caso de uso es una técnica de modelado usada para describir lo que debería hacer

Más detalles

NIFBdM B-12 COMPENSACIÓN DE ACTIVOS FINANCIEROS Y PASIVOS FINANCIEROS

NIFBdM B-12 COMPENSACIÓN DE ACTIVOS FINANCIEROS Y PASIVOS FINANCIEROS NIFBdM B-12 COMPENSACIÓN DE ACTIVOS FINANCIEROS Y PASIVOS FINANCIEROS OBJETIVO Establecer los criterios de presentación y revelación relativos a la compensación de activos financieros y pasivos financieros

Más detalles

Práctica 1A Ensayo de Granulometría Prácticas de Laboratorio

Práctica 1A Ensayo de Granulometría Prácticas de Laboratorio 1A ENSAYO DE GRANULOMETRÍA 1. TIPOS DE SUELO. RECONOCIMIENTO VISUAL Desde un punto de vista geotécnico, existen cuatro grandes tipos de suelos: gravas, arenas, limos y arcillas, caracterizados principalmente

Más detalles

Lubricantes a base de Polyalkylene Glycol (PAG) usados con HFC134a (R134a)

Lubricantes a base de Polyalkylene Glycol (PAG) usados con HFC134a (R134a) LUBRICANTES SINTÉTICOS PARA SISTEMAS DE AIRE ACONDICIONADO ( SL AIR FREEZE LUBRICANT A & B ) Introducción En los países industrializados, la producción del refrigerante CFC12 (R12) cesó desde 1995 debido

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

La selección del mercado meta es esencialmente idéntica, sin importar si una firma vende un bien o servicio.

La selección del mercado meta es esencialmente idéntica, sin importar si una firma vende un bien o servicio. 4. SELECCIÓN Y EVALUACIÓN DE MERCADO META SELECCIÓN DE MERCADO META Un mercado meta se refiere a un grupo de personas u organizaciones a las cuales una organización dirige su programa de marketing. Es

Más detalles

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse.

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse. TABLA DE DECISION La tabla de decisión es una herramienta que sintetiza procesos en los cuales se dan un conjunto de condiciones y un conjunto de acciones a tomar según el valor que toman las condiciones.

Más detalles

1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA

1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA 1. Cuenta de pérdidas y ganancias analítica 1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA La cuenta de pérdidas y ganancias que se recoge en el modelo normal del Plan General de Contabilidad se puede presentar,

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

ALTERACIÓN DE LOS ALIMENTOS

ALTERACIÓN DE LOS ALIMENTOS ALTERACIÓN DE LOS ALIMENTOS Introducción Un alimento está alterado cuando en él se presentan cambios que limitan su aprovechamiento. El alimento alterado tiene modificadas sus características organolépticas

Más detalles

Ácidos y bases (III) Disoluciones reguladoras Valoraciones ácido- base. Disoluciones reguladoras del ph

Ácidos y bases (III) Disoluciones reguladoras Valoraciones ácido- base. Disoluciones reguladoras del ph Ácidos y bases (III) Disoluciones reguladoras Valoraciones ácido- base IES La Magdalena. Avilés. Asturias Disoluciones reguladoras del ph Si añadimos una pequeña cantidad de ácido o base a agua pura, el

Más detalles

Operación Microsoft Access 97

Operación Microsoft Access 97 Trabajar con Controles Características de los controles Un control es un objeto gráfico, como por ejemplo un cuadro de texto, un botón de comando o un rectángulo que se coloca en un formulario o informe

Más detalles

CONCEPTOS DE LA FUERZA

CONCEPTOS DE LA FUERZA CONCEPTOS DE LA FUERZA PAPEL DE LA FUERZA EN EL RENDIMIENTO DEPORTIVO La mejora de la fuerza es un factor importante en todas las actividades deportivas, y en algunos casos determinantes (en el arbitraje

Más detalles

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN II PAG. 1

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN II PAG. 1 U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN II PAG. 1 Introducción: En una planta química, para obtener el producto final deseado, el proceso se realiza en varias etapas, que podrían

Más detalles