Microbiología General Tema 2.- Cultivo de microorganismos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Microbiología General Tema 2.- Cultivo de microorganismos."

Transcripción

1 Crecimiento microbiano. Cultivo de microorganismos. Medios de cultivo. Métodos de aislamiento. Concepto de cultivo puro. Crecimiento microbiano en medio líquido. Crecimiento microbiano en medio sólido. Concepto de muerte de un microorganismo. Medida del crecimiento y enumeración de microorganismos. Crecimiento microbiano equilibrado. Cinética de crecimiento de un cultivo estanco. Factores físicos y químicos que influyen en el crecimiento. Rendimiento de los cultivos. Cinética de crecimiento en un cultivo continuo. Tipos de fermentadores. Bibliografía recomendada: Cap. 1 de la 8ª edición de Brock: Biología de los microorganismos CRECIMIENTO MICROBIANO Entendemos por crecimiento microbiano el aumento del número de microorganismos a lo largo del tiempo. Por tanto, no nos referimos al crecimiento de un único microorganismo que denominaremos ciclo celular, sino al demográfico de una población. En este tema nos centraremos en el crecimiento de bacterias, el estudio que se hace puede servir también para entender el crecimiento de levaduras y de otros hongos. El crecimiento de los virus se produce de otra forma diferente y será tratada al final de este capítulo. Denominamos ciclo celular al proceso de desarrollo de una bacteria aislada. A lo largo del ciclo celular tiene lugar la replicación del material genético, la síntesis de componentes celulares, la elongación de la bacteria para alcanzar un tamaño doble del inicial y su división por bipartición para dar lugar a dos células hijas. La duración del ciclo celular coincide con el tiempo de generación y depende, en general, de los mismos factores de los que depende este. El crecimiento de una población resulta de la suma de los ciclos celulares de todos los individuos de dicha población. Los cultivos de microorganismos de los que hemos hablado son asincrónicos puesto que en ellos cada microorganismo se encuentra en un punto diferente del ciclo celular. Por consiguiente, en un momento determinado en un cultivo se encuentran células que acaban de dividirse, otras que están replicando su ADN, otras que están credciendo, otras que están iniciando la división celular, etc. En un cultivo sincrónico todas las células se encuentran simultáneamente en la misma fase del crecimiento celular. Los cultivos sincrónicos son muy difíciles de mantener por lo que su importancia está principalmente ligada a los estudios básicos de biología microbiana. Sin embargo, en la naturaleza, las bacterias del suelo se encuentran en condiciones de crecimiento próximas a la fase estacionaria (en la que se produce una cierta sincronización del cultivo) y, por consiguiente, durante cierto tiempo las poblaciones naturales probablemente se comporten como relativamente sincrónicas. 1

2 Las poblaciones de bacterias crecen de forma explosiva acumulando grandes números en un periodo de tiempo muy reducido. Puesto que el efecto de los microorganismos es en la mayoría de los casos depende de su número, entender cómo se produce el crecimiento microbiano es importante para poder evitar o reducir sus efectos nocivos y potenciar los beneficiosos o aplicados. CULTIVO DE MICROORGANISMOS El cultivo de microorganismos consiste en proporcionarles las condiciones físicas, químicas y nutritivas adecuadas para que puedan multiplicarse de forma controlada. En general, podemos distinguir cultivos líquidos y sólidos en función de las características del medio y cultivos discontinuos y continuos en función de la disponibilidad de nutrientes en el medio. MEDIOS DE CULTIVO Un microorganismo necesita para crecer nutrientes que le aporten energía y elementos químicos para la síntesis de sus constituyentes celulares. Dependiendo de la fuente de carbono que utilizan, los microorganismos se pueden clasificar en autotrofos si es el CO 2 atmosférico (microorganismos que fotosintetizan) y heterotrofos si utilizan carbono orgánico. La fórmula elemental de un microorganismo es, aproximadamente, C 4 H 7 O 2 N lo que supone que los componentes de las células son: carbono que representa alrededor del 50% del peso seco, oxígeno (32%), nitrógeno (14%), fósforo (3%), azufre (en torno al 1%) y otros elementos traza entre los que se encuentran Fe, K, Mg, Mn, Co, Mb, Cu y Zn. La elaboración de medios de cultivo requiere proporcionar los elementos antes citados en una forma asimilable. Así, por ejemplo, el C debe estar en forma de carbono orgánico para los heterotrofos y como CO 2 para los autotrofos, el N en forma de NH 4, de NO 3 - o de NO 2 - o en forma de aminoácidos a los que se pueda tomar su grupo amino; el P debe estar en forma de PO 4 3-, el S procede de aminoácidos sulfurados o de SO 4 2-, etc. Además, en ciertos casos, es necesario añadir a los medios de cultivo algunos aminoácidos o vitaminas que determinados tipos de microorganismos no pueden sintetizar. En el caso de la levadura del pan (Saccharomyces cerevisiae) la fórmula elemental más concreta es: C 3.72 H 6.11 O 1.95 N 0.61 S P K esta composición puede variar ligeramente en función de las condiciones de cultivo o de fase de crecimiento. El conocimiento de la fórmula elemental del microorganismo que se cultiva facilita la formulación del medio de cultivo más adecuado para el mismo. 2

3 Los medios de cultivo se pueden clasificar en definidos cuando su composición química se conoce totalmente y complejos cuando no es el caso porque están compuestos por mezclas de extractos de materiales complejos (extracto de levadura, extracto de carne, etc.). Por otra parte, los medios de cultivo pueden ser líquidos o sólidos si se añade algún agente solidificante que no sea consumible por los microorganismos (normalmente agar). En función de los microorganismos que pueden crecer en ellos, los medios pueden ser generales, selectivos cuando favorecen el crecimiento de ciertos microorganismos mientras suprimen el de otros (por ejemplo, el medio SPS para clostridios), diferenciales cuando alguno de sus componentes permite identificar las colonias de un tipo de microorganismos (por ejemplo medios con hematíes para identificar colonias de microorganismos hemolíticos), selectivo-diferenciales cuando combinan las dos características anteriores (por ejemplo, el agar de MacConkey para identificar Escherichia coli), y medios de enriquecimiento que permiten aislar un tipo determinado de microorganismo a partir de una mezcla una población mixta de gran tamaño. MÉTODOS DE AISLAMIENTO El aislamiento de bacterias a partir de muestras naturales se realiza, en la mayoría de los casos, mediante la producción de colonias aisladas en cultivos sólidos. El crecimiento explosivo de las bacterias permite producir un gran número de ellas a partir de una única célula inicial de forma que, tras un periodo de incubación en las condiciones ambientales adecuadas, se produce una colonia observable a simple vista y formada por individuos iguales (un clon bacteriano). Sin embargo, no todos los microorganismos presentes en las muestras ambientales son cultivables (microorganismos no cultivables). Esto es debido a dificultades intrínsecas en el cultivo (microorganismos parásitos de otros), al desconocimiento de los requerimientos específicos de cultivo, y a la existencia de grupos de microorganismos que deben mantenerse en equilibrio para poder sobrevivir (casos de sintrofía por ejemplo). Se estima que en sólo en torno al 1% de las bacterias del suelo al 0,1-0,01 % de las bacterias marinas son cultivables. Existen procedimientos de enriquecimiento del número de bacterias de ambientes naturales para facilitar su aislamiento. Uno de ellos es la Columna de Winogradski que crea un microcosmos para enriquecer el número de ciertos tipos de microorganismos presentes en ambientes naturales con objeto de facilitar su aislamiento. CONCEPTO DE CULTIVO PURO Se denomina cultivo puro (axénico) al que contiene sólo un tipo de microorganismos. Los cultivos puros se inician a partir de colonias aisladas, de manera que todos los individuos del mismo tengan la misma composición genética. Los cultivos puros son 3

4 esenciales para poder estudiar las características de los microorganismos y para poder identificarlos con seguridad. Sin embargo, cada vez se va conoce más sobre el funcionamiento de las comunidades bacterianas lo que debe hacernos reflexionar sobre el hecho de que un cultivo puro supone unas condiciones no naturales y que, por consiguiente, la fisiología de los microorganismos en ambientes naturales puede ser diferente de la que presentan en condiciones de cultivos puros. CRECIMIENTO MICROBIANO EN MEDIO LÍQUIDO Si la bacteria crece en un medio líquido, en la mayoría de los casos las células que se producen en cada división continúan su vida independientemente formándose una suspensión de células libres. En un cultivo discontinuo de bacterias en medio líquido, se pueden diferenciar cuatro fases en la evolución de los parámetros que miden el crecimiento microbiano: 1.- Fase lag o de adaptación durante la que los microorganismos adaptan su metabolismo a las nuevas condiciones ambientales (abundancia de nutrientes y condiciones de cultivo) para iniciar la fase de crecimiento exponencial. 2.- Fase exponencial o logarítmica: en ella la velocidad de crecimiento es máxima y el tiempo de generación es mínimo. Durante esta fase las bacterias consumen a velocidad máxima los nutrientes del medio. La evolución del número de células durante esta fase se explica con los modelos matemáticos que describiremos a continuación. 3.- Fase estacionaria: en ella no se incrementa el número de bacterias (ni la masa u otros parámetros del cultivo). Las células en fase estacionaria desarrollan un metabolismo diferente al de la fase exponencial y durante ella se produce una acumulación y liberación de metabolitos secundarios que pueden tener importancia industrial. 4

5 Los microorganismos entran en fase estacionaria porque se agota algún nutriente esencial del medio o porque los productos de desecho que han liberado durante la fase exponencial hacen que el medio sea inhóspito para el crecimiento microbiano. La fase estacionaria tiene gran importancia porque probablemente represente con mayor fidelidad el estado metabólico real de los microorganismos en los ambientes naturales. 4.- Fase de muerte: se produce una reducción del número de bacterias viables del cultivo. CRECIMIENTO MICROBIANO EN MEDIO SÓLIDO Las fases, parámetros y cinética de crecimiento discutidas para el caso de los cultivos líquidos se presentan también en cultivos sólidos. La cinética de crecimiento, en este caso, se puede estudiar siguiendo la evolución del número de células viables por unidad de superficie o por unidad de masa. Cuando una célula aislada e inmóvil comienza a crecer sobre un substrato sólido, el resultado del crecimiento al cabo del tiempo es una colonia. Por consiguiente, se denomina unidad formadora de colonia (UFC) a una célula bacteriana viva y aislada que si se encuentra en condiciones de substrato y ambientales adecuadas da lugar a la producción de una colonia en un breve lapso de tiempo. Si el número inicial de bacterias por unidad de superficie es muy alto, la confluencia de las colonias da lugar a lo que se llama un césped cuando se realizan los cultivos en placas de laboratorio. En el caso de microorganismos móviles (deslizantes) o en el de los hongos filamentosos que tienen un crecimiento trófico no se producen colonias aisladas sino formaciones más difusas o miceliares. CONCEPTO DE MUERTE DE UN MICROORGANISMO Desde el punto de vista microbiológico, un microorganismo muere cuando pierde de forma irreversible la capacidad de dividirse. Como consecuencia de esta pérdida, no se produce aumento en el número de microorganismos y, por tanto, no hay crecimiento. Sin embargo, un microorganismo puede estar muerto desde el punto de vista microbiológico y continuar desarrollando una actividad metabólica que se traduzca, por ejemplo, en liberación de toxinas. Por otra parte, hay que considerar que la capacidad de multiplicación (crecimiento) de un microorganismo puede verse transitoriamente afectada por lesiones o por las condiciones físicas o químicas del entorno. En estos casos, podríamos considerar como muertos microorganismos que pueden reanudar su crecimiento si las condiciones son de nuevo favorables. 5

6 MEDIDA DEL CRECIMIENTO Y ENUMERACIÓN DE MICROORGANIS- MOS Existen diferentes sistemas para detectar y medir el crecimiento de microorganismos. Los principales, se enumeran a continuación: 1.- Recuento directo: consiste en la observación al microscopio de volúmenes muy pequeños de suspensiones de bacterias. Se usan unos portaobjetos especiales denominados cámaras de Petroff-Hausser. Para que la medida sea correcta es necesario que la densidad de células sea del orden de 10 5 por ml. 2.- Medida de la masa de células: el sistema se basa en que las células en suspensión dispersan la luz causando la turbidez del cultivo. La turbidez depende de la masa en suspensión y, por tanto, midiendo esta se puede estimar aquella. Este es el parámetro de medida más fácil de usar en los cultivos de laboratorio. La densidad de células debe ser del orden de 10 5 por ml. 3.- Recuento de viables: consiste en sembrar un volumen determinado de cultivo o muestra sobre el medio de cultivo sólido adecuado para estimar el número de viables contando el número de colonias que se forman puesto que cada una de estas deriva de una célula aislada. Para que la medida sea correcta desde el punto de vista estadístico, es necesario contar más de 300 UFC. En ciertas ocasiones en las que la densidad de microorganismos es demasiado baja, éstos se pueden recolectar por filtración a través de una membrana (de 0.2 µm de tamaño de poro) y posterior colocación de la membrana en un medio de cultivo adecuado para que se formen las colonias. 4.- Medida del número de partículas usando contadores electrónicos de partículas. Estos sistemas no nos indican si las partículas corresponden a células vivas o muertas; pero nos pueden dar una idea del tamaño de las partículas. 5.- Medida de parámetros bioquímicos tales como la cantidad de ADN, ARN, proteínas, peptidoglicano, etc. por unidad de volumen de cultivo. 6.- Medida de actividad metabólica de las bacterias como que respiran producen una disminución del potencial redox del medio en que se encuentran como consecuencia del consumo de oxígeno (utilización de colorantes sensibles a oxidación-reducción tales como el azul de metileno). CRECIMIENTO MICROBIANO EQUILIBRADO Se denomina crecimiento equilibrado a aquél en el que todos los parámetros del cultivo (biomasa, número de células, cantidad de proteínas, de ADN, etc.) evolucionan en paralelo. El crecimiento equilibrado probablemente ocurra en muy contadas ocasiones en condiciones naturales. Por tanto, es principalmente un concepto de aplicación en el laboratorio (o en microbiología industrial). Sin embargo, es útil porque permite estudiar el crecimiento microorganismos. 6

7 CINÉTICA DE CRECIMIENTO DE UN CULTIVO DISCONTINUO En este apartado vamos a revisar el estudio de la cinética del crecimiento de microorganismos que crecen aislados que no forman ningún tipo de estructura. Esta es la forma de crecimiento de la levadura (hongo unicelular) y de las bacterias. Es importante conocer la cinética de crecimiento de los cultivos microbianos para predecir cómo va a evolucionar un cultivo, cómo va a ir consumiéndose el substrato y cómo se van a ir acumulando los productos del cultivo. Sin conocer estos factores es muy imprudente iniciar el cultivo en un fermentador de litros, por ejemplo, con el coste que ello supone, puesto que no podemos predecir qué va a pasar, cuándo va a completarse el crecimiento, cómo se va a acumular el producto, etc. Las células aisladas cultivadas en un volumen finito de medio de cultivo apropiado van utilizando los nutrientes que tienen disponibles con la mayor eficiencia y rapidez que pueden, sintetizando sus propios componentes celulares y dividiéndose en cuanto han podido duplicar su masa y su material genético. El tiempo que tarda una célula en hacer todo lo anterior es lo que conocemos como tiempo de generación (τ) y puede variar desde unos 20 minutos en condiciones óptimas hasta varios meses en condiciones del suelo. Cada vez que transcurre un tiempo de generación, el número de células se duplica, siguiendo, por tanto, un incremento exponencial. TRATAMIENTO DEL CRECIMIENTO COMO PROGRESIÓN GEOMÉTRICA Las bacterias crecen siguiendo una progresión geométrica en la que el número de individuos se duplica al cabo de un tiempo determinado denominado tiempo de generación (τ). De esta forma, podemos calcular el número de bacterias (N) al cabo de un número de generaciones (n) usando la ecuación siguiente: N = N 0 2 n (ecuación 1) siendo N 0 el número de células en el momento actual. El número de generaciones se puede calcular de la siguiente forma: donde t es el tiempo transcurrido. Por consiguiente, combinando las ecuaciones 1 y 2: n = t / τ (ecuación 2) N = N 0 2 t/τ (ecuación 3) Los tiempos de generación de bacterias creciendo en ambientes favorables pueden ser muy cortos (valores de τ de 20 min). Esto lleva a que una única célula (N 0 =1) creciendo con un τ = 20 min, llegue a poder producir 4.7 x células en 24 horas. 7

8 Las ecuaciones exponenciales son muy difíciles de manejar gráficamente, por ello es mejor transformarlas en otras más simples. Para transformar una ecuación exponencial en una recta, tomamos logaritmos en los dos términos y resulta: lnn = lnn 0 + (t/τ) ln2 (ecuación 4) Esto es: el logaritmo del número de células crece linealmente con el tiempo a razón de una constante igual a ln2/τ. Si el tiempo de generación τ es muy grande, el crecimiento tendrá poca pendiente (será lento) y si τ es pequeño el crecimiento será rápido. En un crecimiento equilibrado, todos los parámetros de crecimiento (número de células, biomasa de cultivo, acumulación de metabolitos primarios, proteínas, ácidos nucleicos etc.) evolucionan en paralelo. Por tanto, en la ecuación anterior N puede representar cualquiera de estos factores. TRATAMIENTO DEL CRECIMIENTO EN FUNCIÓN DE LA TASA DE CRE- CIMIENTO µ Otra forma de representar la cinética es considerando el incremento en el número de células (dn) en un intervalo corto de tiempo (dt). En este caso, la ecuación que describe la cinética es la siguiente: dn/dt = µn (ecuación 5) esto es: el incremento del número de células (dn) por unidad de tiempo (dt) es proporcional al número de células presentes en el cultivo (N). A la constante de proporcionalidad (µ) se le denomina tasa de crecimiento. Integrando la ecuación anterior durante el tiempo de cultivo, se transforma en la siguiente función exponencial: N = N 0 e µt (ecuación 6) la transformación de esta ecuación en una recta (tomando logaritmos) rinde lo siguiente: lnn = lnn 0 + µt (ecuación 7) esto es: el incremento del logaritmo del número de células aumenta linealmente con el tiempo siendo la constante de proporcionalidad µ. Comparando esta ecuación (7) con la similar presentada más arriba (4), podemos concluir que µ = ln2/τ y, por consiguiente, que τ = ln2/µ. Es decir, que hay una correlación inversa entre el valor de la tasa de crecimiento (µ) y el tiempo de generación (τ). Estas ecuaciones nos permiten predecir cuál será el número de células, masa celular, etc. después de un cierto tiempo de cultivo (t) si conocemos µ; o bien, poder calcular la tasa de crecimiento µ a partir de medidas experimentales del incremento en el número de células, biomasa, etc. 8

9 12.- FACTORES FÍSICOS Y QUÍMICOS QUE INFLUYEN EN EL CRECI- MIENTO. 1.- Temperatura: Cada microorganismo tiene una temperatura de crecimiento adecuada. Si estudiamos la variación de la velocidad de crecimiento en función de la temperatura de cultivo, podemos observar una temperatura mínima por debajo de la que no hay crecimiento; a temperaturas mayores se produce un incremento lineal de la velocidad de crecimiento con la temperatura de cultivo hasta que se alcanza la temperatura óptima a la que la velocidad es máxima. Por encima de esta temperatura óptima, la velocidad de crecimiento decae bruscamente y se produce la muerte celular. El incremento de la velocidad de crecimiento con la temperatura se debe al incremento generalizado de la velocidad de las reacciones enzimáticas con la temperatura. Se denomina coeficiente de temperatura a la relación entre el incremento de la velocidad de reacción y el de temperatura. En términos generales, la velocidad de las reacciones bioquímicas suele aumentar entre 1.5 y 2.5 veces al aumentar 10ºC la temperatura a la que tienen lugar. La falta de crecimiento a temperaturas muy bajas se debe a la reducción de la velocidad de crecimiento por la reducción de la velocidad de reacción y al cambio de estado de los lípidos de la membrana celular que pasan de ser fluidos a cristalinos impidiendo el funcionamiento de la membrana celular. La muerte a altas temperaturas se debe a la desnaturalización de las proteínas y a las alteraciones producidas en las membranas lipídicas a esas temperaturas. Es importante tener en cuenta que a temperaturas bajas, el metabolismo celular se enlentece y las células paran de crecer; aunque no tienen porqué morir. Sin embargo, cuando la temperatura es superior a la óptima, se produce la muerte celular rápidamente y las células no pueden recuperar su capacidad de división si baja posteriormente la temperatura. Esto permite esterilizar por calor y no por frío. Hay varios tipos de microorganismos en función de sus temperaturas de crecimiento mínima, máxima y óptima. Tipo de microorganismo Temperatura mínima Temperatura Temperatura óptima máxima Psicrófilo Psicrótrofo Mesófilo Termófilo Los microorganismos psicrótrofos son mesófilos que pueden crecer a temperaturas bajas. Por tanto, se les puede considerar como psicrófilos facultativos. Esto es importante desde el punto de vista aplicado porque cuando se encuentran contaminando alimentos, son capaces de crecer en condiciones de refrigeración (4-8ºC) y de producir infecciones en los consumidores del alimento (30-35 ºC). 9

10 Los microorganismos capaces de producir infecciones son los mesófilos y algunos psicrótrofos ya que sus temperaturas óptimas de crecimiento coinciden con las corporales. sin embargo, tanto mesófilos como psicrófilos, psicrótrofos y termófilos pueden producir toxinas causantes de intoxicaciones alimentarias. 2.- Actividad de agua: Se denomina actividad de agua a la relación entre la presión de vapor de agua del substrato de cultivo (P) y la presión de vapor de agua del agua pura (P 0 ). El valor de la actividad de agua está relacionado con el de la humedad relativa (HR). El valor de la actividad de agua nos da una idea de la cantidad de agua disponible metabólicamente. Por ejemplo: comparemos el agua pura donde todas las moléculas de agua están libremente disponibles para reacciones químicas con el agua presente en una disolución saturada de sal común (NaCl) donde una parte importante de las moléculas de agua participa en la solvatación de los iones de la sal disuelta. En este último caso, la actividad de agua es mucho menor que en el primero. Conforme aumenta la cantidad de solutos en el medio, disminuye su actividad de agua. Cuando un microorganismo se encuentra en un substrato con una actividad de agua demasiado baja, su crecimiento se detiene. Esta detención del crecimiento no suele llevar asociada la muerte del microorganismo, sino que éste se mantiene en condiciones de resistencia durante un tiempo más o menos largo. En el caso de las esporas, la fase de resistencia puede ser considerada prácticamente ilimitada. La gran mayoría de los microorganismos requiere unos valores de actividad de agua muy altos para poder crecer. De hecho, los valores mínimos de actividad para diferentes tipos de microorganismos son, a título orientativo, los siguientes: bacterias a w >0.90, levaduras a w >0.85, hongos filamentosos a w >0.80. Como puede verse, los hongos filamentosos son capaces de crecer en substratos con una actividad de agua mucho menor (mucho más secos) de la que permite el crecimiento de bacterias o de levaduras. Por esta razón se puede producir deterioro de alimentos de baja actividad de agua (por ejemplo, el queso o almíbares) por mohos (hongos filamentosos) y no por bacterias. En función de su tolerancia a ambientes con baja a w, los microorganismos que pueden crecer en estas condiciones se clasifican en halotolerantes, halófilos y xerófilos según toleren o requieran condiciones salinas o hipersalinas, respectivamente. La reducción de la actividad de agua para limitar el crecimiento bacteriano tiene importancia aplicada en industria alimentaria. La utilización de almíbares, salmueras y salazones reduce la actividad de agua del alimento para evitar su deterioro bacteriano. 3.- ph: Es un parámetro crítico en el crecimiento de microorganismos ya que cada tipo de microorganismo sólo puede crecer en un rango estrecho de ph fuera del cual mueren rápidamente. El ph intracelular es ligeramente superior al del medio que rodea las células ya que, en muchos casos, la obtención de energía metabólica depende de la existencia de una diferencia en la concentración de protones a ambos lados de la membrana citoplásmica. El ph interno en la mayoría de los microorganismo está en el rango de 6.0 a

11 Los rangos de ph tolerables por diferentes tipos de microorganismos son, también, distintos. Hay microorganismos acidófilos que pueden vivir a ph=1.0 y otros alcalófilos que toleran ph=10.0 Hay que considerar que, como consecuencia del metabolismo, el ph del medio de crecimiento suele tender a bajar durante el cultivo. Por otra parte, la bajada del ph del medio que producen ciertos microorganismos les confiere una ventaja selectiva frente a otros microorganismos competidores. Así, por ejemplo, las bacterias lácticas que producen grandes cantidades de ácido láctico como consecuencia de su metabolismo primario reducen el ph del medio de cultivo a valores inferiores a los soportables por otras bacterias competidoras (llegan a bajar el ph del medio hasta 4.5). De esta forma, las bacterias competidoras mueren y las lácticas se convierten en la población dominante. La bajada del ph se puede deber a varios factores, uno de los cuales es la liberación de ácidos orgánicos de cadena corta (fórmico, acético, láctico) por ciertas bacterias. En este sentido, hay que tener en cuenta que la acción bactericida de estos ácidos orgánicos de cadena corta es más potente que la debida únicamente a la bajada del ph que producen. Esto es, los ácidos orgánicos de cadena corta son tóxicos para algunas bacterias por sí mismos. El efecto letal del ph ácido sobre los microorganismos tiene aplicación en la conservación de alimentos acidificándolos. De esta forma, la adición de ácido acético en forma de vinagre permite la conservación de alimentos perecederos (escabeches, por ejemplo) y la producción de ácidos en el curso de fermentaciones naturales permite alargar la vida de los alimentos (coles fermentadas, por ejemplo). 4.- Potencial redox: nos indica la capacidad del substrato para aceptar o donar electrones, esto es: sus características oxidantes o reductoras. Uno de los factores que intervienen en el potencial redox, aunque no el único, es la concentración de oxígeno [O2]. Hay microorganismos que requieren ambientes oxidantes para crecer, mientras que otros necesitan ambientes reductores. El metabolismo de ambos tipos de microorganismos presenta diferencias notables. El requerimiento de condiciones oxidantes o reductoras no debe confundirse con la necesidad de presencia o ausencia de oxígeno para que se produzca el crecimiento. En general, cuando un microorganismo requiere un ambiente oxidante se dice que desarrolla un metabolismo oxidativo (o respirativo) mientras que los microorganismos que requieren ambientes reductores (o menos oxidantes) realizan un metabolismo fermentativo. Un microorganismo es aerobio cuando necesita oxígeno para vivir y es anaerobio cuando o bien no lo necesita (anaerobios facultativos como las bacterias entéricas, o como Saccharomyces cerevisiae; o anaerobios aerotolerantes como las bacterias lácticas) o cuando muere en presencia de oxígeno (anaerobios estrictos como los clostridios). Hay microorganismos que viven en ambientes carentes de oxígeno (anaerobios) que, sin embargo, llevan a cabo un metabolismo oxidativo porque usan otro aceptor final de 11

12 electrones que actúa como oxidante ambiental. Por ejemplo, las bacterias que "respiran" nitratos (NO 3 - ), sulfatos (SO 4 2- ) u otros compuestos orgánicos oxidados (respiración anaerobia). Hay microorganismos que, aunque viven en presencia de oxígeno, no son capaces de utilizarlo como aceptor final de electrones y deben desarrollar un metabolismo fermentativo (las bacterias lácticas que son anaerobias aerotolerantes, por ejemplo). Por otra parte, hay microorganismos que pueden desarrollar ambos tipos de metabolismo. Esto es: en presencia de oxígeno desarrollan un metabolismo oxidativo y en su ausencia, fermentativo. El rendimiento de los procesos fermentativos es menor que el de los respirativos: las bacterias y las levaduras producen menos biomasa cuando crecen fermentando que cuando lo hacen respirando. En el curso de ciertas reacciones metabólicas redox se forman compuestos altamente reactivos (radicales libres, formas superóxido) que pueden dañar las proteínas, membranas y ácidos nucleicos produciendo la muerte de las células. Las células se defienden de estos compuestos reactivos mediante las enzimas siguientes: Superóxido dismutasa (SOD) y catalasa. Los anaerobios estrictos carecen de SOD y de catalasa o tienen niveles muy bajos de estas enzimas de forma que no pueden sobrevivir en presencia de oxígeno. La detección de estas enzimas tiene valor taxonómico RENDIMIENTO DE LOS CULTIVOS. El gráfico siguiente representa la variación de la biomasa (o número de células, etc.) de un cultivo a lo largo del tiempo. En este cultivo, se va consumiendo un substrato cuya concentración decrece de forma proporcional al crecimiento de la biomasa. Definiremos el rendimiento de utilización del substrato (Ys) al valor que representa la cantidad de biomasa producida por unidad de substrato consumido: 12

13 Y s = dn/ds (ecuación 8) El rendimiento de utilización de diferentes substratos puede ser diferente (hay substratos, o alimentos, que "engordan" 1 más que otros), varía entre diferentes microorganismos (hay microorganismos que "engordan" más que otras comiendo lo mismo) y varía también en función de otras condiciones ambientales o fisiológicas (no engorda lo mismo uno al comer algo si está sano o enfermo o si está en verano o en invierno). También varía el rendimiento en función de que el metabolismo sea oxidativo o fermentativo (estos conceptos serán revisados más adelante). Podemos calcular el rendimiento de la utilización del substrato en función de la cantidad de substrato añadido al cultivo, o en función de la cantidad de carbono presente en ese substrato (por ejemplo). Asimismo, podemos calcular la cantidad de biomasa total (gramos de células, por ejemplo) o de carbono presente en las células (aproximadamente el 50% de la masa celular corresponde a carbono). Haciendo las transformaciones que se indican a continuación sobre la fórmula que relaciona la variación de biomasa con la de substrato (8), llegamos a la definición de un nuevo concepto q s denominado tasa específica de consumo de substrato por el organismo. como, de acuerdo con la ecuación (5), µ = (dn/dt)/n, Y s = dn/ds (ecuación 8) dn/dt = Y s (ds/dt) (ecuación 9) (dn/dt)/n = Y s (ds/dt)/n (ecuación 10) µ = Y s q s (ecuación 11) Esto es, la tasa específica de consumo de substrato (q s ) la podemos considerar la "velocidad" con la que el organismo consume el substrato. Evidentemente, cuanto mayor sea la tasa de consumo mayor será la tasa de crecimiento (µ). q s = Y s /µ (ecuación 12) Asimismo, cuanto mayor sea el rendimiento del substrato consumido, también mayor será la tasa de crecimiento. Sin embargo, hay una cierta compensación entre la tasa de consumo del substrato y el rendimiento de forma que los microorganismos que tienen altas tasas de consumo de substrato tienen rendimiento más bajos (o cuando se dan las condiciones para una alta tasa, el rendimiento disminuye). A esta relación inversa se le conoce con el nombre de efecto Pasteur. 1 La expresión "3engordar" está usada de forma metafórica: las bacterias no engordan. La uso porque resulta útil esta metáfora antropòmórfica para entender algunos de los conceptos relacionados con el rendimiento de cultivos. 13

14 Por último, nos falta relacionar la tasa de crecimiento (µ) con la concentración de substrato (S). En condiciones de substrato abundante, la concentración de este no afecta al valor de µ; pero cuando el substrato se hace limitante, sí existe ese efecto. La expresión matemática que relaciona ambos parámetros se conoce con el nombre de ecuación de Monod y es la siguiente: µ = µ max [S/(K s +S)] (ecuación 13) En esta ecuación la tasa de crecimiento (µ) depende de la máxima que puede alcanzar el microorganismo (µ max ), de la concentración de substrato (S) y de un valor constante, K s, que representa la concentración de substrato a la que se alcanza una tasa de crecimiento igual a la mitad de la máxima. La ecuación de Monod tendrá mucha importancia al tratar de cultivos continuos. Para que se cumpla esta ecuación el rendimiento debe ser independiente de la concentración de substrato. En la práctica, los valores de K s suelen ser muy bajos, lo que indica que los microorganismos crecen con tasas (µ) muy próximas a las máximas (µ max ) a concentraciones de substrato bajas y sólo cuando estas son extremadamente bajas, la velocidad de crecimiento se reduce. Esto es debido a que los sistemas de transporte de nutrientes suelen tener valores de K m considerablemente reducidos (La K m indica la concentración de substrato a la que la velocidad de transporte es la mitad de la máxima) 14.- CINÉTICA DE CRECIMIENTO EN UN CULTIVO CONTINUO. En un cultivo continuo se mantienen los microorganismos en crecimiento constante porque se añade de forma constante medio de cultivo fresco (que aporta nuevos nutrientes) y se elimina cultivo (medio usado con sus microorganismos correspondientes) a la misma velocidad con objeto de mantener el volumen total del cultivo constante. Los cultivos continuos son importantes para trabajar con microorganismos que estén creciendo constantemente de manera que sean capaces de producir constantemente productos de interés (biomasa, metabolitos secundarios, etc.). Este tipo de cultivo es también importante en los estudios de fisiología y de ecología microbiana. En la naturaleza un ejemplo de cultivo continuo lo constituye el rumen de ciertos animales y el conjunto de procesos microbianos intestinales de todos los animales. En un cultivo continuo se pretende mantener un ambiente constante durante todo el tiempo de cultivo. Esto es imposible en un cultivo estanco en el que los nutrientes se van consumiendo progresivamente y el medio se va cargando de productos de desecho. QUIMIOSTATO El tipo más frecuente de cultivo continuo es el quimiostato en el que se introduce medio fresco a un flujo constante denominado velocidad de dilución (D) a la vez que se elimina cultivo viejo al mismo flujo. El medio de cultivo de un quimiostato contiene un nutriente esencial en una cantidad limitante (nutriente limitante). Estos parámetros se relacionan de acuerdo a la siguiente ecuación: 14

15 D = f/v (ecuación 14) donde f es la velocidad de flujo (ml h -1 ) y V el volumen del recipiente en ml. Por consiguiente, las dimensiones de D son [h -1 ]. El valor D indica el número de volúmenes de reactor (volúmenes de fermentador) que pasan a través el reactor por unidad de tiempo. Este valor es el recíproco del tiempo de residencia o tiempo que una unidad de substrato está dentro del reactor. Tanto la tasa de crecimiento µ como el nivel de población microbiana están relacionados con el valor de D. densidad celular o biomasa Tiempo de generación concentración de substrato Velocidad de dilución A velocidades de D muy bajas, pequeños incrementos de la velocidad de dilución producen un cierto incremento de la densidad del cultivo debido a que se aportan más nutrientes al medio y el microorganismo no ve limitada su tasa de crecimiento (µ) según lo indicado en la ecuación de Monod (ecuación 13). La velocidad de crecimiento aumenta (µ aumenta y τ disminuye) cuando la energía aportada por los nutrientes entrantes supera la energía de mantenimiento de los microorganismos del cultivo. A valores bajos de D la concentración de nutriente limitante (S) en el efluente es baja porque es consumido casi completamente por los microorganismos del cultivo que alcanzan unas poblaciones de gran tamaño creciendo a una tasa (µ) baja porque se encuentran en condiciones de limitación de nutrientes (S<K s ). A valores más altos de D no todo el nutriente es consumido por los microorganismos del cultivo por lo que S en el efluente aumenta. En una situación de equilibrio (steady state), velocidad de dilución D se iguala a la tasa de crecimiento µ, de forma que el control de la tasa de dilución (control del flujo f) permite regular la tasa de crecimiento y, de esa forma, la situación fisiológica del orga 15

16 nismo. A valores de D> µ max, el microorganismo no es capaz de crecer lo suficiente como para evitar ser eliminado del cultivo por el rebosadero y, por consiguiente S alcanza un valor máximo (el nutriente limitante no es consumido en el cultivo y la concentración del substrato en el efluente es igual a la del substrato en el medio inicial) y la tasa de crecimiento de microorganismos (µ) dentro del cultivo se hace nula (el cultivo desaparece). La evolución de la biomasa de un quimiostato se ajusta a la ecuación siguiente: dx/dt = crecimiento - salida = µx - DX (ecuación 15) Por consiguiente, si µ > D hay un incremento positivo de la población en el quimiostato, cuando µ = D el tamaño de la población se mantendrá estable (equilibrio) y si µ < D la población disminuirá como consecuencia de la dilución de las bacterias. En el steady-state, como (dn/dt) = 0, µ = D como se había explicado anteriormente. 2 Habida cuenta de que en el estado estacionario D = µ, la ecuación de Monod ((13) puede reformularse en los siguientes términos D = µ max [S r /(K s +S r )] (ecuación 16) donde S r es la concentración de nutriente limitante en el efluente del cultivo continuo. Despejando de la ecuación 16 el valor de S r en función de los demás, se obtiene la ecuación siguiente: S r = DK s /(µ max -D) (ecuación 17) que permite calcular cómo varía la concentración del nutriente limitante en el efluente en función de la tasa de dilución D. Si llamamos S R a la concentración de nutriente limitante que entra en el fermentador y Sr la concentración de este nutriente en el efluente; considerando que el substrato consumido en el fermentador (S R -S r ) es transformado en biomasa durante el estado estacionario (Ñ) con un rendimiento Y s, podemos calcular la producción de biomasa en el fermentador con las siguiente ecuaciones Ñ = Y s (S R -S r ) (ecuación 18) Ñ = Y s {S R -[DK s /(µ max -D)]} (ecuación 19) Estas ecuaciones nos permiten modular la cantidad de biomasa producida o la cantidad de substrato consumido regulando la tasa de dilución del fermentador. TURBIDOSTATOS 2 En realidad, esto no es una demostración de que en el steady state las tasas de dilución y crecimiento se igualan, ya que en los cáculos se partía de esta condición para poder reformular la ecuación de Monod. 16

17 El segundo tipo de cultivo continuo es el turbidostato en el que se ajusta la velocidad de dilución de tal forma que la densidad óptica del cultivo se mantiene constante. El valor D en un turbidostato, por tanto, es variable. Por otra parte, en un turbidostato el medio de cultivo no contiene nutrientes limitantes. Los turbidostatos funcionan mejor valores de D altos, mientras que el quimiostato a valores de D bajos. CULTIVO SEMI-CONTINUO Un cultivo semi-continuo (feed-batch) es un cultivo estanco al que se añaden en diferentes momentos nutrientes concentrados para permitir un mayor crecimiento o una producción más efectiva de metabolitos secundarios. En un cultivo de estas características el nutriente añadido suele ser una fuente que aporte el carbono necesario para obtener energía y elementos para la síntesis de los metabolitos secundarios de interés. Por ejemplo, la producción de penicilina se realiza mediante un cultivo de estas características TIPOS DE FERMENTADORES Podemos distinguir dos grandes tipos de fermentadores según el estado del medio de cultivo: fementadores líquidos y sólidos. FERMENTADORES LÍQUIDOS En ellos los nutrientes se encuentran en esta forma y los microorganismos se desarrollan flotando libremente en el volumen de medio de cultivo o formando agregados más o menos esféricos (pellets) en el caso de los cultivos de hongos. Este tipo de cultivos se denomina en ocasiones cultivo sumergido. El diseño de un fermentador líquido requiere tener en cuenta una serie de factores que influyen en el crecimiento, y en el rendimiento del proceso: temperatura, ph, aireación, etc. Por consiguiente, el diseño físico de los fermentadores líquidos tienen que incluir la presencia de sondas que permitan medir estos parámetros durante el cultivo y de sistemas que permitan corregir las desviaciones que se puedan producir (sistemas de refrigeración para control de temperatura, sistemas de ajuste de ph mediante la adición de ácidos o bases, etc.). Un aspecto adicional que considerar en el diseño de un fermentador es la presión hidrostática que se alcanza en su base y que puede limitar el crecimiento de microorganismos. En general, la altura máxima de un tanque de fermentación se sitúa en los 15 m ya que por encima de esa altura se alcanzan valores de presión inhibidores. Tienen especial importancia dos problemas: la agitación destinada a asegurar una mezcla correcta de los ingredientes del medio y de los microorganismos que crecen en él, y la aireación. 17

18 Fermentadores en tanque Son los fermentadores más sencillos. La agitación se consigue por un sistema de palas unidas a un eje y un motor y por las turbulencias creadas por un sistema de bafles adosados a las paredes de la cuba de fermentación. La aireación se consigue por un difusor de aire que emite desde la parte inferior de la cuba de fermentación. La transferencia de oxígeno al cultivo se hace por las burbujas que van ascendiendo por el volumen de cultivo. El principal problema de estos fermentadores es el elevado coste del sistema mecánico de agitación, principalmente cuando se realizan cultivos de hongos filamentosos en los que la viscosidad debida al micelio aumenta mucho. Fermentadores Air-lift En estos fermentadores la agitación y a aireación se logran mediante la inyección de aire por la parte inferior de la cuba de fermentación, la entrada de aire produce un convección que se canaliza por un tubo vertical interior en la cuba. La aireación también permite reducir la cantidad de calor producida durante la fermentación. En este fermentador, las burbujas de aire van aumentando de tamaño conforme ascienden por el tubo interior por lo que su relación superficie/volumen disminuye y la transferencia de oxígeno al cultivo es menor. Fermentadores Deep-Jet En ellos el aire se inyecta a presión desde la parte superior de la cuba de fermentación de forma que las burbujas de aire se van haciendo más pequeñas (mejor transferencia de oxígeno) hasta llegar al final del cilindro interior, y a partir de ahí las burbujas vuelven a crecer al ascender por la parte exterior de la cuba de fermentación. En la práctica, es un fermentador similar al anterior; pero operado al revés. 18

19 FERMENTADORES SÓLIDOS En ellos los nutrientes se encuentran en esta forma y los microorganismos se desarrollan en la superficie del substrato o penetrando en él. Es un tipo de fermentación muy aplicada en la producción de algunos alimentos (setas cultivadas, koji, etc.) y también la que tiene lugar en los procesos de compostaje de residuos orgánicos. Hay varios modelos de fermentadores sólidos: 1. Tambor 2. Bandejas 3. Sistema de lecho (bed system) Por otra parte, existen sistemas semisólidos en los que los microorganismos están adheridos a superficies estáticas y los nutrientes pasan por filtración o goteo a través de ellos (sistema de la producción de vinagre por goteo), o los microorganismos se encuentran formando agregados que se mantienen en suspensión por medio de una corriente de medio de cultivo líquido (reactores de lecho fluidificado). 19

MICROBIOLOGÍA CLÍNICA Curso 2004-2005 (grupo 1)

MICROBIOLOGÍA CLÍNICA Curso 2004-2005 (grupo 1) Tema 2.- Crecimiento y muerte de microorganismos. Concepto y expresión matemática del crecimiento bacteriano. Concepto de muerte de un microorganismo. Qué necesita un microorganismo para crecer?. Detección

Más detalles

MICROBIOLOGÍA CLÍNICA Curso 2008-2009 (grupo 1)

MICROBIOLOGÍA CLÍNICA Curso 2008-2009 (grupo 1) Tema 2.- Crecimiento y muerte de microorganismos. Concepto y expresión matemática del crecimiento bacteriano. Concepto de muerte de un microorganismo. Qué necesita un microorganismo para crecer?. Detección

Más detalles

ALTERACIÓN DE LOS ALIMENTOS

ALTERACIÓN DE LOS ALIMENTOS ALTERACIÓN DE LOS ALIMENTOS Introducción Un alimento está alterado cuando en él se presentan cambios que limitan su aprovechamiento. El alimento alterado tiene modificadas sus características organolépticas

Más detalles

Ciclo celular y crecimiento de poblaciones microbianas

Ciclo celular y crecimiento de poblaciones microbianas Ciclo celular y crecimiento de poblaciones microbianas Crecimiento a nivel individual. Crecimiento de poblaciones: medida de masa y nº de células. Crecimiento balanceado. Cinética de crecimiento. Curva

Más detalles

Estudio de la evaporación

Estudio de la evaporación Estudio de la evaporación Volumen del líquido Tipo de líquido Superficie del recipiente Altura del recipiente Forma del recipiente Presencia de una sal disuelta Introducción Todos hemos observado que una

Más detalles

Nutrientes (Comp. químicos) Agua (vehículo)

Nutrientes (Comp. químicos) Agua (vehículo) Crecimiento Celular Cultivo: operación donde d se multiplican li las células l Inóculo: Pequeña cantidad de células Cond. Ambientales: Nutrientes (Comp. químicos) Agua (vehículo) T ph aireación agitación

Más detalles

HOJA INFORMATIVA DE HORTICULTURA

HOJA INFORMATIVA DE HORTICULTURA HOJA INFORMATIVA DE HORTICULTURA COSECHA Y POST-COSECHA: Importancia y fundamentos Alejandro R. Puerta Ing. Agr. Agosto 2002 La cosecha y post - cosecha es una etapa de fundamental importancia en el proceso

Más detalles

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad 1. INTRODUCCIÓN 1.1. MARCO TEÓRICO Distribución vertical del agua en el suelo [1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad Figura 1 se pueden distinguir la

Más detalles

La Absorción del Agua

La Absorción del Agua La Absorción del Agua Importancia del Agua en las Plantas Es el cons5tuyente principal del protoplasma celular, en ocasiones representa hasta el 95% del peso total de la planta. Es el solvente en el que

Más detalles

CONDICIONES Y RECURSOS

CONDICIONES Y RECURSOS CONDICIONES Y RECURSOS Uno de los objetivos de la ecología es comprender la distribución y abundancia de las especies y para ello es importante ver el efecto que sobre ella tienen diversos efectos. Destacamos:

Más detalles

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO.

FISICA Y QUÍMICA 4º ESO 1.- TRABAJO MECÁNICO. 1.- TRABAJO MECÁNICO. Si a alguien que sostiene un objeto sin moverse le preguntas si hace trabajo, probablemente te responderá que sí. Sin embargo, desde el punto de vista de la Física, no realiza trabajo;

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire.

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. El proceso de secado es una de las operaciones más importantes en la industria

Más detalles

Determinación del equivalente eléctrico del calor

Determinación del equivalente eléctrico del calor Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

RESUMEN La industria alimentaria, en respuesta a la demanda por parte de los consumidores de alimentos naturales, frescos y libres de conservantes

RESUMEN La industria alimentaria, en respuesta a la demanda por parte de los consumidores de alimentos naturales, frescos y libres de conservantes RESUMEN La industria alimentaria, en respuesta a la demanda por parte de los consumidores de alimentos naturales, frescos y libres de conservantes químicos, ha desarrollado tecnologías de conservación

Más detalles

Preparación de medios de cultivo

Preparación de medios de cultivo Objetivos Preparación de medios de cultivo Curso: Métodos en fitopatología 24 de abril de 2009 Dr. Pedro Mondino Conocer a que denominamos medio de cultivo en el laboratorio de Fitopatología. Reconocer

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL

UNIVERSIDAD TECNOLOGICA NACIONAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE BIOTECNOLOGIA Trabajo práctico n 2 Esterilización 2009 Jefe de Cátedra: Ing. Eduardo Santambrosio

Más detalles

GUIA DE ESTUDIO PARA EL EXAMEN DE ADMISIÓN A LA MAESTRIA EN BIOTECNOLOGÍA MICROBIOLOGÍA

GUIA DE ESTUDIO PARA EL EXAMEN DE ADMISIÓN A LA MAESTRIA EN BIOTECNOLOGÍA MICROBIOLOGÍA GUIA DE ESTUDIO PARA EL EXAMEN DE ADMISIÓN A LA MAESTRIA EN BIOTECNOLOGÍA 2014 MICROBIOLOGÍA 1. Introducción: Panorámica general de la microbiología y de la biología celular. 1.1 Procesos moleculares en

Más detalles

Crecimiento Bacteriano Benintende, Silvia y Sanchez, Cecilia

Crecimiento Bacteriano Benintende, Silvia y Sanchez, Cecilia Unidad Temática 3 Crecimiento Bacteriano Benintende, Silvia y Sanchez, Cecilia Introducción En un sistema biológico se define al crecimiento como el aumento ordenado de las estructuras y los constituyentes

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

Capítulo 6. Valoración respiratoria

Capítulo 6. Valoración respiratoria 498 Capítulo 6. Valoración respiratoria 6.19. La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 6.19 La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 499

Más detalles

DL CH12 Reactor químico combinado

DL CH12 Reactor químico combinado DL CH12 Reactor químico combinado Introducción La reacción química es la operación unitaria que tiene por objeto distribuir de una forma distinta los átomos de unas moléculas (compuestos reaccionantes

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la 34 CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO 4.1 Lecho fluidizado con vapor sobrecalentado Potter [10], ha demostrado en una planta piloto que materiales sensibles a la temperatura pueden

Más detalles

AIREACIÓN C = 475. 33,5 x t. C = expresado en partes por millón

AIREACIÓN C = 475. 33,5 x t. C = expresado en partes por millón 1 AIREACIÓN El rol de los dispositivos de aireación colocados en los fermentadores, es de proveer a los microorganismos del oxigeno necesario para su crecimiento. Por otra parte el fin de la agitación

Más detalles

PN 05 Técnicas básicas de panadería I

PN 05 Técnicas básicas de panadería I 4. AMASAR. DEFINICIÓN Y TIPOS DE MAQUINARIA EM- PLEADA Podemos definir amasar como: Trabajar a mano o máquina masas compuestas, fundamentalmente de harina, agua, sal y levadura, además de otros elementos

Más detalles

TRABAJO PRACTICO ESTERILIZACION

TRABAJO PRACTICO ESTERILIZACION TRABAJO PRACTICO ESTERILIZACION Introducción La esterilización es un proceso de suma importancia para la industria de las fermentaciones. Para comenzar la explicación de este tema es conveniente dejar

Más detalles

FERMENTACION ALCOHOLICA BIOETANOL

FERMENTACION ALCOHOLICA BIOETANOL FERMENTACION ALCOHOLICA BIOETANOL 1. Definición La fermentación puede definirse como un proceso de biotransformación en el que se llevan a cabo cambios químicos en un sustrato orgánico por la acción de

Más detalles

C A P Í T U L O 3 M A T E R I A L E S Y M É T O D O. Se ejecutaron varias pruebas para la inactivación de Escherichia Coli ATCC 25922 en agua

C A P Í T U L O 3 M A T E R I A L E S Y M É T O D O. Se ejecutaron varias pruebas para la inactivación de Escherichia Coli ATCC 25922 en agua C A P Í T U L O 3 M A T E R I A L E S Y M É T O D O Se ejecutaron varias pruebas para la inactivación de Escherichia Coli ATCC 25922 en agua destilada utilizando Dióxido de Titanio dopado con Nitrógeno,

Más detalles

Solubilidad. y se representa por.

Solubilidad. y se representa por. Solubilidad Solubilidad. La solubilidad mide la cantidad máxima de soluto capaz de disolverse en una cantidad definida de disolvente, a una temperatura determinada, y formar un sistema estable que se denomina

Más detalles

SECADO DE EMBUTIDOS. es una fuente propicia para el desarrollo de bacterias y mohos.

SECADO DE EMBUTIDOS. es una fuente propicia para el desarrollo de bacterias y mohos. SECADO DE EMBUTIDOS Imtech DryGenic ayuda a los fabricantes con procesos de secado de embutidos a obtener embutidos de mayor calidad, en un entorno libre de bacterias, limpio y a una temperatura y humedad

Más detalles

METABOLISMO CELULAR. Es el conjunto de reacciones químicas a través de las cuales el organismo intercambia materia y energía con el medio

METABOLISMO CELULAR. Es el conjunto de reacciones químicas a través de las cuales el organismo intercambia materia y energía con el medio METABOLISMO CELULAR Es el conjunto de reacciones químicas a través de las cuales el organismo intercambia materia y energía con el medio Reacciones Celulares Básicas. Los sistemas vivos convierten la energía

Más detalles

UNIVERSIDAD AUTONOMA DE CHIHUAHUA

UNIVERSIDAD AUTONOMA DE CHIHUAHUA UNIVERSIDAD AUTONOMA DE CHIHUAHUA FACULTAD DE CIENCIAS QUIMICAS OPERACIONES UNITARIAS ll Ensayo Integrantes: Areli Prieto Velo 232644 Juan Carlos Calderón Villa 232654 Víctor Gutiérrez 245369 Fernando

Más detalles

Tema 6 Diagramas de fase.

Tema 6 Diagramas de fase. Tema 6 Diagramas de fase. Los materiales en estado sólido pueden estar formados por varias fases. La combinación de estas fases define muchas de las propiedades que tendrá el material. Por esa razón, se

Más detalles

CONTROL DE LA ACTIVIDAD CELULAR

CONTROL DE LA ACTIVIDAD CELULAR CONTROL DE LA ACTIVIDAD CELULAR Sumario Las Moléculas de los Seres Vivos Control de la actividad celular 1. Las reacciones celulares básicas 2. El control de las reacciones celulares 3. Los modelos de

Más detalles

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales. La instalación de aerogeneradores en entornos urbanos requiere la implementación de importantes medidas

Más detalles

Instalaciones de tratamiento de agua de alimentación de caldera

Instalaciones de tratamiento de agua de alimentación de caldera Instalaciones de tratamiento de agua de alimentación de caldera Introducción La calidad del agua de alimentación a la caldera repercute directamente sobre el buen funcionamiento de la misma así como sobre

Más detalles

UNIVERSIDAD DE MAYORES PRÁCTICAS DE MICROBIOLOGÍA DEPARTAMENTO DE BIOMEDICINA Y BIOTECNOLOGÍA MICROBIOLOGÍA I

UNIVERSIDAD DE MAYORES PRÁCTICAS DE MICROBIOLOGÍA DEPARTAMENTO DE BIOMEDICINA Y BIOTECNOLOGÍA MICROBIOLOGÍA I UNIVERSIDAD DE MAYORES PRÁCTICAS DE MICROBIOLOGÍA DEPARTAMENTO DE BIOMEDICINA Y BIOTECNOLOGÍA MICROBIOLOGÍA I DRAS. MARÍA LUISA ORTIZ Y ANA PEDREGOSA 1 PRÁCTICAS DE MICROBIOLOGÍA DEPARTAMENTO DE BIOMEDICINA

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

CARACTERÍSTICAS DE LA MATERIA

CARACTERÍSTICAS DE LA MATERIA LA MATERIA CARACTERÍSTICAS DE LA MATERIA - Todo lo que existe en el universo está compuesto de Materia. - La Materia se clasifica en Mezclas y Sustancias Puras. - Las Mezclas son combinaciones de sustancias

Más detalles

Ficha Técnica Conceptos de la Energía de la Biomasa

Ficha Técnica Conceptos de la Energía de la Biomasa Ficha Técnica Conceptos de la Energía de la Biomasa 15 1. Energía de la biomasa La energía de la biomasa es aquella que proviene de la descomposición anaeróbica de la materia orgánica tanto animal como

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

TIPO DE CAMBIO, TIPOS DE INTERES Y MOVIMIENTOS DE CAPITAL

TIPO DE CAMBIO, TIPOS DE INTERES Y MOVIMIENTOS DE CAPITAL TIPO DE CAMBIO, TIPOS DE INTERES Y MOVIMIENTOS DE CAPITAL En esta breve nota se intentan analizar las relaciones existentes en el sector español entre tipo de cambio, tasa de inflación y tipos de interés,

Más detalles

CONCEPTOS DE LA FUERZA

CONCEPTOS DE LA FUERZA CONCEPTOS DE LA FUERZA PAPEL DE LA FUERZA EN EL RENDIMIENTO DEPORTIVO La mejora de la fuerza es un factor importante en todas las actividades deportivas, y en algunos casos determinantes (en el arbitraje

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

www.elesapiens.com GLOSARIO DE QUÍMICA ABONO: Es cualquier sustancia orgánica o inorgánica que mejora la calidad de la tierra.

www.elesapiens.com GLOSARIO DE QUÍMICA ABONO: Es cualquier sustancia orgánica o inorgánica que mejora la calidad de la tierra. GLOSARIO DE QUÍMICA ABONO: Es cualquier sustancia orgánica o inorgánica que mejora la calidad de la tierra. ANTIBIÓTICO: Es una sustancia química que mata o impide el crecimiento de ciertas clases de microorganismos

Más detalles

EL TRANSPORTE CELULAR

EL TRANSPORTE CELULAR EL TRANSPORTE CELULAR Sumario Historia de la Teoría Celular Estructura y función celular Transporte celular 1. Membrana Celular 2. La Difusión 3. La Osmosis 4. La Difusión Facilitada 5. El Transporte Activo

Más detalles

CALENTAMIENTO DE AGUA CALIENTE SANITARIA

CALENTAMIENTO DE AGUA CALIENTE SANITARIA CALENTAMIENTO DE AGUA CALIENTE SANITARIA De todas las formas de captación térmica de la energía solar, las que han adquirido un desarrollo comercial en España han sido los sistemas para su utilización

Más detalles

COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas

COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas FUNDACION NEXUS CIENCIAS SOCIALES MEDIO AMBIENTE SALUD COMPOSTAJE Y RECUPERACION DE MATERIALES A PARTIR DE RESIDUOS SOLIDOS URBANOS. Ventajas y desventajas Buenos Aires, julio 2010 Av. SANTA FE 1845 7º

Más detalles

Pronósticos. Pronósticos y gráficos Diapositiva 1

Pronósticos. Pronósticos y gráficos Diapositiva 1 Pronósticos Pronósticos Información de base Media móvil Pronóstico lineal - Tendencia Pronóstico no lineal - Crecimiento Suavización exponencial Regresiones mediante líneas de tendencia en gráficos Gráficos:

Más detalles

Práctica 1A Ensayo de Granulometría Prácticas de Laboratorio

Práctica 1A Ensayo de Granulometría Prácticas de Laboratorio 1A ENSAYO DE GRANULOMETRÍA 1. TIPOS DE SUELO. RECONOCIMIENTO VISUAL Desde un punto de vista geotécnico, existen cuatro grandes tipos de suelos: gravas, arenas, limos y arcillas, caracterizados principalmente

Más detalles

RESPUESTAS A LAS PREGUNTAS DEL TEMA 3

RESPUESTAS A LAS PREGUNTAS DEL TEMA 3 RESPUESTAS A LAS PREGUNTAS DEL TEMA 3 Las respuestas en algún caso (primera pregunta) son más largas de lo requerido para que sirva de explicación 1. Explica brevemente qué significan cada una de las curvas

Más detalles

SERIES DE TIEMPO INTRODUCCIÓN

SERIES DE TIEMPO INTRODUCCIÓN Clase Nº 5 SERIES DE TIEMPO INTRODUCCIÓN La forma más utilizada para el análisis de las tendencias futuras es realizar pronósticos. La función de un pronóstico de demanda de un bien, por ejemplo ventas

Más detalles

MEDICIÓN DE LA ACTIVIDAD DEL AGUA

MEDICIÓN DE LA ACTIVIDAD DEL AGUA MEDICIÓN DE LA ACTIVIDAD DEL AGUA El concepto actividad del agua (AW) La definición de la actividad del agua es la relación entre la presión de vapor del aire alrededor de un alimento (p) y la presión

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación.

FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación. FASES GASEOSA Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación. Porosidad del suelo Se denomina porosidad del suelo al espacio no ocupado

Más detalles

Microorganismos marcadores: índices e indicadores

Microorganismos marcadores: índices e indicadores Microorganismos marcadores: índices e indicadores 1 Dentro de los microorganismos marcadores encontramos: 1. Índices Su presencia en un alimento indica la posible presencia simultánea de microorganismos

Más detalles

1. Introducción 2. Formas acelulares: los virus 3. Los procariotas: bacterias, cianofíceas y micoplasmas 4. Métodos y técnicas microbiológicas

1. Introducción 2. Formas acelulares: los virus 3. Los procariotas: bacterias, cianofíceas y micoplasmas 4. Métodos y técnicas microbiológicas 1. INTRODUCCIÓN Diversidad y Clasificación 1. Introducción 2. Formas acelulares: los virus 3. Los procariotas: bacterias, cianofíceas y micoplasmas 4. Métodos y técnicas microbiológicas Desde que Pasteur

Más detalles

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos.

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos. PIRÓLISIS 1. Definición La pirólisis se define como un proceso termoquímico mediante el cual el material orgánico de los subproductos sólidos se descompone por la acción del calor, en una atmósfera deficiente

Más detalles

CAPÍTULO 14. CONTROL DE LAS TERNERAS

CAPÍTULO 14. CONTROL DE LAS TERNERAS CAPÍTULO 14. CONTROL DE LAS TERNERAS La alimentación de las terneras funciona! La alimentación por ordenador de los terneros está aquí para ayudarle La salud de las terneras depende en gran medida del

Más detalles

La energía y sus transformaciones

La energía y sus transformaciones La energía y sus transformaciones Índice 1 Definición de energía 2 Energías renovables y no renovables 2.1 Energías no renovables 2.2 Energías renovables 3 Transformaciones energéticas 4 Conservación de

Más detalles

EVALUACION POSTERIOR A LA VISITA DE VEGETALISTA EVALUACIÓN SUMATIVA

EVALUACION POSTERIOR A LA VISITA DE VEGETALISTA EVALUACIÓN SUMATIVA Nivel: 7 Básico Unidad: Nutrición autótrofa EVALUACIÓN SUMATIVA 1-.Un agricultor quiere obtener el máximo nivel productivo de sus campos de trigo. Para ello ha averiguado que las plantas usan luz y que

Más detalles

Caída de Presión en Tubos de Diferente Diámetro

Caída de Presión en Tubos de Diferente Diámetro Caída de Presión en Tubos de Diferente Diámetro Laboratorio de Operaciones Unitarias Equipo 4 Primavera 2008 México D.F., 12 de marzo de 2008 Alumnos: Arlette Mayela Canut Noval arlettecanut@hotmail.com

Más detalles

Entender el funcionamiento de los relojes permitiría lidiar con ciertas patologías en humanos. 28 ACTUALIDAD EN I+D RIA / Vol. 41 / N.

Entender el funcionamiento de los relojes permitiría lidiar con ciertas patologías en humanos. 28 ACTUALIDAD EN I+D RIA / Vol. 41 / N. 28 ACTUALIDAD EN I+D RIA / Vol. 41 / N.º 1 Entender el funcionamiento de los relojes permitiría lidiar con ciertas patologías en humanos Abril 2015, Argentina 29 Relojes biológicos en plantas Ajustar el

Más detalles

PRACTICA Núm. 16 RECUENTO DE BACTERIAS MESOFILAS AEROBIAS EN AGUA PARA CONSUMO HUMANO

PRACTICA Núm. 16 RECUENTO DE BACTERIAS MESOFILAS AEROBIAS EN AGUA PARA CONSUMO HUMANO PRACTICA Núm. 16 RECUENTO DE BACTERIAS MESOFILAS AEROBIAS EN AGUA PARA CONSUMO HUMANO I. OBJETIVO Determinar la presencia de bacterias Mesófilas Aerobias en una muestra de agua potable por la técnica de

Más detalles

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA.

PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. PÉRDIDA DE CARGA Y EFICIENCIA ENERGÉTICA. Con unos costos de la energía en aumento y con unas limitaciones cada vez mayores a la emisión de gases de efecto invernadero, el diseño de equipos e instalaciones

Más detalles

Requisitos del semillero

Requisitos del semillero Requisitos del semillero La tarea de la cama de siembra es proporcionar a la semilla las condiciones idóneas para una germinación rápida y uniforme. Esto requiere agua, aire, calor y un ambiente libre

Más detalles

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR

MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR MANUAL DE PROCEDIMIENTO PARA LA INSTALACION Y CONTROL DE ECO-CAR A/ INSTALACION. Para una óptima instalación del dispositivo Eco-car se deben observar las siguientes pautas: 1.- El dispositivo debe estar

Más detalles

Reproducción bacteriana

Reproducción bacteriana CRECIMIENTO Reproducción bacteriana Fisión binaria Las bacterias generalmente se reproducen por fisión binaria. Una célula se divide en dos después de desarrollar una pared transversa. Generalmente es

Más detalles

FUNDAMENTOS DE DISEÑO DE REACTORES 3.1 ECUACIÓN GENERAL DE BALANCE DE MASA

FUNDAMENTOS DE DISEÑO DE REACTORES 3.1 ECUACIÓN GENERAL DE BALANCE DE MASA C A P Í T U L O 3 FUNDAMENTOS DE DISEÑO DE REACTORES 3.1 ECUACIÓN GENERAL DE BALANCE DE MASA Todos los procesos de tratamiento de aguas residuales se pueden analizar por medio de una caja negra y balances

Más detalles

En el APOENZIMA se distinguen tres tipos de aminoácidos:

En el APOENZIMA se distinguen tres tipos de aminoácidos: 1. Concepto de biocatalizador. Son sustancias que consiguen que las reacciones se realicen a gran velocidad a bajas temperaturas, ya que disminuyen la energía de activación de los reactivos. Pueden ser:

Más detalles

Electrólisis. Electrólisis 12/02/2015

Electrólisis. Electrólisis 12/02/2015 Electrólisis Dr. Armando Ayala Corona Electrólisis La electrolisis es un proceso mediante el cual se logra la disociación de una sustancia llamada electrolito, en sus iones constituyentes (aniones y cationes),

Más detalles

MEDIDA DEL CALOR ESPECÍFICO

MEDIDA DEL CALOR ESPECÍFICO Laboratorio de Física General Primer Curso (Termodinámica) MEDIDA DEL CALOR ESPECÍFICO Fecha: 07/02/05 1. Objetivo de la práctica Familiarizarse con las medidas calorimétricas mediante la medida del calor

Más detalles

Centro de Investigaciones de Tecnología Pesquera y Alimentos Regionales (INTI - CITEP - Centro Regional Sur)

Centro de Investigaciones de Tecnología Pesquera y Alimentos Regionales (INTI - CITEP - Centro Regional Sur) Ing. Alicia S. Ciarlo Ing. Alejandro C. Booman Centro de Investigaciones de Tecnología Pesquera y Alimentos Regionales (INTI - CITEP - Centro Regional Sur) La mitad de la producción mundial de alimentos

Más detalles

Acción Enzimática: Actividad de la Catalasa

Acción Enzimática: Actividad de la Catalasa Acción Enzimática: Actividad de la Catalasa Experimento 3 Muchos organismos pueden descomponer el peróxido de hidrógeno (H 2 O 2 ) por la acción de las enzimas. Las enzimas son proteínas globulares responsables

Más detalles

BATERIA AUTOMOTRIZ. HECTOR CISTERNA MARTINEZ Profesor Técnico. Duoc UC, Ingenería Mecánica Automotriz y Autotrónica 16/11/2006

BATERIA AUTOMOTRIZ. HECTOR CISTERNA MARTINEZ Profesor Técnico. Duoc UC, Ingenería Mecánica Automotriz y Autotrónica 16/11/2006 BATERIA AUTOMOTRIZ HECTOR CISTERNA MARTINEZ Profesor Técnico 1 Introducción La batería es un acumulador de energía que cuando se le alimenta de corriente continua, transforma energía eléctrica en energía

Más detalles

INTRODUCCION La Fitopatología es el estudio de:

INTRODUCCION La Fitopatología es el estudio de: INTRODUCCION La Fitopatología es el estudio de: Los organismos y las condiciones del ambiente que ocasionan enfermedades en plantas Los procesos mediante los cuales estos factores producen enfermedades

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

ENERGÍA ELÉCTRICA. Central térmica

ENERGÍA ELÉCTRICA. Central térmica ENERGÍA ELÉCTRICA. Central térmica La central térmica de Castellón (Iberdrola) consta de dos bloques de y 5 MW de energía eléctrica, y utiliza como combustible gas natural, procedente de Argelia. Sabiendo

Más detalles

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT.

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT. EL ABC DE LA AUTOMATIZACION ALGORITMO DE CONTROL PID; por Aldo Amadori Introducción El Control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales,

Más detalles

CONCEPTO DE POBLACIÓN

CONCEPTO DE POBLACIÓN 1 10.- ESTRUCTURA Y DINÁMICA DE POBLACIONES Vamos a empezar estudiando de lo más pequeño a lo más grande. 10.INTRODUCCIÓN.- EL CONCEPTO DE ESPECIE La especie es un conjunto de individuos semejantes, en

Más detalles

SUSTANCIAS QUE DESEMPEÑAN FUNCIONES NO INCLUIDAS EN LOS APARTADOS ANTERIORES

SUSTANCIAS QUE DESEMPEÑAN FUNCIONES NO INCLUIDAS EN LOS APARTADOS ANTERIORES SUSTANCIAS QUE DESEMPEÑAN FUNCIONES NO INCLUIDAS EN LOS APARTADOS ANTERIORES Entre las sustancias que impiden que se produzca en un alimento alteraciones de tipo químico o biológico están: Agentes de carga

Más detalles

Turbinas de vapor. Introducción

Turbinas de vapor. Introducción Turbinas de vapor Introducción La turbina de vapor es una máquina de fluido en la que la energía de éste pasa al eje de la máquina saliendo el fluido de ésta con menor cantidad de energía. La energía mecánica

Más detalles

Costos de Distribución: son los que se generan por llevar el producto o servicio hasta el consumidor final

Costos de Distribución: son los que se generan por llevar el producto o servicio hasta el consumidor final CLASIFICACIÓN DE LOS COSTOS Los costos tienen diferentes clasificaciones de acuerdo con el enfoque y la utilización que se les dé. Algunas de las clasificaciones más utilizadas son. Según el área donde

Más detalles

CAPÍTULO 9: EL CALENTAMIENTO DE AGUA

CAPÍTULO 9: EL CALENTAMIENTO DE AGUA Capítulo 9: El Calentamiento de Agua 145 CAPÍTULO 9: EL CALENTAMIENTO DE AGUA Los costos para calentar agua pueden ser tan altos como los costos para la calefacción, para un hogar eficiente en energía,

Más detalles

LIMPIEZA Y DESINFECCIÓN EN LA INDUSTRIA LÁCTEA

LIMPIEZA Y DESINFECCIÓN EN LA INDUSTRIA LÁCTEA LIMPIEZA Y EN LA INDUSTRIA LÁCTEA LD EN LAS INDUSTRIAS DE ALIMENTOS La sanitización/higienización es un concepto general que comprende la creación y mantenimiento de las condiciones óptimas de higiene

Más detalles

Medias Móviles: Señales para invertir en la Bolsa

Medias Móviles: Señales para invertir en la Bolsa www.gacetafinanciera.com Medias Móviles: Señales para invertir en la Bolsa Juan P López..www.futuros.com Las medias móviles continúan siendo una herramienta básica en lo que se refiere a determinar tendencias

Más detalles

Capítulo V APLICACIONES DE LAS FUNCIONES A LA ADMINISTRACIÓN

Capítulo V APLICACIONES DE LAS FUNCIONES A LA ADMINISTRACIÓN Capítulo V APLICACIOES DE LAS FUCIOES A LA ADMIISTRACIÓ 5.1 ITRODUCCIÓ: Muchos problemas relacionados con la administración, la economía y las ciencias afines, además de la vida real, requieren la utilización

Más detalles

Ablandamiento de agua mediante el uso de resinas de intercambio iónico.

Ablandamiento de agua mediante el uso de resinas de intercambio iónico. Ablandamiento de agua por intercambio iónica página 1 Ablandamiento de agua mediante el uso de resinas de intercambio iónico. (Fuentes varias) Algunos conceptos previos: sales, iones y solubilidad. Que

Más detalles

4. Estudio de varios modelos teóricos de mezcla para obtener productos de calidad

4. Estudio de varios modelos teóricos de mezcla para obtener productos de calidad 4. Estudio de varios modelos teóricos de mezcla para obtener productos de calidad Una de las primeras tareas para desarrollar con éxito una actividad de compostaje es lograr la correcta combinación de

Más detalles

1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA

1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA 1. Cuenta de pérdidas y ganancias analítica 1. CUENTA DE PÉRDIDAS Y GANANCIAS ANALÍTICA La cuenta de pérdidas y ganancias que se recoge en el modelo normal del Plan General de Contabilidad se puede presentar,

Más detalles

Área Académica de: Química. Programa Educativo: Licenciatura de Química en Alimentos. Nombre de la Asignatura: Biología celular

Área Académica de: Química. Programa Educativo: Licenciatura de Química en Alimentos. Nombre de la Asignatura: Biología celular Área Académica de: Química Línea de Investigación Programa Educativo: Licenciatura de Química en Alimentos Nombre de la Asignatura: Biología celular Tema: Introducción Ciclo: Agosto-Diciembre 2011 Profesor(a):

Más detalles

Unidad 5. ECOSISTEMAS: estructura.

Unidad 5. ECOSISTEMAS: estructura. Unidad 5. ECOSISTEMAS: estructura. INTRODUCCIÓN. La biosfera es el conjunto de los seres vivos que habitan en el planeta. Cada uno de estos organismos pertenece a una especie. Las especies se clasifican

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA PROGRAMA DE INGENIERIA DE ALIMENTOS 211612 TRANSFERENCIA DE MASA ACTIVIDAD 11 RECONOCIMIENTO UNIDAD 3 BOGOTA D.C. Extracción líquido - líquido La extracción líquido-líquido,

Más detalles

SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: EL PORQUE DE LA SONDA LAMBDA DE BANDA ANCHA SONDA LAMBDA CONVENCIONAL

SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: EL PORQUE DE LA SONDA LAMBDA DE BANDA ANCHA SONDA LAMBDA CONVENCIONAL SONDA LAMBDA DE BANDA ANCHA VEHICULO: SEAT VW AUDI SKODA - OTROS INTRODUCCION: Este articulo es sobre pruebas que se han realizado en dos tipos de sondas lambdas de banda ancha, tipo BOSCH y tipo NTK.

Más detalles

CONTROL DE PROCESO EN BIODIGESTORES

CONTROL DE PROCESO EN BIODIGESTORES !!!! Grupo AquaLimpia CONTROL DE PROCESO EN BIODIGESTORES Preparado por AquaLimpia Engineering e.k. Uelzen - Alemania Julio 2013 2 Derechos reservados Propiedad intelectual Aqualimpia Engineering e.k Prohibida

Más detalles

Aspectos Básicos sobre Antimicrobianos I. Actividad y resistencia

Aspectos Básicos sobre Antimicrobianos I. Actividad y resistencia Aspectos Básicos sobre Antimicrobianos I Dr. Alberto Fica C. Sección de Infectología, Departamento de Medicina, Hospital Clínico Universidad de Chile. En esta presentación se tratará el concepto de actividad

Más detalles