Integrantes: 2. Introducción
|
|
- Milagros Fidalgo Miguélez
- hace 6 años
- Vistas:
Transcripción
1 Facultad de Ciencias Departamento de Física Fundamentos de Electricidad y Magnetismo Laboratorio N 7 Campo Magnético Ovidio Almanza Noviembre 28 de 2011 Integrantes: Diana Milena Ramírez Gutiérrez Cod Lina María Osorio Lemus Cod Jaime Hernando Borraez Cod Alejandra Villalobos Camacho Cod Resumen. En el presente informe de laboratorio observamos y realizamos la medición del campo magnético generado en una bobina solenoide en relación con la corriente que circula a través de la bobina. Luego, medimos la fuerza del campo magnético (creado por la bobina) ejercida sobre una espira de longitud L, la cual tiene otra corriente I. Esta fuerza magnética la equilibramos con la fuerza ejercida por el peso de los hilos al otro extremo de la espira. 2. Introducción Los campos magnéticos no son producidos únicamente por los imanes, podemos obtener un campo magnético haciendo circular corriente por un conductor, el cual está definido por el sentido de la corriente según la ley de la mano derecha. El campo magnético de una bobina depende fundamentalmente de número de espiras que contiene la bobina y de la corriente que la atraviesa, si la corriente aumenta, el campo magnético será mayor.
2 Ahora, la dirección del campo magnético en la espira no va a tener la misma dirección, debido a la configuración del conductor sobre la balanza que lo contiene, es decir, el campo magnético no resultará nulo en el extremo de la espira, de esta manera, podemos cuantificar la fuerza del campo magnético sobre un tramo de alambre conductor de longitud L por medio de la balanza, entonces la fuerza que actúa sobre el alambre será: Siempre que el alambre sea perpendicular a la dirección del campo. 3. Objetivos: Objetivo General: Encontrar el valor de la permeabilidad magnética a partir del principio del electromagnetismo Objetivos Específicos: Analizar el comportamiento de una placa metálica en un campo magnético. Estudiar la dirección que adquiere un campo magnético debido a una corriente eléctrica.
3 4. Marco Teórico Campo Magnético (B): es la fuerza por unidad de carga que actúa sobre una carga Q de prueba colocada en un punto. Los experimentos realizados sobre el movimiento de partículas cargadas que se desplazan en un campo magnético han proporcionado los siguientes resultados: 1. La fuerza magnética es proporcional a la carga q y la velocidad v de la partícula 2. La magnitud y dirección de la fuerza magnética depende de la velocidad de la partícula y de la magnitud y dirección del campo magnético 3. Cuando una partícula se mueve en dirección paralela al vector campo magnético, la fuerza magnética F sobre la carga es cero 4. Cuando la velocidad hace un ángulo con el campo magnético la fuerza magnética actúa en una dirección perpendicular tanto v como a B; es decir, F es perpendicular al plano formado por v y B. 5. La fuerza magnética sobre una carga positiva tiene sentido opuesto a la fuerza que actúa sobre una carga negativa que se mueve en la misma dirección. 6. Si el vector velocidad hace un ángulo Ѳ con el campo magnético, la magnitud de la fuerza magnética es proporciona al sen Ѳ Figura 1 Si una fuerza se ejerce sobre una partícula cargada cuando se mueve a través de un campo magnético, no debe sorprender que un alambre que lleva una corriente también experimente una fuerza cuando se coloca un campo magnético. Esto se sigue del hecho de que la corriente representa una colección de varias partículas cargadas en movimiento; por lo tanto la fuerza resultante sobre el alambre se debe a la suma de las fuerzas individuales sobre las partículas cargadas.
4 Figura 2 5. Aspectos experimentales a. Materiales Solenoide Placa metálica Amperímetro Hilo Fuente Reóstatos b. Procedimiento experimental
5 Figura3.Montaje de la práctica 6. Análisis Para determinar la permeabilidad magnética en las condiciones ambientales de la ciudad se crea un circuito con un solenoide y una placa metálica para generar un campo magnético. A partir de una corriente fija en el solenoide y con la variación de la corriente en la placa se puede obtener un campo magnético B 1 debido a la inclinación que adquiere la placa al experimentar el campo. Al repetir este procedimiento con la variación de la corriente fija del solenoide se obtienen diferentes datos para el campo magnético de éste. (Ecuación 1) De esta manera, se puede obtener el valor experimentar del campo magnético del solenoide y a partir de la Ecuación 2 se puede calcular el valor de la permeabilidad magnética en las condiciones ambientales Datos experimentales: Ecuación 1 λ hilo= 30mg/m= 0,03g/m l = longitud transversal de la placa= 2,8 cm I= corriente Β= Corriente Tabla 1 mg(n) I(A) 0, ,5 0, , ,5 0,
6 Gráfico 1: Determinación de campo magnético para corriente de solenoide = 2 Se puede observar en el Gráfico 1, que al comparar el peso de la cuerda (mg) con la corriente (I), el valor de la pendiente de la recta, corresponde al valor de la longitud transversal (l) multiplicado por el campo magnético (B); sin embargo se puede ver la gran dispersión de los datos con un R 2 = , debido a los errores comunes cometidos en la práctica, como por ejemplo la falta de precisión al observar la placa en equilibrio a medida que se aumentaba la corriente de la placa. Tabla 2 mg (N) I(A) 0, , ,5 0,
7 Gráfico 2: Determinación campo magnético para corriente de solenoide = 1 Tabla2 B I 9,74 2 3, Ecuación 2 Gráfico 3: Determinación de la permeabilidad magnética Debido a que solo se alcanzaron a deducir dos datos de campo magnético por el procedimiento de la placa metálica (solo se varió dos veces la corriente del solenoide), la
8 gráfica 3 presenta una línea recta con R 2 = 1; sin embargo con estos valores se puede obtener un cálculo aproximado de la permeabilidad magnética a las condiciones ambientales. 5. Conclusiones: Se pudo comprobar que toda corriente eléctrica genera un campo magnético. Aunque se logró calcular el valor de la permeabilidad magnética, este resultado varía mucho con respecto al valor teórico de ésta debido a la imprecisión en la toma de datos experimentales 6. Bibliografía [1]Serway, R. A. (s.f). Electricidad y Magnetismo 3ra edición. México: Mc Graw-Hill. [2]Mosca, T. (2003). Física para la Ciencia y la Tecnología Vol.2 Electricidad y Magnetismo. Barcelona, España: Reverté.
Balanza de Corriente.
Balanza de Corriente. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En la presente práctica experimental,
Instrumentación y Ley de OHM
Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de
Capítulo 3. Magnetismo
Capítulo 3. Magnetismo Todos hemos observado como un imán atrae objetos de hierro. La razón por la que ocurre este hecho es el magnetismo. Los imanes generan un campo magnético por su naturaleza. Este
+- +- 1. En las siguientes figuras: A) B) C) D)
PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido
Ejercicios resueltos
Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,
Circuito RL, Respuesta a la frecuencia.
Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia
Circuito RC, Respuesta a la frecuencia.
Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un
No hay resorte que oscile cien años...
No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos
MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4
GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)
Ejercicios resueltos
Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético
Nivelación de Matemática MTHA UNLP 1. Vectores
Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:
MARCOS OMAR CRUZ ORTEGA 08/12/2009
Física II (Inductancia Magnética) Presentado por: MARCOS OMAR CRUZ ORTEGA (Actual alumno de Ing. en Sistemas Computacionales) 08/12/2009 Tabla de contenido 1 Introducción... 3 2 El campo magnético... 4
ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.
ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura
MOVIMIENTO ONDULATORIO
1 Apunte N o 1 Pág. 1 a 7 INTRODUCCION MOVIMIENTO ONDULATORIO Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA
UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA INSTRUMENTOS DE MEDICION INFORME DE LABORATORIO Presentado por: Andrés González - 0329032 Andrea Herrera - 0327121 Hans Haeusler - 0332903 Rafael Triviño -
CAMPO ELÉCTRICO FCA 10 ANDALUCÍA
CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.
Problemas de Campo eléctrico 2º de bachillerato. Física
Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico
INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS
INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS La física es la más fundamental de las ciencias que tratan de estudiar la naturaleza. Esta ciencia estudia aspectos tan básicos como el movimiento,
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
Unidad didáctica: Electromagnetismo
Unidad didáctica: Electromagnetismo CURSO 3º ESO 1 ÍNDICE Unidad didáctica: Electromagnetismo 1.- Introducción al electromagnetismo. 2.- Aplicaciones del electromagnetismo. 2.1.- Electroimán. 2.2.- Relé.
1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2).
FÍSICA CUESTIONES Y PROBLEMAS BLOQUE III: INTERACCIÓN ELECTROMAGNÉTICA PAU 2003-2004 1.- Comente las propiedades que conozca acerca de la carga eléctrica..(1.1, 1.2). 2.- Una partícula de masa m y carga
ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010
ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 Prueba de Acceso para Mayores de 25 años Para que un adulto mayor de 25 años pueda incorporarse plenamente en los estudios superiores de la Física
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación
Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia
Instrumentos y aparatos de medida: Medida de intensidad, tensión y resistencia Podemos decir que en electricidad y electrónica las medidas que con mayor frecuencia se hacen son de intensidad, tensión y
Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.
1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar
IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?
IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento
Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff
Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.
Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.
Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista
Segunda Ley de Newton
Segunda Ley de Newton Laboratorio de Mecánica y fluidos Objetivos El alumno entenderá la relación entre las fuerzas de la naturaleza y el movimiento. El estudiante encontrará la relación entre las fuerzas
UNICA Facultad de Ingeniería Mecánica
UNICA Facultad de Ingeniería Mecánica y Eléctrica CURSO Dibujo Electrónico Alumno Porras Dávalos Alexander Darwin Paginas de estudio porrasdavalosa1.wikispaces.com porrasdavalosa.wordpress.com porrasdavalosa.blogger.com
Bases Físicas del Medio Ambiente. Campo Magnético
ases Físicas del Medio Ambiente Campo Magnético Programa X. CAMPO MAGNÉTCO.(2h) Campo magnético. Fuerza de Lorentz. Movimiento de partículas cargadas en el seno de un campo magnético. Fuerza magnética
Líneas Equipotenciales
Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia
Diseño y Construcción de un Generador de Van de Graaff
Diseño y Construcción de un Generador de Van de Graaff ASIGNATURA: Física Electromagnética TEMA DEL PROYECTO: Electrostática OBJETIVOS Afianzar los conceptos de la fuerza eléctrica a nivel de la interacción
E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27
E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27 Tema 1. Problemas resueltos 1. Cuáles son las similitudes y diferencias entre la ley de Coulomb y la
Guía del docente. 1. Descripción curricular:
Guía del docente. 1. Descripción curricular: - Nivel: MN4, IVº medio. - Subsector: Ciencias Física. - Unidad temática: Circuito de corriente variable. - Palabras claves: Jaula de Faraday; Campo magnético;
Péndulo simple. Curso 2010/11. Comprobar los factores que determinan el periodo de un péndulo simple.
Prácticas de laboratorio de Física I 1 Objetivos Péndulo simple Curso 2010/11 Comprobar los factores que determinan el periodo de un péndulo simple. Determinar la aceleración de la gravedad a través del
LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY
Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA
Ejercicios resueltos
Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en
Espiras y brújulas: medición del campo magnético de la Tierra
Espiras y brújulas: medición del campo magnético de la Tierra María Inés Aguilar 1, Mariana Ceraolo 2, Mónica Pose 3 1 Centro Educativo San Francisco Javier, Buenos Aires, miaguilar@ciudad.com.ar 2 Colegio
Examen de Selectividad de Física. Septiembre 2009. Soluciones
Examen de electividad de Física. eptiembre 2009. oluciones Primera parte Cuestión 1.- Razone si son verdaderas o falsas las siguientes afirmaciones: El valor de la velocidad de escape de un objeto lanzado
MEDICIONES ELECTRICAS I
Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que
VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita.
1 PAU Física, junio 2010. Fase específica OPCIÓN A Cuestión 1.- Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita y
(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.
Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión
Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora
Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora Martin, Laura Leibovich, Débora laura_martin1@hotmail.com debbie@megabras.com Laboratorio de física -
Cap. 24 La Ley de Gauss
Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay
Funciones de varias variables
Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
Problemas de Física 1 o Bachillerato
Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte
Inducción de fuerzas electromotrices por un campo variable en el tiempo
ELECTRICIDAD Y MAGNETISMO Inducción de fuerzas electromotrices por un campo variable en el tiempo UNIDAD 5 PRÁCTICA 14 ING. ELECTROMECÁNICA PRESENTA: DANIEL ABARCA ANALCO DANIEL CEBRERO PRIETO YAMANI DE
Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.
INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica
Opción A. Ejercicio 1. Respuesta. E p = 1 2 mv 2. v max = 80 = 8, 9( m s ).
Opción A. Ejercicio 1 Una masa m unida a un muelle realiza un movimiento armónico simple. La figura representa su energía potencial en función de la elongación x. (1 punto) [a] Represente la energía cinética
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que
INTRODUCCIÓN A VECTORES Y MAGNITUDES
C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.
Generador de Faraday de una sola pieza
Generador de Faraday de una sola pieza Autores Frigerio, Paz La Bruna,Gimena Larreguy, María Romani, Julieta mapaz@vlb.com.ar labrugi@yahoo.com merigl@yahoo.com julietaromani@hotmail.com Laboratorio de
Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL
TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL 8.1. CAMPO MAGNÉTICO CREADO POR UN ELEMENTO DE CORRIENTE Una carga eléctrica en movimiento crea, en el espacio que la rodea, un campo magnético.
FISICA DE LOS PROCESOS BIOLOGICOS
FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno
La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y,
Materia: Matemática de 5to Tema: Producto Cruz Marco Teórico Mientras que un producto escalar de dos vectores produce un valor escalar; el producto cruz de los mismos dos vectores produce una cantidad
Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen
Liceo Los Andes Cuestionario de Física Curso: Segundo Bachillerato Quimestre: Primero Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Electrización: Formas de cargar
Ejercicios Propuestos Inducción Electromagnética.
Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de
VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA
ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA Aceleración de la gravedad 9,8m/s Constante de permitividad 8,85x10-1 Nm /C Masa del protón 1,67x10-7 kg Masa
TEMA: CAMPO ELÉCTRICO
TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo
Campo Magnético. Campo creado por espiras de corriente Campo Magnético Terrestre
Campo Magnético Campo creado por espiras de corriente Campo Magnético Terrestre 1. OBJETVOS - Estudiar el campo magnético que crea una espira circular en función de la intensidad de corriente y del radio.
1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica
1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:
FACULTAD DE CIENCIAS DE LA SALUD Carrera de Kinesiología
FACULTAD DE CIENCIAS DE LA SALUD Carrera de Kinesiología BIOMECÁNICA Mg.Lic.Klgo. Christian Forno Docente-UPV BIOMECÁNICA CIENCIA QUE ESTUDIA LAS FUERZAS INTERNAS Y EXTERNAS, Y CÓMO INCIDEN ESTAS SOBRE
CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO
OPCIÓN A CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN PROBLEMAS: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los problemas puntúan 3 puntos cada uno y las cuestiones
INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO
INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante
PRÁCTICA 2 CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
INGENIERÍA QUÍMICA 1 er curso FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 2 CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. II. Movimiento
TEMA 4 ELECTROMAGNETISMO
TEMA 4 ELECTROMAGNETISMO IV.1 Magnetismo e imanes IV.2 Electroimanes IV.3 Flujo magnético IV.4 Fuerza magnética IV.5 Inducción electromagnética IV.6 Autoinducción Cuestiones 1 IV.1 MAGNETISMO E IMANES
CAPÍTULO 5. PRUEBAS Y RESULTADOS
CAPÍTULO 5. PRUEBAS Y RESULTADOS En esta parte se mostrarán las gráficas que se obtienen por medio del programa que se realizó en matlab, comenzaremos con el programa de polariz.m, el cual está hecho para
Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.
Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA SISTEMAS DE MANUFACTURA FLEXIBLE EN COMPETENCIAS PROFESIONALES
TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA SISTEMAS DE MANUFACTURA FLEXIBLE EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas
MEDICIONES ELECTRICAS II
Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS II Trabajo Práctico N 3 Tema: MEDICION DE FASE CONTRASTE DE COFIMETRO. Conceptos Fundamentales El período de una señal senoidal se corresponde con
En la siguiente gráfica se muestra una función lineal y lo que representa m y b.
FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son
LINEAS EQUIPOTENCIALES
LINEAS EQUIPOTENCIALES Construcción de líneas equipotenciales. Visualización del campo eléctrico y del potencial eléctrico. Análisis del movimiento de cargas eléctricas en presencia de campos eléctricos.
CAMPO LEY DE COULOMB Y ELÉCTRICO I
CAMPO LEY DE COULOMB Y ELÉCTRICO I 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. BIBLIOGRAFÍA: -Tipler-Mosca. "Física".
FISICA III AÑO: 2010. Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010
Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Departamento de Física Cátedra de Física Experimental II --- Asignatura: Física III --- Año 2010 Proyecto: Transformador Casero
6. VECTORES Y COORDENADAS
6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES
35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico
q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,
Determinación del equivalente eléctrico del calor
Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar
TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.
C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando
Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración
Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre
ELECTRICIDAD Y MAGNETISMO. Inducción de las fuerzas electromotrices al girar una espira en un campo magnético fijo.
ELECTRICIDAD Y MAGNETISMO Inducción de las fuerzas electromotrices al girar una espira en un campo magnético fijo. UNIDAD 5 PRÁCTICA 13 ING. ELECTROMECÁNICA PRESENTA: DANIEL ABARCA ANALCO DANIEL CEBRERO
GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21
SIGNTU: MTEMTI EN IOLOGI DOENTE: LI.GUSTO DOLFO JUEZ GUI DE TJO PTIO Nº ES: POFESODO Y LIENITU EN IOLOGI _PGIN Nº 4_ GUIS DE TIIDDES Y TJO PTIO Nº OJETIOS: Lograr que el lumno: Interprete la información
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que
TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO)
TECNOLOGIA RESUMEN DEL TEMA 3 (NOCIONES DE ELECTRICIDAD Y MAGNETISMO) Existen 2 clases de electrización, la positiva (que se representa con + ), y la negativa (que se representa con - ). Hay una partícula
LABORATORIO DE MECÁNICA LEY DE HOOKE
No 6 LABORATORIO DE MECÁNICA LEY DE HOOKE DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General: Estudiar experimentalmente el comportamiento
1. Fenómenos de inducción electromagnética.
1. Fenómenos de inducción electromagnética. Si por un circuito eléctrico, en forma de espira, por donde no circula corriente, se aproxima un campo magnético originado por la acción de un imán o un solenoide
EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1
OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando
1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE
Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.
CIRCUITO ELÉCTRICO ELEMENTAL
CIRCUITO ELÉCTRICO ELEMENTL Elementos que integran un circuito elemental. Los elementos necesarios para el armado de un circuito elemental son los que se indican en la figura siguiente; Figura 1 Extremo
FUNCION LINEAL. TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables
FUNCION LINEAL TEOREMA: Toda recta en el plano coordenado es la gráfica de una ecuación de primer grado en dos variables Toda ecuación de primer grado suele designarse como una ecuación lineal. Toda ecuación
Mediciones Eléctricas
Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...
Otras tareas y actividades: Preguntas y problemas
FISICA MECANICA DOCUMENTO DE CONTENIDO TALLER DE EJERCICIOS LAPIZ Y PAPEL Otras tareas y actividades: Preguntas y problemas A continuación usted encontrara preguntas y problemas que debe resolver para
MEDICIONES ELECTRICAS I
Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 6 Tema: PUENTES DE CORRIENTE CONTINUA Y DE CORRIENTE ALTERNA. Q - METER Introducción Las mediciones de precisión de los valores
1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.
Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-
Definimos así a la región del espacio donde se manifiestan acciones magnéticas.
Unidad N 1 - TRANSFORMACION DE LA ENERGIA CAMPO MAGNETICO: Definimos así a la región del espacio donde se manifiestan acciones magnéticas. ELECTROMAGNETISMO Ley de Biot Savart En todo conductor recorrido
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA MEXICALI
PROGRAMA EDUCATIVO PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE Tronco Común 2009-2 11211 Álgebra Lineal PRÁCTICA No. NOMBRE DE LA PRÁCTICA DURACIÓN (HORAS) 7 Producto