Modelado de sistemas de inyección de combustible

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Modelado de sistemas de inyección de combustible"

Transcripción

1 odlado d sistas d inyión d obustibl Krishna K. Busawon* David A. Díaz Roro* Rsun El rinial roósito d st artíulo s dar a onor un nuvo odlo ara sistas d inyión d obustibl. El odlo inorora los ftos d intrabio d alor ntr zlas d gas y otras arts físias dl sista. En st odlo, los últils d adisión y salida son vistos oo dos rators introntados a través d los uals fluyn gass a distintas traturas. El odlo rousto ud ostriornt utilizars ara disutir algunos roblas nontrados n l ontrol y stiaión d arátros d los sistas autootors. 1. INRODUCCIÓN Durant las dos déadas asadas, l odlado dináio d otors ha sido objto d intnsa invstigaión. Esto s dbido a varias lgislaions sobr isión d gass y rgulaions sobr onoía d obustibls, lo qu ha rqurido olítias d ontrol d otors ás oljas. Es bin sabido qu la rlaión Air/Cobustibl (A/F or sus siglas n inglés, la igniión y l ontrol d rirulaión d gass d obustión, aftan d anra dirta las isions y la onoía d obustibl n los autootors, a st rsto, un odlado aduado d la dináia dl últil d adisión s d artiular iortania. Un odlado uidadoso d la dináia d los últils qu oinida on los divrsos fnónos involurados dntro d stos, tals oo l fnóno aústio, aratrizado or la gotría d la boquilla y l torizado d la válvula, noralnt srán dados n térinos d arátros distribuidos d la rrsntaión dl sista. Sin bargo, ésta rrsntaión no ud sr utilizada on roósitos d ontrol n tio ral. Consuntnt, una búsquda ara odlos sils bajo hiótsis razonabls ha sido la labor d varios trabajos (véas 1,2,3,4,5. La ayoría d * stos trabajos solant onsidran la uaión d rsión-stado n los últils d salida y ntrada y iniizan sus abios d tratura. Esto s dbido a qu n gnral, la transfrnia d alor n l últil d adisión s onsidra quña ara asi todos los odos orativos. Adás, los tios d abio d rsión rlativa n l últil son uho ás largos qu los tios d abio d tratura rlativa. Sin bargo, n irtos asos, sialnt durant las ondiions d arranqu y uando la rirulaión d gass s onsidrada, los ftos d tratura n los últils no son nsariant dsriabls. En st artíulo, s dará un odlo global d las traturas y rsions n los últils ara un sista d inyión d obustibl uando la rirulaión d gass s * Dotorado n Ingniría Elétria, Ara d Control y Robótia, d la FIE - UANL. 6 Ingnirías, ayo-agosto 1999, ol. II, No.4

2 Krishna K. Busawon, David A. Díaz Roro onsidrada. Los últils d adisión y salida son vistos oo dos rators introntados a través d los uals fluyn gass a distintas traturas. El odlo s obtin al alular los balans d asas y nrgía n los rators bajo suosiions usuals d gass idals y rsión-tratura unifors. S ustra qu uando la tratura dl gas d obustión, la tratura dl últil y la tratura abint son iguals, la uaión lásia d rsión n los últils lada n varios trabajos (vér 2, 3, 5 s obtnida. Est artíulo s strutura d la siguint anra: En la siguint sión, s dará un odlo gnral d uaions d rsión y tratura ara los últils d adisión y salida. Dsués algunas silifiaions son hhas on l roósito d drivar un odlo razonabl ara ontrol y obsrvaión. 2. ODELADO DEL ÚLIPLE DE ADISIÓN El roósito d sta sión s dar una rlaión dináia d la rsión y tratura d los últils d adisión y salida sin onsidrar las dináias dl roso d obustión dntro d los istons. Podos onsidrar los últils d adisión y salida oo dos rators sarados n los uals fluyn gass a distintas traturas. El odlo s driva d la siguint rrsntaión squátia, n la ual: P,,, rrsntan la rsión, tratura y volun dl últil d adisión rstivant. P,,, rrsntan la rsión, tratura y volun dl últil d salida.,, asas d gass n los últils d adisión y salida., razón d flujo ásio d r ingrsando al últil d adisión (razón d flujo n la garganta. o, razón d flujo ásio d gas abandonando l últil d adisión (razón d flujo dl otor., razón d flujo ásio d gas d obustión qu ntra al últil d adisión., razón d flujo ásio d gas ntrando al últil d salida. Ingnirías, ayo-agosto vol. II, No.4 7

3 odlado d sistas d inyión d obustibl in, razón d flujo ásio d gas d obustión ntrando a la válvula d rirulaión(egr. out, razón d flujo ásio d gas d obustión abandonando al últil d salida. h, ho, h, h, hin, hout, h, h, ntalías asoiadas a los rstivos flujos d gass. 3. BALANCE DE ASA Y ENERGÍA EN EL ÚLIPLE DE ADISIÓN Balan d nrgía: h h o ho d ( h (1 Dond rrsnta las érdidas d alor n las ards dl últil d adisión. Balan d asa: o d Cobinando abas uaions obtnos: ( h h ( h h o ( ho h Asuios lo siguint: i Los gass son idals: dh ( (2 dh ii La zla s rfta y unifor: h h; h h h. o out in iii La zla tin un alor sífio global y s indndint d la tratura. La obinaión d lo asuido n i y iii ilia qu dh. Por lo tanto, ( h h ( y h h. Rsultando: ( ( La funión ( ( oo k( (3 ud sr odlada vntualnt, dond k s una onstant qu dnd d la ondutividad téria d las ards dl últil d adisión. 4. BALANCE DE ENERGÍA Y ASA EN EL ÚLIPLE DE SALIDA Balan d nrgía: d h in hin out hout ( h (4 Dond rrsnta las érdidas d alor d las ards dl últil d salida haia l dio xtrior. Balan d asa: d ín out (5 Cobinando las uaions (4 y (5 obtnos: dh ( h h in( hin h out( hout h Utilizando las suosiions itadas obtnos: 8 Ingnirías, ayo-agosto 1999, ol. II, No.4

4 Krishna K. Busawon, David A. Díaz Roro ( h h ( Por lo tanto, ( oo k ( (6 Coo ants ud odlars, dond k dnd d la ondutividad téria d las ards dl últil d salida. 5. UN ODELO SIPLIFICADO PARA CONROL En sta sión utilizaros las antriors uaions ara drivar un odlo on roósitos d ontrol y obsrvaión, haindo unas uantas hiótsis ás. Estas hiótsis son otivadas or ralidads rátias. Por lo asuido n (i, P r, dond r s la onstant dl gas. Por lo tanto, r r r d r ( ( o D una anra siilar, r P r y r r r d (7 ( in out abién tnos: (8. y, En sua tnos: ( ( ( r o r in ( ( ( Ahora, si asuios qu: out (9 (10 iv Las érdidas d alor a través d las ards s dsriabl, d anra qu 0. v La tratura d la zla d gass qu abandona los istons s igual a la tratura dl gas d sa, i... Entons obtnos: Ingnirías, ayo-agosto vol. II, No.4 9

5 odlado d sistas d inyión d obustibl r r P r 0 NOAS: o ( r ( in out P (11 (12 (13 (14 1 Lo asuido n iv y v tin un otivo rátio. D hho, si l valor dio d, d la zla d gass y la ondutividad téria son onoidas, s ud lograr un odlo ás xato. abién s intrsant notar qu l roso d obustión s toado n unta n l odlo or dio d la tratura. Por lo tanto la xatitud dl odlo ud sr jorada idindo la tratura, ro sto ilia la utilizaión d otro snsor. Esto s básiant una rstriión a lo asuido n v. 2 Es laro qu uando, obtnos la uaión lásia d rsión n los últils, utilizada n varios trabajos (véas g. 2,3,4,5. Es bin sabido qu n la oraión n ondiions d roso, la rirulaión d gass no s onsidra. En st aso, un análisis ás rano d la uaión (12 ustra qu la tratura dl últil tind a la tratura abint n ondiions d stado staionario. En tal aso la hiótsis d qu la tratura s unifor a través d todo l otor s uy razonabl. Sin bargo, uando la rirulaión d gass s onsidrada, sta últia suosiión no srá nsariant vrdadra. AGRADECIIENOS Agrados al Profsor Christian Jallut dl dartanto d Control Autoátio d la Univrsidad Claud Brnard Lyon I or la gran antidad d harlas uy útils intrsants al rsto. REFERENCIAS 1. Chaurlia,., Bidan, P., and Bovri, S., Control-orintd sark ngin odl, Control Eng. Prati, No. 3, , Crossly, P.R., and Cook, J. A., A nonlinar ngin odl for drivtrn syst dvlont, IEEE Intrnational Confrn Control 91, Confrn ubliation No. 332, ol. 2, Edinburgh, U.K., Dobnr, D. J., An ngin odl for dynai ngin ontrol dvlont, ASE Par No. WA- 11:15, Hndriks, E. and Sornson, S. C., an valu odling of Sark Ignition Engins, SAE hnial Par No , Powll B.K. A dynai odl for autootiv ngin ontrol analysis, Pro. of th 18th IEEE CDC, Florida, Ingnirías, ayo-agosto 1999, ol. II, No.4

MOVIMIENTO VIBRATORIO Y VELOCIDAD TÉRMICA DE LOS ELECTRONES

MOVIMIENTO VIBRATORIO Y VELOCIDAD TÉRMICA DE LOS ELECTRONES MOVIMINO VIRAORIO Y VLOCIDAD ÉRMICA D LOS LCRONS M. Lópz-Garía Obsrando dsd l undo arosópio l oiinto d una partíula y spífiant l d un ltrón, podríaos onluir qu tin un oiinto rtilíno o uro y qu la traytoria

Más detalles

MECÁNICA CUÁNTICA - RESUMEN

MECÁNICA CUÁNTICA - RESUMEN I..S BATRIZ D SUABIA Dto. Físia y Quíia MCÁNICA CUÁNTICA - RSUMN. La iótsis d Plank. n l año 9 Plank introdujo una nua iótsis ara tratar d xliar la radiaión itida or los uros alints. Sgún él al igual la

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

FÍSICA II. Guía De Problemas Nº4:

FÍSICA II. Guía De Problemas Nº4: Univrsidad Nacional dl Nordst Facultad d Ingniría Dpartanto d Físico-Quíica/Cátdra Física II FÍSIC II Guía D roblas Nº4: rir rincipio d la Trodináica 1 ROBLEMS RESUELTOS 1- S dsa calcular l trabajo ralizado

Más detalles

1. CICLOS DE LOS SISTEMAS DE POTENCIA 1.1 CICLOS DE POTENCIA A VAPOR

1. CICLOS DE LOS SISTEMAS DE POTENCIA 1.1 CICLOS DE POTENCIA A VAPOR ERMODINÁMICA II INRODUCCIÓN. CICLO DE LO IEMA DE POENCIA Dsd l unto d vista d la tnología, un unto iotant d la ingniía s oyta sistas qu alin las onvsions dsadas nt los difnts tios d ngías. En la snt unidad

Más detalles

SOFTWARE PARA EL DISEÑO DE ENGRANAJES CÓNICOS Y SELECCIÓN DE COJINETES DE RODAMIENTOS DE BOLAS EMPLEANDO VISUAL BASIC 6.0.

SOFTWARE PARA EL DISEÑO DE ENGRANAJES CÓNICOS Y SELECCIÓN DE COJINETES DE RODAMIENTOS DE BOLAS EMPLEANDO VISUAL BASIC 6.0. SOFTWARE PARA EL DISEÑO DE ENGRANAJES CÓNICOS Y SELECCIÓN DE COJINETES DE RODAMIENTOS DE BOLAS EMPLEANDO VISUAL BASIC 6.0. Ing. Oscar Frnándz Frnándz, Msc. Bárbaro Pña Rodriguz. Univrsidad d Matanzas Cailo

Más detalles

Capítulo III. El sistema eléctrico del automóvil. En el capítulo anterior se analizaron algunos convertidores de energía eléctrica trifásica.

Capítulo III. El sistema eléctrico del automóvil. En el capítulo anterior se analizaron algunos convertidores de energía eléctrica trifásica. 3.1 Introducción Capítulo III En l capítulo antrior s analizaron algunos convrtidors d nrgía léctrica trifásica. Estos circuitos prsntan bajo factor d potncia, lo cual va n contra d los objtivos d la prsnt

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

CAMPO MAGNÉTICO FCA 08 ANDALUCÍA

CAMPO MAGNÉTICO FCA 08 ANDALUCÍA 1. a) Exliqu las xrincias d Örstd y cont cóo las cargas n oviinto originan caos agnéticos. b) En qué casos un cao agnético no jrc ninguna furza sobr una artícula cargada? Razon la rsusta.. Dos conductors

Más detalles

1. CICLOS DE LOS SISTEMAS DE POTENCIA 1.1 CICLOS DE POTENCIA A VAPOR

1. CICLOS DE LOS SISTEMAS DE POTENCIA 1.1 CICLOS DE POTENCIA A VAPOR INRODUCCIÓN. CICLO DE LO IEMA DE POENCIA Dsd l punto d vista d la tcnología, un punto iportant d la ingniría s proyctar sistas qu ralicn las convrsions dsadas ntr los difrnts tipos d nrgías. En la prsnt

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

UTN Bs. As - TERMODINAMICA TECNICA UNIDAD 10 TOBERAS Y DIFUSORES

UTN Bs. As - TERMODINAMICA TECNICA UNIDAD 10 TOBERAS Y DIFUSORES UNIDAD 0 TOBERAS Y DIFUSORES S dnomina tobra a un onduto qu orinta a una na fluida, mintras s rodu n lla una onrsión d nrgía dl fluido (ntalía), n nrgía inétia Es dir qu a lo largo d una tobra la loidad

Más detalles

DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO

DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO Rvista Ibroamriana d Ingniría Mánia. Vol. 11, N.º 3, pp. 39-51, 007 DETERMINACION ANALITICA DE LA MORFOLOGIA DE LOS DIENTES DEL ENGRANE BIPARAMÉTRICO BORIS F. VORONIN, JESÚS A. ÁLVAREZ SÁNCHEZ, JOSÉ ANTONIO

Más detalles

DESALINIZADOR SOLAR DE MÚLTIPLES EFECTOS A ALTA TEMPERATURA: DISEÑO, MODELACIÓN Y SIMULACIÓN

DESALINIZADOR SOLAR DE MÚLTIPLES EFECTOS A ALTA TEMPERATURA: DISEÑO, MODELACIÓN Y SIMULACIÓN FACULAD DE INGENIERÍA, U..A. (CHILE), VOL N, 00,. 5- DESALINIZADOR SOLAR DE MÚLIPLES EFECOS A ALA EMPERAURA: DISEÑO, MODELACIÓN Y SIMULACIÓN Eduardo Gálvz Soto Pdro Roth Urban Klmns Shwarzr Ribido l 09

Más detalles

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía

Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

TEMA 14. ESTRUCTURA DEL ESTADO SOLIDO Y MOVIMIENTO ELECTRONICO

TEMA 14. ESTRUCTURA DEL ESTADO SOLIDO Y MOVIMIENTO ELECTRONICO TEMA 14. ESTRUCTURA DEL ESTADO SOLIDO Y MOVIMIENTO ELECTRONICO 14.1.- ESTRUCTURA DEL ESTADO SOLIDO Coo s sab la atria s prsnta n trs stado: gass, líquidos y sólidos. Los conductors y siconductors son sólidos

Más detalles

Última modificación: www.coimbraweb.com

Última modificación: www.coimbraweb.com TRANSMISIÓN D MODULACIÓN D LITUD Conenido 1.- en el doinio del iepo..- en el doinio de la freuenia. 3.- Anho de banda de la señal. 4.- Disribuión ib ió de poenia de la señal. 5.- Tipos de ransisión. Objeio.-

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.

PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A. PARÁMETROS CARACTERÍSTICOS DE LOS M.C.I.A.. CONCEPTO DE DOSADO. PARÁMETROS GEOMÉTRICOS 3. PARÁMETROS INDICADOS 4. PARÁMETROS EFECTIVOS 5. PARÁMETROS DE PÉRDIDAS MECÁNICAS 6. RESUMEN DE PARÁMETROS 7. OTROS

Más detalles

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio?

FÍSICA GENERAL I. Leyes de Newton. 1 Cuáles de los siguientes objetos están en equilibrio? FÍSICA GENERAL I Ls d Nwton Cuáls d los siguints objtos stán n quilibrio? Un globo d hlio qu s ntin n l ir sin sndr ni dsndr b Un bol lnzd hi rrib undo s nuntr n su punto ás lto Un j qu s dsliz sin friión

Más detalles

Un cortadito, por favor!

Un cortadito, por favor! Introduión a las Cienias Experientales Carrera de Cienias Eonóias Otoño 2001 Un ortadito, por favor! Sherzo sobre la ley de enfriaiento de Newton Martín M. Saravia, Carlos Tahi y Diego Vogelbau saravia@latinsurf.o

Más detalles

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control

TERMODINAMICA 1 1 Ley de la Termodinámica aplicada a Volumenes de Control TERMODINAMICA 1 1 Ly d la Trmodinámica aplicada a Volumns d Control Prof. Carlos G. Villamar Linars Ingniro Mcánico MSc. Matmáticas Aplicada a la Ingniría CONTENIDO PRIMERA LEY DE LA TERMODINAMICA PARA

Más detalles

2. MÉTODO DE COEFICIENTES INDETERMINADOS.

2. MÉTODO DE COEFICIENTES INDETERMINADOS. . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

+ I r@, r e + G [2] r IS normal r IS con expectativas. Cuadro 12.1 Función IS con expectativas

+ I r@, r e + G [2] r IS normal r IS con expectativas. Cuadro 12.1 Función IS con expectativas XII Exptativas n Maroonomía 49. El modlo IS-LM y las xptativas 49.1 Cómo amia la funión IS n prsnia d xptativas Sa un modlo onvnional: ` a = C +,T @ + I r@ + G [1] Dond l onsumo dpnd d la rnta ruta ()

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

Tema 2 La oferta, la demanda y el mercado

Tema 2 La oferta, la demanda y el mercado Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la

Más detalles

Cap. 6.1.- MODULACIÓN ANGULAR

Cap. 6.1.- MODULACIÓN ANGULAR Copilado, anexado y redatado por el Ing. Osar M. Santa Cruz - 2010 Cap. 6.1.- MODULACIÓN ANGULAR La FM se onsideró uy al prinipio del desarrollo de las radioouniaiones. Iniialente, se pensó que la FM podría

Más detalles

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos:

Convocatoria de Febrero 26 de Enero de 2007. Nombre y Apellidos: Univrsidad d Vigo Dpartamnto d Matmática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria d Fbrro 6 d Enro d 007 Nombr y Apllidos: DNI: (4.5 p.) ) S considra la función f(x) = x ln(x). (0.5 p.) (a) Calcular

Más detalles

La ecuación diferencial ordinaria lineal de primer y segundo orden

La ecuación diferencial ordinaria lineal de primer y segundo orden La uaión ifrnial orinaria linal rimr sguno orn José Graro Dionisio Romro Jiménz Aamia Mamáias l Daramno Ingniría n Comuniaions Elrónia Esula Surior Ingniría Mánia Eléria IPN Méxio Rsumn. En s rabajo s

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

TEMAS 3-6: EJERCICIOS ADICIONALES

TEMAS 3-6: EJERCICIOS ADICIONALES TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s

Más detalles

INSTITUTO POLITÉCNICO NACIONAL

INSTITUTO POLITÉCNICO NACIONAL i INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE COMERCIO Y ADMINISTRACIÓN Unia Santo Toás SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN Molo Mjora Continua n la Proutivia Ersas Cartón Corrugao l

Más detalles

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco

UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Maritza de Franco UNA INVITACIÓN AL ESTUDIO DE LAS ECUACIONES DIFERENCIALES ORDINARIAS. Marita d Franco A Francisco José, Shrl, Marión, Paola, Constanc, Luis Migul Migul. AGRADECIMIENTOS Al Ing. Pdro Rangl por su comprnsión,

Más detalles

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales MPRÉSTITOS Carn Badía, Hortènsia Fontanals, Mrch Galisto, José Mª Lcina, Mª Angls Pons, Trsa Prixns, Dídac Raírz, F. Javir Sarrasí y Anna Mª Sucarrats DPARTAMNTO D MATMÁTICA CONÓMICA, FINANCIRA Y ACTUARIAL

Más detalles

Tema 3. TRABAJO Y ENERGÍA

Tema 3. TRABAJO Y ENERGÍA Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO

Más detalles

Radiobiología Revista electrónica

Radiobiología Revista electrónica Radiobiología Revista eletrónia ISSN 1579-3087 http://www-rayos.ediina.ua.es/rf/radiobiologia/revista/radiobiologia.ht http://www-rayos.ediina.ua.es/rf/radiobiologia/revista/nueros/rb4(2004)74-77.pdf Radiobiología

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES

REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Matmáticas II Rgla d L Hôpital REGLA DE L HÔPITAL PARA EL CÁLCULO DE LÍMITES Obsrvación: La mayoría d los problmas rsultos a continuación s han propusto n los ámns d Slctividad.. Dada la función: 8 f (

Más detalles

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS C.V.E.: BOPBUR-2015-03235 465,00 GERENCIA MUNICIPAL DE SERVICIOS SOCIALES, JUVENTUD E IGUALDAD DE OPORTUNIDADES Concjalía d Juvntud Mdiant rsolución d la

Más detalles

Medicion de resistencias por el metodo voltímetro-amperímetro. IV.1.1 Error sistemático debido al consumo de los instrumentos

Medicion de resistencias por el metodo voltímetro-amperímetro. IV.1.1 Error sistemático debido al consumo de los instrumentos ESSTENCA ELECTCA: oltítro -Aprítro Mdicion d rsistncias por l todo oltítro-aprítro CONTENDOS oltítro Aprítro. Conxión Corta y Larga. Error sistático d consuo y dbido a la clas. y o. Errors casuals. Opratoria

Más detalles

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO PROCEDIMIENTO DE CAPTACION Y ASIGNACION NIVEL SECUNDARIA ART, Clav: Página 1 d 7 1. Objtivo Asgurar qu: la captación, otorgaminto y asignación d bcas Académicas a los Estudiants d La Univrsidad dl Fútbol

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA

OPCIÓN SIMPLIFICADA OPCIÓN SIMPLIFICADA ZONA CLIMÁTICA ZONA CLIMÁTICA CÓDIGO TÉCNICO DE LA EDIFICACIÓN ACONDICIONAMIENTO TÉRMICO E HIGROMÉTRICO: CÁLCULO SEGÚN CTE El acondicionaminto térmico higrométrico s rcog n l Documnto Básico HE Ahorro d Enrgía, cuyo índic s: HE 1 Limitación

Más detalles

TEMA 1. INTERCAMBIADORES DE CALOR

TEMA 1. INTERCAMBIADORES DE CALOR Fórulas de Interabiadores TEMA INTERCAMBIAORES E CALOR Resistenia téria de onduión para pared plana: Resistenia téria de onveión: R t onv A Coefiie global de transferenia de alor U: R tot R t ond L ka

Más detalles

CAPÍTULO 2. Ecuación paraxial de Helmholtz.

CAPÍTULO 2. Ecuación paraxial de Helmholtz. CAPÍTLO Ecuacón paraal d Hlmholt. S dscut la posbldad d vsualar mdant un procsador óptco [1] a las solucons d la cuacón paraal d Hlmholt. Para llo s rala una comparacón d los rsultados obtndos consdrando

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

Bomba sumergible para aguas residuales Gama ABS AS 0530-0841

Bomba sumergible para aguas residuales Gama ABS AS 0530-0841 Boba suergible para aguas residuales Gaa ABS AS 0530-0841 1006-00 15975045 ES (02/2015) Instruiones de instalaión y funionaiento www.sulzer.o 2 Instruiones de instalaión y funionaiento (Traduión de las

Más detalles

5. TRANSPORTE DE FLUIDOS

5. TRANSPORTE DE FLUIDOS 48 5. TRANSPORTE DE FLUIDOS 5.1 Euaión de Bernouilli Un fluido que fluye a través de ualquier tipo de onduto, omo una tuería, ontiene energía que onsiste en los siguientes omponentes: interna, potenial,

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

Aspectos Fiscales Venezolanos Cross-Border de las Inversiones en el Sector del Gas. Luis Eduardo Ocando B. (luis.ocando@ve.ey.com)

Aspectos Fiscales Venezolanos Cross-Border de las Inversiones en el Sector del Gas. Luis Eduardo Ocando B. (luis.ocando@ve.ey.com) Intrnational Tax Srvics Aspctos Fiscals Vnzolanos Cross-Bordr d las Invrsions n l Sctor dl Gas Luis Eduardo Ocando B. (luis.ocando@v.y.com) Tabla d Contnidos Introducción Planificación Fiscal n Vnzula

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR INTERCAMBIADORES DE CALOR CONTENIDO CONTENIDO....- DEFINICIÓN....- TIPOS DE INTERCAMBIADORES.....- a Interabiadores de ontato direto.....- b.a Regenerativos... 4 3 ESTUDIO TÉRMICO... 9 3..- Hipótesis...

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

Problemas de difusión

Problemas de difusión Probla d difuión PROBLEMA 1 Un acro contin 8,5 % n po d Ni n l cntro d un grano d F... y 8,8% n l líit dl grano. Si lo do punto tán parado 0 μ ual l flujo d átoo ntr to punto a 0 º?. a 0,65 n Ma Ni 58,71

Más detalles

OPTIMIZACIÓN DE CUBIERTAS DE DOS AGUAS SUCEPTIBLES A SOLICITACIONES DE VIENTO RESUMEN ABSTRACT INTRODUCCIÓN

OPTIMIZACIÓN DE CUBIERTAS DE DOS AGUAS SUCEPTIBLES A SOLICITACIONES DE VIENTO RESUMEN ABSTRACT INTRODUCCIÓN Socidad Mxicana d Ingniría Estructural OPTIMIZACIÓN DE CUBIERTAS DE DOS AGUAS SUCEPTIBLES A SOLICITACIONES DE VIENTO Aljandro Hrnándz Martínz 1 y Silvia Lizth Barrintos Padilla 2 RESUMEN Las cubirtas a

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Curso de m@rketing y comercio electrónico

Curso de m@rketing y comercio electrónico Curso d m@rkting y omrio ltrónio Markting.om: ómo intgrar la Rd n la stratgia d ngoio Inma Rodríguz Ardura Índi d ontnidos Estratgia y ngoio n Intrnt: ómo y uanto invrtir Haindo invstigaión d mrados por

Más detalles

Tabla de Evaluación NIVEL DE DOMINIO INDICADORES

Tabla de Evaluación NIVEL DE DOMINIO INDICADORES LICEO SAN NICOLAS DE TOLENTINO TRABAJO EXTRACLASE # 2 III PERIODO DECIMO AÑO Prof. Jssia Mora Bolaños Indiaions gnrals ) Trabaj n parjas o n forma individual. 2) Rali l trabajo n hojas blanas bin grapadas.

Más detalles

98 EJERCICIOS de DERIVABILIDAD 2º BACH.

98 EJERCICIOS de DERIVABILIDAD 2º BACH. 98 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad: 1. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior. Tema 2.1 : Definiciones y Terminología

Unidad 2 : Ecuaciones Diferenciales Lineales de Orden Superior. Tema 2.1 : Definiciones y Terminología 7 Unidad : Euaions Dirnials inals d Ordn Surior Tma. : Diniions Trminología a Euaión Dirnial inal d o rdn No Homogéna tin la orma: a d d d d a a g uaión EDN H a Euaión Dirnial inal d o rdn Homogéna Asoiada

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

a) Falso. De acuerdo con la física clásica así debería ser porque la energía de una onda es proporcional al cuadrado de su intensidad ( E = m

a) Falso. De acuerdo con la física clásica así debería ser porque la energía de una onda es proporcional al cuadrado de su intensidad ( E = m FÍSIC MODRN FCTO FOTOLÉCTRICO.S008 Razn si las siguints afiracins sn cirtas falsas: a) Ls lctrns itids n l fct ftléctric s uvn cn vlcidads ayrs a dida qu aunta la intnsidad d la luz qu incid sbr la surfici

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

XVI.- COMBUSTIÓN pfernandezdiez.es

XVI.- COMBUSTIÓN pfernandezdiez.es XVI.- COMBUSTIÓN XVI.1.- INTRODUCCIÓN S ntind por combustión a toda racción química qu va acompañada d gran dsprndiminto d calor; pud sr sumamnt lnta, d tal manra qu l fnómno no vaya acompañado d una lvación

Más detalles

Tema 3 (cont.). Birrefringencia.

Tema 3 (cont.). Birrefringencia. Tma 3 (cont.). Birrfringncia. 3.8 Anisotropía. Dobl rfracción. 3.9 Modlo d Lorntz para la birrfringncia 3.10 Polarizadors dicroicos. Ly d Malus 3.11 Propagación a través d una lámina rtardadora 3.1 Aplicacions

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 3 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

Tema III: Momento de Inercia

Tema III: Momento de Inercia Univrsidad d Ls nds Prfsra: Naiv Jaramill S. Faultad d ngniría Tma : Mmnt d nria Sgund mmnt mmnt d inria d un ára. Dtrminaión dl mmnt d inria d una ára. Mmnt d inria d áras típias. Mmnt d inria d un ára

Más detalles

FISURACIÓN DEL HORMIGÓN POR CORROSIÓN DE LAS ARMADURAS PASIVAS INDUCIDA POR CLORUROS

FISURACIÓN DEL HORMIGÓN POR CORROSIÓN DE LAS ARMADURAS PASIVAS INDUCIDA POR CLORUROS Anals d la Mánia d Fratura, Vol 2 (2007) 633 FSURAÓN EL HORMGÓN POR ORROSÓN E LAS ARMAURAS PASVAS NUA POR LORUROS Santiago Guzman, aim. Gálvz, osé M. Sano 2, aim Planas 3 partamnto d ngniría ivil: onstruión,

Más detalles

CONTROLADOR DIFUSO PARA PROBLEMAS DE NAVEGACIÓN EN PRESENCIA DE OBSTÁCULOS FIJOS

CONTROLADOR DIFUSO PARA PROBLEMAS DE NAVEGACIÓN EN PRESENCIA DE OBSTÁCULOS FIJOS CONTROLADOR DIFUSO PARA PROBLEMAS DE NAVEGACIÓN EN PRESENCIA DE OBSTÁCULOS FIJOS M. Brox A. Gersnoviez S. Sánhez-Solano I. Baturone Instituto de Miroeletrónia de Sevilla, CNM-CSIC, Sevilla, Esaña. aria@ise.n.es

Más detalles

5.3. El transistor bipolar como elemento de circuito: 5.3.1 Variables de circuito y configuraciones básicas:

5.3. El transistor bipolar como elemento de circuito: 5.3.1 Variables de circuito y configuraciones básicas: 1/34 TMA 5: L TRANSISTOR IPOLAR 5.1. structura física. 5.1.1 Transistores pnp y npn 5.2. Regiones de operación. 5.2.1 Región activa directa. 5.2.2 Región de saturación. 5.2.3 Región de corte. 5.2.4 Región

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Para reciclar hay 5 contenedores y cada uno con una función básica: -Azul: Papel,cartón -Verde: vidrios, -Amarillo:Envases(plástico..

Para reciclar hay 5 contenedores y cada uno con una función básica: -Azul: Papel,cartón -Verde: vidrios, -Amarillo:Envases(plástico.. s o m Có? r a l c i c r b d Para rciclar hay 5 contndors y cada uno con una función básica: -Azul: Papl,cartón -Vrd: vidrios, -Amarillo:Envass(plástico..) -Ngro:rstos y orgánico -Pilas. l u z A r o d n

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

núm. 85 miércoles, 7 de mayo de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO

núm. 85 miércoles, 7 de mayo de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO C.V.E.: BOPBUR-2014-03110 Por rsolución d Alcaldía d fcha 16 d abril d 2014, s aprobó la contratación d dos plazas d monitor d gimnasio municipal

Más detalles

Rack & Building Systems

Rack & Building Systems Rack & Building Systms La Emprsa RBS a nacido por la sinrgia y complmnto qu xist ntr sus productos y por l afán constant d nustra mprsa por difrnciars d la comptncia. En l ára d almacnaj industrial RBS

Más detalles

91 EJERCICIOS de DERIVABILIDAD 2º BACH.

91 EJERCICIOS de DERIVABILIDAD 2º BACH. 9 EJERCICIOS d DERIVABILIDAD º BACH. Drivabilidad y continuidad:. Dada si 0 f() si < 0 (Soluc: / f'(0)), s pid: a) Estudiar su drivabilidad n 0 b) Rprsntarla.. Ídm con 4 5 si f() 4 si < n (Soluc: f'()).

Más detalles

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo

Más detalles

Fracciones: términos, lectura y escritura

Fracciones: términos, lectura y escritura Fraiones: términos, letura y esritura Feha Reuerda Los términos de una fraión son el numerador y el denominador: El denominador india el número de partes iguales en que se divide la unidad. El numerador

Más detalles

(máxima) (mínima) (máxima) (mínima)

(máxima) (mínima) (máxima) (mínima) Ejrcicios d componnts lctrónicos. En l circuito d la figura, l amprímtro marca µa con la LD tapada y 4 ma con la LD compltamnt iluminada. Si la rsistncia d la bombilla s d 0 Ω, calcula la rsistncia máxima

Más detalles

niños y niñas de escasos recursos económicos con el fin de garantizar la permanencia escolar.

niños y niñas de escasos recursos económicos con el fin de garantizar la permanencia escolar. FICHA D ROGRAMACION Y SGUIMINTO Y VALUACION DL ROYCTO SCRTARIA SCTORIAL O DNDNCIA J STRATGICO: sociocultural Objetivos: RLACION D CONTRATOS Y CONVNIOS ROGRAMA: COBRTURA DUCATIVA Subsidiar el transporte

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

PROBLEMAS DE MOTORES DE COMBUSTION INTERNA

PROBLEMAS DE MOTORES DE COMBUSTION INTERNA PROBLEMAS DE MOTORES DE COMBUSTION INTERNA PROBLEMAS DE MOTORES DE COMBUSTION INTERNA Simón J. Fyguroa S Ingniro Mánio. Univrsidad Naional d Colombia Mastr n Motorizaión Civil. Instituto Politénio d Turín

Más detalles