PROPIEDADES DEL ACERO USADO EN LAMINADO EN FRIO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROPIEDADES DEL ACERO USADO EN LAMINADO EN FRIO"

Transcripción

1 CAPITULO 2 PROPIEDADES DEL ACERO USADO EN LAMINADO EN FRIO 2.1 COMENTARIOS GENERALES Las propiedades mecánicas del material constitutivo juegan un papel preponderante en el comportamiento de miembros estructurales y el diseñador debe estar familiarizado con dichas propiedades para los diversos tipos de acero que se usan para fabricar los perfiles laminados en frío. Las especificaciones del AISI 1996 hacen referencia expresa a los tipos de acero reconocidos para su uso en perfiles laminados en frío, así como las características de ductilidad y otras propiedades que deben cumplir los aceros no reconocidos por la especificación. 2.2 ACEROS ESTRUCTURALES RECONOCIDOS Las especificaciones del AISI 1996, Sección A3.1, reconocen los siguientes 14 tipos de acero de la Sociedad Americana de Pruebas y Materiales o ASTM (por sus siglas del inglés: American Society for Testing and Materials ): 1. ASTM A36/A36M, Acero Estructural de Carbono. 2. ASTM A242/A242M, Acero Estructural de Alta Resistencia y Baja Aleación. 3. ASTM A283/A283M, Placas de Acero de Carbono de Resistencia a la Tensión Baja e Intermedia. 4. ASTM A500, Tubulares Estructurales Redondos y de Otros Perfiles Laminados en Frío de Acero de Carbono. 5. ASTM A529/A529M, Acero de Calidad Estructural de Manganeso y Carbono de Alta Resistencia. 6. ASTM A570/A570M, Acero de Calidad Estructural de Carbono para Láminas y s Laminadas en Caliente. 7. ASTM A572/A572M, Acero Estructural de Columbio y Vanadio de Alta Resistencia y Baja Aleación. 8. ASTM A588/A588M, Acero Estructural de Alta Resistencia y Baja Aleación con Esfuerzo de Fluencia Mínimo de 50 ksi ( kg/cm 2 ) y espesor hasta 4 plg. (100 mm). 9. ASTM A606, Acero Estructural de Alta Resistencia y Baja Aleación para Láminas y s Laminadas en Caliente y en Frío con Resistencia Mejorada a la Corrosión Atmosférica. 10. ASTM A607, Acero Estructural de Columbio o Vanadio, o ambos, de Alta Resistencia y Baja Aleación para Láminas y s Formadas en Caliente y en Frío. 11. ASTM A611 (Grados A, B, C y D), Acero Estructural (SS, abreviación del inglés Structural Steel ) de Carbono para Láminas Formadas en Frío. 12. ASTM A653/A653M (SS, Grados 33, 37, 40 y 50 Clase 1 y Clase 3; Alta Resistencia y Baja Aleación Tipos A y B, Grados 50, 60, 70 y 80), Láminas de Acero con Recubrimiento de Zinc (Galvanizado) o con Recubrimiento de Aleación Zinc-Hierro realizado por medio del Proceso de Inmersión en Caliente (Galvanizado y Endurecido). 13. ASTM A715 (Grados 50, 60, 70 y 80), Acero de Alta Resistencia y Baja Aleación para Láminas y s Formadas en Caliente y de Acero de Alta Resistencia y Baja Aleación para Láminas y s Formadas en Frío con Propiedades Mejoradas de Formabilidad. 14. ASTM A792/A792M (Grados 33, 37, 40 y 50A), Láminas de Acero con Recubrimiento de Aleación 55% Aluminio-Zinc realizado por medio del Proceso de Inmersión en Caliente. Las propiedades mecánicas relevantes de los 14 tipos de acero especificados se ilustran en la Tabla 2.1.

2 20 Tabla 2.1 Descripción y Propiedades Mecánicas Relevantes de los Aceros Reconocidos por el AISI (4) Designación del ASTM. F y F u (min/max) % elongación en 5.08 cm F u/f y Descripción Producto Grado kg/cm 2 kg/cm 2 A36/A36M-94 Esta especificación cubre perfiles, placas y barras de acero de carbono de calidad estructural para construcción remachada, atornillada o soldada de puentes y edificios y para aplicaciones estructurales generales. Se proveen requisitos adicionales cuando la tenacidad de muesca sea importante. Estos requisitos aplicarán cuando se especifiquen por el comprador en su orden. Cuando el acero vaya a ser soldado, se presupone que será usado un procedimiento de soldado consistente con el tipo de grado de acero y el uso planeado de la estructura. A242-A242M-93ª Esta especificación cubre perfiles, placas y barras de acero de alta resistencia y baja aleación para construcción remachada, atornillada y soldada a ser usados principalmente en miembros estructurales cuando el ahorro en peso y la durabilidad adicional son importantes. La resistencia a la corrosión atmosférica de este tipo de acero en la mayoría de los ambientes es substancialmente mejor que el acero al carbono con o sin adición de cobre. Esta especificación está limitada a material de hasta 4 plg (10 cm) de espesor. A283/A283M-93ª Esta especificación cubre cuatro grados de acero para placas de acero al carbono de calidad estructural para aplicaciones generales. Cuando el acero vaya a ser soldado, se presupone que será usado un procedimiento de soldado consistente con el tipo de grado de acero y el uso planeado de la estructura. A Esta especificación cubre tubos estructurales soldados sin costuras redondos, cuadrados y de configuraciones especiales de acero de carbono laminado en frío para construcción remachada, atornillada y soldada de puentes y edificios y para aplicaciones estructurales generales. Estos tubos se producen soldados y sin costuras para diámetros máximos de 64 plg. (1626 mm) y un espesor máximo de plg. (15.88 mm). El Grado D requiere de tratamiento con calor. Nota: Los productos manufacturados con esta especificación pueden no ser recomendables para condiciones tales como carga dinámica en estructuras soldadas, donde las propiedades de tenacidad de muesca pueden ser importantes. Placas y Barras Placas y Barras t 0.75 plg (19.05mm) Placa Tubos Redondos Tubos Cuadrados A B C D A B C D A B C D / / / /5270 /

3 21 Designación del ASTM. Descripción Producto Grado A529/A529M-94 Esta especificación cubre perfiles, placas y barras Placas y 42 de acero de carbono y manganeso para Barras construcción remachada, atornillada y soldada de edificios y para aplicaciones estructurales generales. El material bajo esta especificación 50 esta disponible en dos grados. Grado 42 para placas y barras de 0.50 plg (12.7 mm) de espesor y Grado 50 para placas y barras de 1.00 plg (25.4 mm) de espesor. Cuando el acero vaya a ser soldado, se presupone que será usado un procedimiento de soldado consistente con el tipo de grado de acero y el uso planeado de la estructura. A570/A570M-95 Esta especificación cubre láminas y cintas de acero de carbono laminado en caliente en longitudes cortadas o en carretes. Este material puede usarse para propósitos estructurales cuando se requieran valores mecánicos de prueba, y está disponible en espesores máximos de plg (6 mm) excepto por lo que se especifica para A568, A568M, A749 y A749M. A572/A572M-94c Esta especificación cubre perfiles, placas y barras de acero de alta resistencia y baja aleación. Los Grados 42 y 50 se recomiendan sean usados en construcción remachada, atornillada y soldada de edificios, puentes y otras aplicaciones. Los Grados 60 y 65 se recomiendan sean usados para construcción remachada y atornillada de puentes y para construcción remachada, atornillada y soldada para otras aplicaciones. Para construcción soldada de puentes la tenacidad de muesca es un requisito importante. Para esta u otras aplicaciones donde los requisitos de tenacidad de muesca sean indicados, estos serán negociados entre el productor y comprador. El uso de columbio, vanadio y nitrógeno, o combinaciones de estos, bajo las limitaciones de la Sección 5 del ASTM, estarán bajo la opción del productor a menos que se especifique lo contrario. Cuando se desee usar uno de estos elementos o una combinación de ellos, se hace referencia al Requisito Suplementario S90 del ASTM en donde dichos elementos y sus combinaciones comunes se enlistan por su tipo. Cuando dicha designación sea deseada, tanto el grado como el tipo deberán ser especificados. A588/A588M-94 Esta especificación cubre perfiles, placas y barras de acero de alta resistencia y baja aleación para construcción remachada, atornillada y soldada a ser usado principalmente en miembros estructurales cuando el ahorro en peso y la durabilidad adicional son importantes. La resistencia a la corrosión atmosférica del acero en la mayoría de los ambientes es substancialmente mejor que el acero al carbono con o sin adición de cobre. Cuando se expone apropiadamente a la atmósfera este acero puede ser usado sin pintura para muchas aplicaciones. Esta especificación está limitada a material de hasta 8 plg (20 cm) de espesor. Cuando el acero vaya a ser soldado, se presupone que será usado un procedimiento de soldado consistente con el tipo de grado de acero y el uso planeado de la estructura. Lámina y Placas y Barras Placas y Barras t 4.0 plg (101.6 mm) F y kg/cm F u (min/max) kg/cm 2 /5973 / % elongación en 5.08 cm F u/f y

4 22 Designación del ASTM. Descripción Producto Grado A606-91ª Esta especificación cubre láminas y cintas de Lámina y L. en Cal. acero laminado en frío y en caliente de alta s Longitud resistencia y baja aleación en longitudes cortadas Cortada o en carretes a ser usadas para propósitos estructurales o misceláneos, donde los ahorros en L. en Cal. peso o la durabilidad adicional son importantes. Carrete Estos aceros tienen una resistencia mejorada a la corrosión atmosférica y se proveen en dos tipos: L. en Cal. Tipo 2 contiene 0.20 mínimo de cobre (0.18 Endurecimínimo de Cu para revisión del producto). Tipo 4 do o Norcontiene un nivel de resistencia a la corrosión malizado. substancialmente superior al acero de carbono con o sin adición de cobre. Cuando expuesto L. en Frío adecuadamente a la atmósfera, este acero puede ser usado sin pintura para muchas aplicaciones. A607-92ª Esta especificación cubre láminas y cintas de acero de alta resistencia y baja aleación de columbio o vanadio, o láminas de acero laminado en frío, o una combinaciones de ambos, ya sea en longitudes cortadas o carretes a usarse en aplicaciones donde una mayor resistencia y ahorros en peso son importantes. El material está disponible en dos clases: ambas clases son similares en nivel de resistencia excepto que la Clase 2 ofrece una mejor soldabilidad y mayor formabilidad que la Clase 1. La resistencia a la corrosión atmosférica de estos acero es equivalente al acero de carbono típico. Si se especifica aleación con cobre, la resistencia a la corrosión atmosférica es el doble que la del acero de carbono típico. La Clase 1 se denominaba como A607 sin una designación de clase. A Esta especificación cubre láminas de acero de carbono en longitudes cortada o carretes. Incluye cinco niveles de resistencia designadas como Grado A con fluencia mínima de 1756 kg/cm 2 ; Grado B con fluencia mínima de 2108 kg/cm 2 ; Grado C tipo 1 y 2 con fluencia mínima de 2319 kg/cm 2 ; Grado D tipo 1 y 2 con fluencia mínima de 2811 kg/cm 2 y Grado E con fluencia mínima de kg/cm 2. Los Grados A a D tienen ductilidad moderada mientras que el Grado E es un producto duro y poco dúctil sin una elongación mínima especificada. Lámina y Lámina Clase Clase A B C Tipo 1 y 2 D Tipo 1 y 2 F y kg/cm F u (min/max) kg/cm % elongación en 5.08 cm L. en Cal. 23 L. en Frío 22 L. en Cal. 20 L. en Frío 20 L. en Cal. 18 L. en Frío 18 L. en Cal. 16 L. en Frío 16 L. en Cal. 14 L. en Frío 15 L. en Cal. 12 L. en Frío 14 L. en Cal. 23 L. en Frío 22 L. en Cal. 20 L. en Frío 20 L. en Cal. 18 L. en Frío 18 L. en Cal. 16 L. en Frío 16 L. en Cal. 14 L. en Frío 15 L. en Cal. 12 L. en Frío F u/f y

5 23 Designación del ASTM. Descripción Producto Grado A653/A653M-95 Esta especificación cubre a láminas de acero con Lámina SS recubrimiento de zinc (galvanizado) o con aleación 33 de zinc con hierro (galvanizado y endurecido) en 37 longitudes cortadas o carretes. El galvanizado se 40 realiza por el proceso de inmersión en caliente. Se 50 Clase 1 incluyen varios grados basados en la resistencia 50 Clase 3 por fluencia en acero estructural (SS) y en alta resistencia y baja aleación (HSLA). Las láminas HSLA HSLA están disponibles en Tipo I y II. HSLA Tipo I Tipo 1 se recomienda cuando se requiere formabilidad 50 mejorada en comparación con SS. El Tipo II tiene 60 aun mayor formabilidad que el Tipo I. Los 70 productos bajo la especificación A653/A653M deben cumplir con las últimas modificaciones de A924/A924M, excepto cuando se indique lo contrario en la aplicación. A715-92ª Esta especificación cubre láminas y cintas de acero de alta resistencia y baja aleación y láminas de acero laminado en frío con formabilidad mejorada comparada con A606 y A607. El producto se provee en longitudes cortadas o en carretes y está disponible en cuatro niveles de resistencia, Grados 50, 60, 70 y 80 y ocho tipos (de acuerdo con su composición química). No todos los grados están disponibles en todos los tipos. El acero es devastado y transformado en un material granular fino, e incluye elementos de microaleación como columbio, vanadio, titanio y zirconio, etc. El producto se recomienda para aplicaciones estructurales y misceláneas donde la ahorro en peso, alta resistencia, formabilidad mejorada y soldabilidad es importante. A792/A792M-95 Esta especificación cubre láminas de acero con recubrimiento de aluminio con aleación de zinc mediante el proceso de inmersión en caliente. La composición de la aleación de aluminio-zinc en relación nominal al peso es 55% aluminio, 1.6% silicón y balance de zinc. El producto se recomienda para aplicaciones que requieran protección contra la corrosión, resistencia al calor o ambos. Las láminas con recubrimiento de aluminio y aleación de zinc están disponibles en Calidad Comercial, Calidad de Formación y Calidad Estructural. Los grados disponibles en Calidad Estructural se dan en la tabla anexa. Láminas y s HSLA Tipo II Lámina 33 F y kg/cm F u (min/max) kg/cm % elongación en 5.08 cm Nota: Las abreviaciones L en Cal. y L en Frío usadas en la Tabla significa laminado en caliente y frío, respectivamente F u/f y En el Suplemento 1999 del AISI 1996 se establece el reconocimiento de dos tipos de acero adicionales: 15. ASTM A847 (Grado 50), Acero de Alta Resistencia y Baja Aleación para Perfiles Tubulares Estructurales Soldados sin Costuras con Resistencia a la Corrosión Atmosférica Mejorada. 16. ASTM A875/A875M (SS, Grados 33, 37, 40 y 50 Clase 1 y Clase 3; Alta Resistencia y Baja Aleación Tipos A y B, Grados 50, 60, 70 y 80), Láminas de Acero con Recubrimiento de Aleación Zinc-5% Aluminio realizado por medio del Proceso de Inmersión en Caliente. Las propiedades mecánicas relevantes de estos aceros se muestran en la Tabla ª

6 24 Tabla 2.2 Descripción y Propiedades Mecánicas Relevantes de los Dos Aceros Adicionales Reconocidos por el Suplemento 1999 (1) Designación del ASTM. F y F u (min/max) % elongación en 5.08 cm F u/f y Descripción Producto Grado kg/cm 2 kg/cm 2 A847 Esta especificación cubre perfiles tubulares estructurales soldados, sin costuras, laminados en frío formados con acero de alta resistencia y baja aleación con resistencia a la corrosión atmosférica mejorada. Tubos A875/A875M Esta especificación cubre láminas con recubrimiento de aleación zinc-5% aluminio realizado mediante el proceso de imersión en caliente. Este acero se maneja en dos modalidades: 1. Acero Estructural (SS) en Grados 33, 37, 40 y 50 Clase 1 (C1) y Clase 2 (C2). 2. Acero de Alta Resistencia y Baja Aleación Tipo A (Grados 50, 60, 70 y 80) y Tipo B (Grados 50, 60, 70 y 80). Láminas (C1) 50 (C2) Tipo A Tipo B De los 16 tipos de acero reconocidos hasta el Suplemento 1999, 6 son para placas, 5 son para láminas y cintas, 3 son para láminas y 2 son para productos tubulares. La clasificación de la ASTM de los productos de acero se ilustran en la Tabla 2.3 y 2.4. La Sección A3.2 del AISI 1996, no excluye el uso de otros tipos de acero no considerados dentro del grupo de los 16, siempre y cuando no excedan un espesor de 1.0 plg. (25.4 mm) y se acople a las propiedades químicas y mecánicas de uno de los aceros considerados. Además, condiciona su uso a que sea sujeto, ya sea por el fabricante o comprador, a pruebas, análisis y otros controles establecidos para uno de los aceros reconocidos y que cumpla con las disposiciones de la Sección A3.3 del AISI (ver Art ). Tabla 2.3 Clasificación de Productos de Acero Laminado en Frío (4) Ancho, w Espesor, t (mm) (cm) Acero de Carbono Acero HSLA 5.08 w < w t t t t Nota: la abreviatura HSLA significa alta resistencia y baja aleación (por sus siglas del inglés: High Strength Low Alloy ) Tabla 2.4 Clasificación de Productos de Acero Laminado en Caliente (4) Ancho, w Espesor, t (mm) (cm) 5.84 t 5.16 t t t 4.57 Barra Barra w w w w w < w (1) cuando se pida en carretes (2) Lámina cuando se pida en carretes (3) Lámina cuando se pida en carretes Ancho Máximo, w: cm. Barra Barra Barra Placa (1) Placa (2) Lámina Lámina Placa (3) Placa (3) Placa (3) Lámina Lámina

7 PROPIEDADES MECANICAS RELEVANTES DEL ACERO Desde el punto de vista estructural las propiedades más importantes del acero son: 1. El Esfuerzo de Fluencia 2. La Resistencia a la Tensión o Resistencia Ultima 3. Las Características de la Curva de Esfuerzo-Deformación 4. El Módulo de Elasticidad y el Módulo Tangente 5. La Ductilidad 6. La Facilidad para Soldarse 7. La Resistencia a la Fatiga 8. La Tenacidad 9. La Facilidad de Formado 10. La Durabilidad A continuación se tratarán con más detalle cada una de éstas propiedades: Esfuerzo de Fluencia, Resistencia Ultima y Curva Esfuerzo-Deformación La resistencia de los perfiles laminados en frío depende del valor del esfuerzo de fluencia, excepto en conexiones y en aquellos casos donde el pandeo elástico local o global es crítico. Los valores estipulados del esfuerzo de fluencia (F y ) para los primeros 14 tipos de acero reconocidos se incluyen en la Tabla 2.1. Las curvas esfuerzo-deformación se pueden clasificar en dos tipos: Tipo 1, Curvas con Fluencia Pronunciada [ver Fig. 2.1(a)] y Tipo 2, Curvas con Fluencia Gradual [ver Fig. 2.1(b)]. Fig. 2.1 Curvas esfuerzo-deformación de acero de carbono para láminas y cintas (1) ; (a) Fluencia pronunciada. (b) Fluencia gradual.

8 26 Las curvas esfuerzo-deformación de los aceros laminados en caliente son del tipo 1 y las curvas de los laminados en frío son del tipo 2. El valor del esfuerzo de fluencia en las curvas del tipo 1 se obtiene fácilmente del valor de esfuerzo correspondiente a donde la curva quiebra y adquiere su forma plana horizontal. Sin embargo, dicho quiebre no se presenta en las curvas del tipo 2, sino que se presenta una curva suave de transición a la parte plana horizontal, por lo que el valor del esfuerzo de fluencia no puede obtenerse directamente. Para estos casos, el esfuerzo de fluencia puede ser obtenido por el método de compensación o el método de deformación unitaria bajo carga. En el método por compensación, se traza una línea paralela a la parte recta inicial de la curva, desfasada o compensada hacia la derecha, cuyo origen es un valor especificado de 0.2% deformación unitaria [ver Fig. 2.2(a)] y se ubica la intersección con la curva esfuerzo-deformación con dicha recta. El valor de esfuerzo a la altura de la intersección será el valor buscado de F y. Este método se usa predominantemente en los trabajos de investigación y en las pruebas del fabricante para aceros de aleación. En el método de deformación unitaria bajo carga, el valor del esfuerzo de fluencia se obtiene directamente de la curva para un valor especificado de 0.5% para la deformación unitaria [ver la Fig. 2.2(b)]. Este método lo usan comúnmente los fabricantes en pruebas para láminas y cintas de acero de carbono de baja aleación. Dos propiedades mecánicas relevantes adicionales también pueden obtenerse de la curva esfuerzo-deformación: La Resistencia Ultima (F u ) y el Límite de Proporcionalidad (f pr ). La resistencia última es el valor máximo de esfuerzo que puede ser inducido en un elemento antes de alcanzar la falla, es decir el valor de máximo esfuerzo de la curva ilustrada en la Fig. 2.1(a). La resistencia última prácticamente no tiene aplicación en el diseño de elementos estructurales, ya que los modos de falla de dichos elementos son controlados por los esfuerzos de fluencia o por los esfuerzos críticos de pandeo. Esto es particularmente cierto para elementos de pared delgada sujetos a compresión con relaciones ancho-espesor grandes y para miembros a compresión (columnas) con relaciones de esbeltez grandes. Sin embargo, en el caso del diseño de conexiones atornilladas y soldadas, donde es común que se presenten concentraciones de esfuerzos considerables que pueden alcanzar la resistencia última de algunas fibras del material, el valor de la resistencia última es crítico. Por consiguiente, la especificación AISI contiene criterios de diseño que garantizan la seguridad de la conexión bajo resistencia última. Los valores de resistencia última se incluyen en la Tabla 2.1 y 2.2 para el grupo de los 16 aceros reconocidos por el AISI 1996 y Suplemento El límite de proporcionalidad es el valor máximo de esfuerzo para el cual las deformaciones son directamente proporcionales a los esfuerzos, es decir donde termina la parte recta de la curva, como se ilustra en la Fig. 2.1(b). Aunque el límite de proporcionalidad no se aplica directamente en las ecuaciones de diseño del AISI, si ha influido hasta cierto punto en el establecimiento de los valores de los factores de seguridad de diseño. El límite de proporcionalidad puede ser obtenido por el método de compensación usando un desfasamiento de 0.1% Módulo de Elasticidad y Módulo Tangente La resistencia de los elementos que fallan por inestabilidad depende no solo de su esfuerzo de fluencia, sino también del valor del módulo de elasticidad E o del módulo tangente E t, en el caso del pandeo elástico e inelástico, respectivamente. El módulo de elasticidad se define como la pendiente de la parte inicial recta de la curva esfuerzo-deformación. Los valores comúnmente utilizados de E para el acero se encuentran dentro del rango de 2.038x10 6 a 2.108x10 6 kg/cm 2. Las especificaciones del AISI recomiendan un valor de 2.073x10 6 kg/cm 2 para su uso en diseño, el cual es ligeramente mas alto que el valor de 2.038x10 6 kg/cm 2 recomendado por las especificaciones de diseño para perfiles laminados en caliente emitidas por el Instituto Americano de Construcción en Acero o AISC (por sus siglas del inglés: American Institute of Steel Construction ). El valor de E t se define como el valor de la pendiente de la curva esfuerzo-deformación en cualquier punto, como lo ilustra la Fig. 2.1(b).

9 27 Fig 2.2 Determinación del esfuerzo de fluencia en acero con fluencia gradual (1). (a) Método de compensación; (b) Método de deformación unitaria. Para las curvas con fluencia pronunciada, E t es igual a E hasta el punto de fluencia, pero para el caso de curvas con fluencia gradual, E t es igual a E hasta el límite de proporcionalidad. Una vez que el esfuerzo excede el límite de proporcionalidad, el valor de E t se reduce progresivamente con respecto al valor de E. Esta es la razón del porque los aceros con fluencia pronunciada con relaciones de esbeltez moderadas tienen una mayor resistencia al pandeo que los aceros con fluencia gradual Ductilidad La ductilidad es la habilidad de un material para poder sobrellevar deformaciones plásticas considerables sin fracturarse. Es una propiedad importante tanto como para los procesos de laminado en frío como para la seguridad estructural, ya que facilita la redistribución inelástica de esfuerzos en juntas y conexiones, donde pueden ocurrir concentraciones importantes de esfuerzos. La ductilidad de un acero puede ser establecida por medio de pruebas de tensión, de flexión o de muesca. La elongación permanente en longitudes calibradas de 2 plg y 8 plg. (51 mm y 203 mm) de un especímen de prueba a tensión se utiliza normalmente como una indicativo de ductilidad. La Tabla 2.1, muestra que la elongación permanente del acero en longitudes calibradas de 2 plg. varía de 12 a 27% y para una longitud calibrada de 8 plg. varía de 15 a 20%. A partir de 1968, debido al desarrollo de nuevos aceros de alta resistencia, pero en algunos casos de baja ductilidad, se inició un proyecto de investigación en la Universidad de Cornell con el objetivo de establecer hasta que punto es necesario la ductilidad en una estructura. Se desarrollaron en el proyecto requisitos de elongación de acero dúctiles. Se desarrollaron también

10 28 los conceptos de ductilidad local y uniforme. La ductilidad local se define como la elongación local de la zona de eventual fractura. La ductilidad uniforme se define como la capacidad de un especímen de prueba de tensión a desarrollar elongaciones considerables en toda su longitud antes de desarrollar el cuello de fractura. En el proyecto también se encontró que en los diferentes aceros dúctiles investigados, la elongación en la longitud calibrada de 2 plg., no podía correlacionarse satisfactoriamente con la ductilidad local o uniforme. Para efectos de garantizar la habilidad de redistribución de esfuerzos requerida para evitar fallas frágiles prematuras y para poder lograr alcanzar la resistencia última en áreas netas de elementos a tensión con concentraciones de esfuerzos, se sugiere que (1) la mínima elongación local en una longitud calibrada de 0.5 plg. (12.7 mm) de un especímen a tensión estándar, incluyendo el cuello de fractura, sea cuando menos del 20%; (2) la mínima elongación uniforme en una longitud calibrada de 3 plg. (76.2 mm) menos la elongación en una longitud calibrada de 1 plg. (25.4 mm) que contenga el cuello y fractura sea cuando menos del 3%; y (3) que la relación de resistencia última a resistencia de fluencia, F u /F y, sea cuando menos de En este método, la elongación local y uniforme se establecen de acuerdo al siguiente procedimiento: 1. Los especímenes de prueba a tensión se preparan de acuerdo a lo estipulado en la ASTM A370 Métodos y Definiciones para Pruebas Mecánicas de Productos de Acero, excepto que la longitud de la sección central reducida de 0.5 plg. (12.7 mm) del especímen debe ser cuando menos de 3.5 plg. (89 mm). Líneas de calibración deben ser indicadas a cada 0.5 plg. a través de toda la longitud del especímen. 2. Al terminar la prueba a tensión, dos elongaciones son medidas: a. La elongación lineal en una longitud calibrada de 3 plg., e 3, medida en pulgadas, incluyendo la porción fracturada, y que ésta halla ocurrido de preferencia en el tercio medio de la longitud calibrada. b. La elongación lineal en una longitud calibrada de 1 plg., e 1, medida en pulgadas, incluyendo la porción fracturada. 3. La elongación local l y la elongación uniforme u se calculan de la siguiente manera: ε ε = 50(5e1 3)% = 50( e 3 e1 )% 1 e u Las especificaciones del AISI consideran que los aceros reconocidos (ver Art. 2.2 o la Sección A3.1 del AISI 1996) tienen ductilidad adecuada por lo que no se requiere aplicar las pruebas antes descritas para usarse en diseño. Los requisitos de ductilidad del AISI para los aceros no reconocidos se encuentran en la Sección A3.3. Estos requisitos incluidos en A3.3.1 y A3.3.2 del AISI 1996 se presentan a continuación: A La relación F u /F y no debe ser menor que 1.08 y la elongación total de un especímen estándar probado según ASTM A370 no debe ser menor de 10% en una longitud calibrada de 2 plg. (51 mm) o 7% en una longitud calibrada de 8 plg. (203 mm). Si estos requisitos no pueden ser cumplidos, se debe satisfacer los siguientes criterios: a) la elongación local en una longitud calibrada de 0.5 plg. (12.7 mm) a través de la fractura no deberá ser menor que 20%, b) la elongación uniforme por fuera de la fractura no deberá ser menor que 3%. Cuando la ductilidad del material es determinada en función de criterios de elongación local y uniforme, el uso de dicho material será restringido al diseño de polinería de cubierta y muros. Para polines sujetos a carga axial y momentos flexionantes, Ω c P/P n no deberá exceder 0.15 para el Método ASD y P u /(φ c P n ) no deberá exceder 0.15 para el Método LRFD (ver el Capítulo 3 para mas información sobre los Métodos ASD y LRFD). A Los aceros que cumplan con ASTM A653 SS Grado 80 y A611 Grado E, A792 Grado 80, A875 Grado 80 u otros acero que no cumplan con lo estipulado en la Sección A3.3.1, podrán

11 29 usarse para perfiles con almas múltiples, como los perfiles de cubierta, muros y decks de piso, siempre y cuando a) el esfuerzo de fluencia F y usando para calcular la resistencia nominal de elementos o arreglos estructurales se tome al 75% del valor mínimo de F y especificado para el material o 60 ksi ( kg/cm 2 ), el que sea menor y b) la resistencia a tensión F u, usada para calcular las resistencias nominales de conexiones, se tome al 75% del valor mínimo de F u especificado para el material o 62 ksi (4357 kg/cm 2 ), el que sea menor. De manera alternativa, la viabilidad de dichos aceros para la fabricación de cualquier perfil podrá ser demostrada a través de las pruebas de carga estipuladas en la Sección F1 del AISI Las resistencias de diseño obtenidas de dichas pruebas no podrán exceder a las resistencias calculadas mediante las ecuaciones de diseño de elementos y arreglos estructurales del AISI 1996, usando el esfuerzo de fluencia mínimo especificado, F sy, por F y y el esfuerzo de tensión mínimo especificado, F u. La Sección A3.3.2 fue modificada en el Suplemento 1999 para incorporar los dos nuevos tipos de acero reconocidos. Además, dicho Suplemento incorpora la siguiente cláusula de excepción en la Sección A3.3.2: Para perfiles con almas múltiples, se permitirá usar un esfuerzo de fluencia reducido, R b F y, para determinar la resistencia a flexión en la Sección C3.1.1(a) (ver Art ), donde el factor de reducción R b se determina de la siguiente manera: (a) Patines de Compresión Atiesados y Parcialmente Atiesados. Para w/t 0.067E/F y R = 1. 0 Para 0.067E/F y < w/t < 0.974E/F y [ ] Para 0.974E/F y w/t 500 R = (b) Patines de Compresión No Atiesados Para w/t E/F y R = 1. 0 R b = wf /( te) b y (2.1) b b Para E/F y < w/t < 60 R = wf /( te) (2.2) b Donde E = módulo de elasticidad F y = esfuerzo de fluencia definido según la Sección A7 80 ksi ( kg/cm 2 ) t = espesor de la sección w = ancho plano del patín de compresión. La cláusula de excepción no es aplicable a perfiles a ser usados como deck en pisos compuestos, cuando dicho deck es usado como el refuerzo primario a tensión del piso. Esta limitación es para prevenir la posibilidad de falla frágil del piso compuesto debida a la falta de ductilidad del acero. Las Ecs. (2.1) y (2.2) fueron desarrolladas a partir de los resultados de investigaciones realizadas en la Universidad de Missouri Rolla en 1996 y 1988, respectivamente. Estas ecuaciones permiten el uso de resistencias nominales a flexión mayores comparadas con las ediciones previas de las especificaciones del AISI. Cuando el perfil con múltiples almas está compuesto por patines de compresión atiesados y no atiesados, el valor menor de R b deberá ser usado para determinar el esfuerzo de fluencia reducido de todo el perfil. Se podrán usar valores diferentes del esfuerzo de fluencia reducido para las regiones del perfil sujetas a momento positivo y negativo. Los requisitos de la Sección A3.3.2 son una relajación de los requisitos de ductilidad del AISI para aceros usados en elementos secundarios (paneles, cubiertas, decks, etc.), ya que la demanda y

12 30 de ductilidad en estos elementos es poca y no compromete la integridad de la estructura. Los elementos primarios como vigas, columnas y polines quedan excluidos de la Sección A Por otro lado, una investigación realizada en la Universidad de Missouri Rolla en 1997 demuestra que el esfuerzo de fluencia F y puede ser usado para calcular la resistencia al aplastamiento del alma de decks. Sin embargo, el AISI 1996 adopta un criterio conservador en la Sección C3.4.1 (ver Art ), ya que el menor de 0.75F y y 60 ksi ( kg/cm 2 ) es usado para determinar tanto la resistencia al aplastamiento del alma como la resistencia a cortante para acero de baja ductilidad. Otra investigación realizada en la Universidad de Missouri Rolla en 1997 confirmó que para el diseño de conexiones usando acero A653 SS Grado 80, el esfuerzo F u usado en diseño deberá ser tomado como el menor valor de 75% de la resistencia a tensión mínima especificada o 62 ksi (4357 kg/cm 2 ). Debe mencionarse que las especificaciones vigentes del AISI se limitan al diseño de miembros y conexiones sujetas a carga estática, sin considerar la resistencia a la fatiga del acero Facilidad para Soldarse Los aceros fácilmente soldables son aquellos que pueden formar sin dificultad uniones soldadas libres de grietas e íntegras en condiciones de taller o campo. La facilidad para soldarse de un acero depende en esencia de la composición química del mismo y varía con el tipo de acero y el proceso de soldado usado. Los procesos de soldado estructural comúnmente usados para unir perfiles laminados en frío son el SMAW (soldadura de arco con electrodos recubiertos), el SAW (soldadura de arco con electrodos sumergidos), el GMAW (soldadura de arco de gas metálico) y el FCAW (soldadura de arco con flujo recubierto). Las especificaciones de los procesos de soldadura antes mencionados se incluyen el AWS (Sociedad Americana de Soldadura). Las especificaciones para el diseño de conexiones soldadas para perfiles laminados en frío están incluidas en la Sección E2 del AISI 1996 (ver Capítulo 9) Resistencia a la Fatiga y Tenacidad La resistencia a la fatiga se define como la capacidad de un material para soportar una gran cantidad de ciclos de carga antes de fallar. Cargas cíclicas pueden ser inducidas por vibraciones de maquinaria, cargas repetitivas producidas por tráfico vehicular, etc. La resistencia a la fatiga puede medirse en curvas S-N (donde S es el valor del esfuerzo y N el número de ciclos de carga) obtenidas a partir de pruebas. En general, la relación de resistencia a la fatiga con respecto a la resistencia a la tensión en aceros varía entre 0.35 a Estos valores son aplicables a elementos simples individuales, ya que en arreglos estructurales se ha observado que la resistencia a la fatiga de los elementos es gobernada por los detalles o las conexiones. La resistencia a la fatiga es una consideración de importancia en elementos laminados en frío usados en carrocerías, fuselajes de aviones, etc., donde las solicitaciones dinámicas pueden ser de naturaleza cíclica. Sin embargo, para usos típicos en edificaciones, las solicitaciones dinámicas tales como sismos, vientos e impacto son de muy corta duración, por lo que las consideraciones de fatiga en este tipo de estructuras no son de importancia, salvo en casos excepcionales como puentes y bases para maquinaria. Por esta razón, AISI 1996 no contempla especificaciones para el diseño por fatiga de elementos. La tenacidad es la medida en la que un material puede absorber energía sin fracturarse. Se expresa normalmente en función de la energía que absorben especímenes con muescas en pruebas de impacto sobre las muescas. La cantidad de absorción de energía se correlaciona con la cantidad de deformación en las muescas generada por los impactos. Además, la tenacidad de un elemento liso bajo cargas estáticas puede ser medida como el área bajo la curva esfuerzodeformación. En general, no existe correlación entre las dos medidas de tenacidad.

13 La Facilidad de Formado y Durabilidad La facilidad de formado de un material se refiere a su capacidad para moldearse en una gran variedad de configuraciones geométricas sin sufrir desgarres o fallas. En el caso de los perfiles laminados en frío el acero requiere de facilidad de formado, de lo contrario las hojas de acero no podrían doblarse sin sufrir daños o desgarres. Como se verá en la siguiente sección, los procesos de formado en frío alteran las propiedades mecánicas del acero, pero no causan daños que comprometan la funcionalidad estructural de los perfiles terminados. La durabilidad del acero se refiere a su capacidad para resistir condiciones ambientales adversas en períodos de tiempo considerables sin menos cabo de sus funciones estructurales. Quizás el efecto ambiental o químico que más frecuentemente puede afectar a la funcionalidad del acero es la corrosión. Sin embargo, la aplicación de capas de galvanizado o de pintura anticorrosiva ha reducido significativamente el problema y ha minimizado la necesidad de procedimientos de mantenimiento. 2.4 LOS EFECTOS DE LA TEMPERATURA EN LAS PROPIEDADES MECANICAS DEL ACERO Las propiedades mecánicas del acero son establecidas normalmente a temperatura ambiente. La Fig. 2.3 muestra la degradación de los valores de F y, F u y E al aumentar la temperatura. Como se puede observar en la Fig. 2.3 la reducción de estos valores es considerable hasta después de los 500 o F (260 o C), temperaturas que no se presentan por efectos climáticos, pero que si pueden presentarse en algunos procesos de manufactura o en incendios. Por otro lado, a temperaturas bajo cero o F (temperaturas menores a 18 C), los valores de F y, F u y E son mayores que a temperatura ambiente, pero el acero se vuelve frágil al reducirse su ductilidad y tenacidad. Por consiguiente, se deben tomar precauciones especiales al diseñar estructuras para ambientes de frío extremo, sobre todo cuando éstas estén sujetas a efectos dinámicos de consideración. Además, el acero responde a los efectos de gradientes de temperatura mediante cambios volumétricos de dilatación o contracción. Si las estructuras no se diseñan para disipar estos cambios, se inducirán esfuerzos térmicos que deberán ser considerados en las cargas de diseño. Fig. 2.3 Efecto de la temperatura sobre las propiedades mecánicas del acero con bajo contenido de carbono (1). (a) Placas de acero A36; (b) Láminas de acero.

14 LOS EFECTOS DEL LAMINADO EN FRIO EN LAS PROPIEDADES MECANICAS DEL ACERO. Las propiedades mecánicas de los perfiles laminados en frío son a menudo diferentes a las de las láminas, cintas, placas o barras de aceros de las cuales fueron formados. Esto se debe a que el proceso de laminado en frío incrementa los valores de F y y F u y al mismo tiempo reduce la ductilidad. El incremento porcentual en el valor de F u es mucho menor que el incremento del valor de F y, por lo que la relación F u /F y se reduce. Además, debido a que las esquinas de los perfiles requieren un mayor trabajo de laminado que las parte planas, las propiedades mecánicas son diferentes en varias partes del perfil. La Fig. 2.4 ilustra la variación de las propiedades mecánicas en puntos específicos de un perfil canal y de la sección de la cuerda de un joist (viga tipo armadura con cuerdas paralelas) con respecto a las propiedades del material virgen (material antes de ser sujeto al proceso de laminado), de acuerdo a diversas pruebas realizadas. Como se puede observar en la Fig. 2.4, los valores máximos de F y ocurren en las esquinas y los valores mínimos en las partes planas. Este hecho explica porque el pandeo y/o la fluencia de los perfiles ocurre primero en las partes planas y porque las cargas adicionales posteriores al pandeo o fluencia son transferidas a las esquinas. Es pertinente enfatizar que la transferencia de cargas a las esquinas que ocurre después del pandeo genera la distribución no uniforme de esfuerzos a compresión que obliga a considerar a los elementos correspondientes como parcialmente efectivos sujetos a esfuerzos uniformes para efectos de simplificar su diseño. Esta condición es la razón por la cual se desarrolló el concepto de ancho efectivo (ver Art ). Los resultados de diversas investigaciones sobre la influencia del laminado en frío en las propiedades mecánicas del acero, indican que los cambios en las propiedades son causados principalmente por el endurecimiento y envejecimiento por deformación del acero durante el proceso de laminado, como lo ilustra la Fig La curva A representa la curva esfuerzodeformación del material virgen, la curva B representa el proceso de descarga en el rango de endurecimiento por deformación, la curva C representa el proceso de recarga y la curva D representa la curva esfuerzo-deformación de la etapa de recarga después del envejecimiento por deformación. Se puede observar claramente que los valores de F y de las curvas C y D son mayores que el valor de F y de la curva A y que la ductilidad se reduce después de ocurrir el endurecimiento y envejecimiento por deformación. Otro factor que contribuye al cambio de las propiedades mecánicas durante el proceso de laminado es el efecto Bauschinger directo e inverso. El efecto Bauschinger directo describe el hecho de que el valor de F y en compresión longitudinal de un especímen previamente elongado es menor que el valor de F y a tensión longitudinal, como lo ilustra la Fig. 2.6(a). El efecto Bauschinger inverso produce la condición contraria en la dirección transversal, como lo ilustra la Fig. 2.6(b). El efecto del laminado en frío sobre las propiedades mecánicas de las esquinas depende normalmente de (1) el tipo de acero, (2) el tipo de esfuerzo (compresión o tensión), (3) la dirección del esfuerzo con respecto a la dirección de laminado en frío (longitudinal o transversal), (4) la relación F u /F y, (5) la relación del radio interior al espesor (R/t) y (6) la cantidad de trabajo de laminado en frío. De todos éstos factores los más importantes son las relaciones F u /F y y R/t. Materiales vírgenes con relaciones F u /F y grandes tienen un mayor potencial para el endurecimiento por deformación. Por consiguiente, al incrementar la relación F u /F y, se incrementa el efecto del laminado en frío sobre el incremento en F y. Valores pequeños de la relación R/t corresponden a un mayor trabajo de laminado en frío en las esquinas. Por consiguiente, mientras más pequeña sea la relación R/t para un material dado, mayor será el incremento en F y.

15 Fig. 2.4 Efecto del laminado en frío sobre las propiedades mecánicas de perfiles laminados en frío (1). (a) Sección Canal; (b) Cuerda de un Joist. 33

16 34 Fig. 2.5 Efecto del endurecimiento y envejecimiento por deformación en el comportamiento esfuerzo deformación del acero (4). Fig. 2.6 (a) Efecto Bauschinger; (b) Efecto Bauschinger inverso (1) La siguiente ecuación puede usarse para expresar la correlación entre la relación R/t y la relación de esfuerzos de fluencia en las esquinas y en el material virgen: F yc B = c (2.3) F y ( R t) m F F F y F Fu = F 2 u u Donde: Bc = (2.4) m (2.5) y F yc = esfuerzo de fluencia en la esquina F y = esfuerzo de fluencia del material virgen F u = esfuerzo último del material virgen R = radio interior en la esquina t = espesor de la lámina La Ec. (2.3) es aplicable solo si F u /F y 1.2, R/t 7 y θ 120 º. Donde θ es el ángulo interno de la esquina.

17 35 La Fig. 2.7 muestra la correlación entre F yc /F y y R/t para varios valores de F u /F y. El valor de F y debido a tensión, con respecto a las propiedades de la sección completa, puede ser aproximado considerando un promedio ponderado mediante la siguiente ecuación: F CF + ( 1 C) F ya = (2.6) yc yf Donde: F ya = resistencia a la tensión de la sección completa F yc = resistencia a la tensión promedio en la esquina = B c F y / (R/t) m F yf = resistencia a la tensión promedio de las partes planas C = relación del área de las esquinas con respecto al área total de la sección Fig. 2.7 Relación entre F yc/f y y R/t basada en varios valores de F u/f y (1) La Sección A7 del AISI 1996 permite la substitución de F y por F ya [Ec. (2.6)] en el diseño de elementos a tensión, elementos a flexión (excepto cuando se desee usar la capacidad inelástica de reserva), elementos sujetos a compresión axial, elementos sujetos a combinación de carga axial y flexión, elementos cilíndricos tubulares y puntales de muros. También permite la obtención de F ya mediante métodos alternativos como pruebas de tensión en la sección completa o pruebas de columnas cortas. El AISI 1996 limita el uso de F ya de la siguiente manera: (a) F ya puede ser determinado por la Ec. (2.6) o cualquiera de los métodos alternativos para elementos sujetos a compresión axial o elementos sujetos a flexión, cuyas dimensiones de la sección sean tales que el factor ρ, determinado conforme a lo estipulado en la Sección B2 del AISI 1996 (ver Art ), sea igual a la unidad para cada elemento constitutivo de la sección. (b) Para elementos sujetos a tensión axial, F ya puede ser determinado por la Ec. (2.6) o por el método alternativo de la prueba de tensión en la sección completa. (c) El efecto de cualquier soldadura en las propiedades mecánicas del elemento deberá ser determinado mediante pruebas sobre especímenes de sección completa conteniendo dentro de la longitud calibrada la soldadura que se planea usar en el diseño. Cualquier consideración de dicho efecto deberá hacerse en el uso estructural del elemento. Se acostumbra a denominar a los elementos que cumplen con la condición de ρ = 1 como totalmente efectivos o compactos. Aunque es importante mencionar que el término compacto para perfiles laminados en frío significa solamente que la dimensión total del elemento es efectiva para el cálculo de la resistencia. Contrario a la definición de compacto usada en las especificaciones del AISC para perfiles laminados en caliente. En este caso el término se usa para definir aquellos perfiles cuyas propiedades geométricas permiten alcanzar la plastificación completa bajo carga de la sección antes de que ocurran problemas de inestabilidad en los componentes sujetos a esfuerzos de compresión. Los criterios del AISC para definir una sección compacta son mucho más rigurosos que los de la AISI.

18 36 Los siguientes ejemplos ilustran el uso de las especificaciones del AISI 1996 para el cálculo de F ya : Ejemplo 2.1: Determine si F ya puede ser usada para el patín del perfil canal mostrado en la Fig. 2.8 y determine su valor mediante la Ec.(2.6). Considere acero A446 Grado C (F y = 2811 kg/cm 2 y F u = 3865 kg/cm 2 ). Fig 2.8 Ejemplo 2.1(cotas en mm) (1). 1. Revisión de los Requisitos del AISI: A. El uso de la Ec. (2.6) para calcular el esfuerzo de fluencia a tensión promedio para el patín de la viga, la sección canal deberá tener un patín de compresión compacto, o sea ρ = 1.0. Asumiendo que el perfil cumple con los requisitos establecidos en los Arts a para que ρ = 1, entonces la Ec. (2.6) puede ser usada para calcular F ya. B. Cuando se usa la Ec. (2.3) para determinar el esfuerzo de fluencia a tensión de las esquinas, F yc, los siguientes tres requisitos deben cumplirse: F u /F y 1.2, R/t 7, θ 120 En este caso, F u /F y = 3865/2811 = 1.37 > 1.2, OK R/t = 4.763/3.429 = < 7, OK θ = 90 < 120, OK Por lo tanto, la Ec. (2.3) puede ser usada para calcular F yc. 2. Cálculo de F yc, de acuerdo con las Ecs. (2.3) a (2.5): Ec. (2.4): B c = 3.69(1.37) 0.819(1.37) = Ec. (2.5): m = 0.192(1.37) = Por lo tanto, Ec. (2.3): F yc = [1.735/(1.389) ]2811 = kg/cm 2 3. Cálculo de F ya de acuerdo con la Ec. (2.6): Area de las esquinas del patín, A e (ver Caso I, Art. A.2.2, Apéndice A): A e = 1.57rt = 1.57(R + t/2)t = 1.57( /2)3.429 = mm 2. Por lo tanto para dos esquinas, ΣA e = 2(34.872) = mm 2.

19 37 Area de la sección del patín, A c, incluyendo las esquinas: A c = ΣA e + wt = (3.429) = mm 2. Por lo tanto, el parámetro C de la Ec. (2.6) será: C = ΣA e /A c = / = Por lo tanto, Ec. (2.6): F ya = 0.254( ) + ( )2811 = kg/cm 2 Este valor de F ya puede ser usado para los patines de tensión y compresión y representa un incremento de 16% sobre el valor del esfuerzo de fluencia del acero virgen (F y = 2811 kg/cm 2 ). Ejemplo 2.2: Determine si F ya puede ser usada para el perfil sujeto a compresión axial mostrado en la figura 2.9 y determine su valor mediante la Ec. (2.6). Considere acero A570 Grado C (F y = 2319 kg/cm 2 y F u = 3654 kg/cm 2 ). Fig 2.9 Ejemplo 2.2 (cotas en mm) (1). 1. Revisión de los Requisitos del AISI: A. Asumiendo que el perfil cumple con los requisitos establecidos en los Arts a para que ρ = 1, entonces la Ec. (2.6) puede ser usada para calcular F ya. B. En este caso, F u /F y = 3654/2319 = > 1.2, OK R/t = 4.763/3.429 = < 7, OK θ = 90 < 120, OK Por lo tanto, la Ec. (2.3) puede ser usada para calcular F yc. 2. Cálculo de F yc, de acuerdo con las Ecs. (2.3) a (2.5): Ec. (2.4): B c = 3.69(1.576) 0.819(1.576) = Ec. (2.5): m = 0.192(1.576) = Por lo tanto, Ec. (2.3): F yc = [1.991/(1.389) ]2319 = kg/cm 2

20 38 3. Cálculo de F ya de acuerdo con la Ec. (2.6): Como el perfil esta sujeto a compresión axial, los cuatro patines estarán sujetos a compresión. Area de las esquinas del patín, A e (ver Caso I, Art. A.2.2, Apéndice A): A e = 1.57rt = 1.57(R + t/2)t = 1.57( /2)3.429 = mm 2. Por lo tanto para ocho esquinas, ΣA e = 8(34.872) = mm 2. Area de la sección total, A c, incluyendo las esquinas y labios atiesadores: A c = ΣA e + wt = (3.429)[ ] +2(3.429)[ ] = mm 2. Por lo tanto, el parámetro C de la Ec. (2.6) será: C = ΣA e /A c = / = Por lo tanto, Ec. (2.6): F ya = 0.170( ) + ( )2319 = kg/cm 2 Este valor de F ya puede ser usado para los patines de tensión y compresión y representa un incremento de 14% sobre el valor del esfuerzo de fluencia del acero virgen (F y = 2319 kg/cm 2 ). 2.6 ESFUERZOS RESIDUALES DEBIDOS AL PROCESO DE LAMINADO EN FRIO Los esfuerzos residuales se presentan en los perfiles como resultado del proceso de manufactura. En el caso de los perfiles laminados en caliente, los esfuerzos residuales se presentan debido un proceso de enfriamiento desigual que inicia después de salir de los molinos de laminado o después de ser soldados. En este caso, las partes de menor espesor de los perfiles como las puntas de los patines y el centro del alma alcanzan a enfriarse primero que las uniones de patín y alma que son las partes de mayor espesor. Galambos desarrolló patrones de distribución de esfuerzos residuales, los cuales aplicó a la derivación de una ecuación general para la curva esfuerzo-deformación para perfiles laminados en caliente con patín ancho. Galambos demostró que la presencia de los esfuerzos residuales es necesaria para explicar porque algunos perfiles alcanzaban la fluencia a magnitudes de esfuerzo menores a los esperados. La Fig muestra como los esfuerzos residuales reducen el valor del límite de proporcionalidad, induciendo a un comportamiento inelástico del material antes de lo que se esperaría si se despreciaran los esfuerzos residuales. También se puede observar que la presencia de los esfuerzos residuales no afecta el valor de F u. En años recientes se ha estudiado la distribución de los esfuerzos residuales en los perfiles laminados en frío. La Fig muestra distribuciones típicas de esfuerzos residuales en la cara interna y externa de un perfil canal laminado en frío. La Fig muestra la distribución promedio de esfuerzos residuales para el mismo perfil. Aunque los esfuerzos residuales en perfiles laminados en frío se deben precisamente al proceso de laminado, se espera que los efectos de éstos esfuerzos sobre el comportamiento estructural de los perfiles sean similares al de los perfiles laminados en caliente. Esto es, se espera una reducción en el límite de proporcionalidad también en los perfiles laminados en frío debido a la presencia de los esfuerzos residuales. De hecho, las especificaciones del AISI referentes al pandeo de elementos han sido desarrolladas considerando un límite de proporcionalidad mucho menor que el valor de F y del acero virgen, tomando así consideración de manera implícita de la presencia de esfuerzos residuales en el acero laminado en frío.

Diseño de Estructuras de Acero

Diseño de Estructuras de Acero I.- Conceptos Generales de Diseño Diseño de Estructuras de Acero Las propiedades de los materiales estructurales tienen una influencia esencial en el comportamiento de la estructura que forman. Se pueden

Más detalles

UNIDAD DE TRABAJO Nº5 CONCEPTO DE SOLDABILIDAD

UNIDAD DE TRABAJO Nº5 CONCEPTO DE SOLDABILIDAD UNIDAD DE TRABAJO Nº5 CONCEPTO DE SOLDABILIDAD 1.- Concepto de Soldabilidad Un material se considera soldable, por un procedimiento determinado y para una aplicación específica, cuando mediante una técnica

Más detalles

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE 2.1 Comportamiento, modos de falla y resistencia de elementos sujetos a compresión axial En este capítulo se presentan los procedimientos necesarios para

Más detalles

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA Según la norma DIN 17014, el término deformación se define como el cambio dimensional y de forma de un pieza del producto de

Más detalles

Contenido. Diseño de Estructuras de Acero McCormac /Csernak

Contenido. Diseño de Estructuras de Acero McCormac /Csernak Contenido Prefacio iii CAPÍTULO 1 Introducción al diseño estructural en acero 1 1.1 Ventajas del acero como material estructural 1 1.2 Desventajas del acero como material estructural 3 1.3 Primeros usos

Más detalles

CMT. CARACTERÍSTICAS DE LOS MATERIALES

CMT. CARACTERÍSTICAS DE LOS MATERIALES LIBRO: PARTE: TÍTULO: CMT. CARACTERÍSTICAS DE LOS MATERIALES 3. MATERIALES PARA OBRAS DE DRENAJE Y SUBDRENAJE 03. Tubos y Arcos de Lámina Corrugada de Acero A. CONTENIDO Esta Norma contiene las características

Más detalles

PRACTICA No. 7 y 8 ENSAYO ESTATICO DE COMPRESIÓN

PRACTICA No. 7 y 8 ENSAYO ESTATICO DE COMPRESIÓN PRACTICA No. 7 y 8 ENSAYO ESTATICO DE COMPRESIÓN OBJETIVO DE LA PRÁCTICA: Realizar los ensayos de compresión en diferentes materiales y obtener sus características y propiedades mecánicas, así como observar

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE ARQUITECTURA COLEGIO DE ARQUITECTURA SISTEMAS TRADICIONALES CONSTRUCTIVOS ALUMNOS:

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE ARQUITECTURA COLEGIO DE ARQUITECTURA SISTEMAS TRADICIONALES CONSTRUCTIVOS ALUMNOS: BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE ARQUITECTURA COLEGIO DE ARQUITECTURA SISTEMAS TRADICIONALES CONSTRUCTIVOS ALUMNOS: CASTILLO MARTÍNEZ STEFANYA ITZEL CRUZ LESSLIE DIAZ ÁLVAREZ SERGIO

Más detalles

Manual de Diseño para la Construcción con Acero www.ahmsa.com 186

Manual de Diseño para la Construcción con Acero www.ahmsa.com 186 Manual de Diseño para la Construcción con cero www.ahmsa.com 186 Manual de Diseño para la Construcción con cero www.ahmsa.com 187 PERFILES ESTRUCTURLES LMINDOS La mayor parte de las estructuras de acero

Más detalles

2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS

2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS 2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS En este capítulo se exponen los aspectos más relevantes para este proyecto, acerca de las placas

Más detalles

Tema 15 Clasificación de los metales ferrosos.

Tema 15 Clasificación de los metales ferrosos. Tema 15 Clasificación de los metales ferrosos. Los aceros son aleaciones de hierro y carbono que pueden contener cantidades apreciables de otros elementos de aleación. Existe una gran cantidad de aleaciones

Más detalles

Jr. Chávez Tueros Nº1296, Chacra Ríos Sur, Lima 1 Teléfonos: 425-9520 / 425-8130 Fax: 425-8281 / Nextel: 829*7173 Email: gerdipac@gerdipac.com.

Jr. Chávez Tueros Nº1296, Chacra Ríos Sur, Lima 1 Teléfonos: 425-9520 / 425-8130 Fax: 425-8281 / Nextel: 829*7173 Email: gerdipac@gerdipac.com. BANDEJAS PORTACABLES Por NEMA (Asociación Nacional de los Fabricantes de Material Eléctrico), un sistema de la bandeja de cable es "una unidad o un montaje de unidades o de secciones y de guarniciones

Más detalles

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.1.- Elementos que componen una estructura metálica de tipo industrial. Una estructura de tipo industrial está compuesta (Fig. I.1) por marcos

Más detalles

1.1 NORMA EUROPEA UNE EN 10255 Tubos de acero no aleados adecuados para la soldadura y el roscado. Condiciones técnicas de suministro

1.1 NORMA EUROPEA UNE EN 10255 Tubos de acero no aleados adecuados para la soldadura y el roscado. Condiciones técnicas de suministro 1 NORMAS DE TUBOS 1.1 NORMA EUROPEA UNE EN 10255 Tubos de acero no aleados adecuados para la soldadura y el roscado. Condiciones técnicas de suministro OBJETO Esta norma europea especifica los requisitos

Más detalles

- PROCESOS DE SOLDADURA BAJO ATMÓSFERA PROTECTORA -

- PROCESOS DE SOLDADURA BAJO ATMÓSFERA PROTECTORA - - PROCESOS DE SOLDADURA BAJO ATMÓSFERA PROTECTORA - Este artículo presenta diferentes procesos de soldadura bajo atmósfera protectora, sus ventajas técnicas respecto a otros métodos, su justificación económica

Más detalles

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO CONFERENCIA CIMENTACIONES EN EDIFICACIONES ANTONIO BLANCO BLASCO LAS CIMENTACIONES SON ELEMENTOS ESTRUCTURALES QUE TIENEN COMO FUNCIÓN TRANSMITIR LAS CARGAS Y MOMENTOS DE UNA EDIFICACIÓN HACIA EL SUELO,

Más detalles

Determinación de la resistencia a la flexión del concreto. Diciembre 2008. editado por el instituto mexicano del cemento y del concreto AC

Determinación de la resistencia a la flexión del concreto. Diciembre 2008. editado por el instituto mexicano del cemento y del concreto AC el concreto en la obra editado por el instituto mexicano del cemento y del concreto AC Diciembre 2008 Determinación de la resistencia a la flexión del concreto 16 Problemas, causas y soluciones 59 s e

Más detalles

Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano.

Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano. Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano. El endurecimiento por deformación plástica en frío es el fenómeno por medio del cual un

Más detalles

ES 2 487 992 A1 ESPAÑA 11. Número de publicación: 2 487 992. Número de solicitud: 201490058 B61D 17/06 (2006.01) 07.12.2011

ES 2 487 992 A1 ESPAÑA 11. Número de publicación: 2 487 992. Número de solicitud: 201490058 B61D 17/06 (2006.01) 07.12.2011 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 2 487 992 Número de solicitud: 149008 1 Int. CI.: B61D 17/06 (06.01) 12 SOLICITUD DE PATENTE A1 22 Fecha de presentación: 07.12.11

Más detalles

NORMATIVIDAD ASOCIADA: NTC 6, 121, 161, 174, 321, 673, 1299, 1393, 2289; ANSI/AWS D I.4; ASTM A48, A438, C39, E10, E 18 y E 140; NEGC 800.

NORMATIVIDAD ASOCIADA: NTC 6, 121, 161, 174, 321, 673, 1299, 1393, 2289; ANSI/AWS D I.4; ASTM A48, A438, C39, E10, E 18 y E 140; NEGC 800. TAPAS Y ANILLOS DE CONCRETO PARA CÁMARAS Y CAJAS DE INSPECCIÓN NORMATIVIDAD ASOCIADA: NTC 6, 121, 161, 174, 321, 673, 1299, 1393, 229; ANSI/AWS D I.4; ASTM A4, A43, C39, E10, E 1 y E 140; NEGC 00. GENERALIDADES:

Más detalles

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS Dentro de la caracterización mecánica de los materiales de ingeniería, la resistencia a la tensión y la

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

1. Prueba de impacto delantero

1. Prueba de impacto delantero Fichas Técnicas de Reparación de Vehículos Carrocería No.3 MAYO 2009 DEFORMACIONES PROGRAMADAS INTRODUCCIÓN La carrocería de los automóviles ha evolucionado con el paso de los años, en sus inicios eran

Más detalles

3. CASOS DE DISEÑO DE PLACAS BASE PARA COLUMNAS Y PLACAS DE SOPORTE PARA VIGAS

3. CASOS DE DISEÑO DE PLACAS BASE PARA COLUMNAS Y PLACAS DE SOPORTE PARA VIGAS 3. CASOS DE DISEÑO DE PLACAS BASE PARA COLUMNAS Y PLACAS DE SOPORTE PARA VIGAS En esta sección se describe el procedimiento de diseño para cada uno de los casos siguientes: Placas base para columnas o

Más detalles

SolucionesEspeciales.Net

SolucionesEspeciales.Net El acero de refuerzo en la obra El acero de refuerzo es el que se coloca para absorber y resistir esfuerzos provocados por cargas y cambios volumétricos por temperatura y que queda dentro de la masa del

Más detalles

RESISTENCIA A LA FLEXIÓN DEL CONCRETO MÉTODO DE LA VIGA SIMPLE CARGADA EN LOS TERCIOS DE LA LUZ I.N.V. E 414 07

RESISTENCIA A LA FLEXIÓN DEL CONCRETO MÉTODO DE LA VIGA SIMPLE CARGADA EN LOS TERCIOS DE LA LUZ I.N.V. E 414 07 RESISTENCIA A LA FLEXIÓN DEL CONCRETO MÉTODO DE LA VIGA SIMPLE CARGADA EN LOS TERCIOS DE LA LUZ I.N.V. E 414 07 1. OBJETO 1.1 Esta norma tiene por objeto establecer el procedimiento que se debe seguir

Más detalles

NORMAS DE MATERIALES PARA REDES AÉREAS CRUCETAS, PIEAMIGOS, BAYONETAS Y RIOSTRAS RA7 013 1. ALCANCE La norma hace parte del grupo de materiales normalizados y tiene como propósito fundamental determinar

Más detalles

7. ANALISIS DE RESULTADO. En ente capítulo se incluye un análisis de los resultados promedio obtenidos a partir de los

7. ANALISIS DE RESULTADO. En ente capítulo se incluye un análisis de los resultados promedio obtenidos a partir de los 7. ANALISIS DE RESULTADO. 7.1 Introducción. En ente capítulo se incluye un análisis de los resultados promedio obtenidos a partir de los ensayos realizados, para lo cual se muestran ciertas gráficas que

Más detalles

Curso Diseño en Hormigón Armado según ACI 318-14

Curso Diseño en Hormigón Armado según ACI 318-14 SANTIAGO 27 y 29 Octubre 2015 Curso Diseño en Hormigón Armado según ACI 318-14 Clase: Diseño de Diafragmas y Losas Relator: Matías Hube G. Diseño de Diafragmas y Losas Losas en una dirección (Cáp. 7) Losas

Más detalles

CAPITULO 10 VARILLAS PARA SOLDADURA POR PROCESO DE OXIACETILENO

CAPITULO 10 VARILLAS PARA SOLDADURA POR PROCESO DE OXIACETILENO X CAPITULO 10 VARILLAS PARA SOLDADURA POR PROCESO DE OXIACETILENO TIPOS DE LLAMA OXIACETILENICA Existen tres tipos distintos de llamas oxiacetilénicas, dependiendo de la proporción de Oxígeno y Acetileno

Más detalles

3 CONDUCTORES ELÉCTRICOS

3 CONDUCTORES ELÉCTRICOS 3 CONDUCTORES ELÉCTRICOS 3.1 CONDUCTORES ELÉCTRICOS METALES MÁS EMPLEADOS Los metales más empleados como conductores en los cables eléctricos son el COBRE y el ALUMINIO. 3.1.1 EL COBRE El COBRE se obtiene

Más detalles

PREMET LOSACERO PREDECK 25 Acero Gr 37. Espesor de concreto. Ancho Efectivo 949.96 mm. 62.7 mm. 62.7 mm

PREMET LOSACERO PREDECK 25 Acero Gr 37. Espesor de concreto. Ancho Efectivo 949.96 mm. 62.7 mm. 62.7 mm PREMET OSACERO PREDECK 25 Acero Gr 37 Ancho Efectivo 949.96 mm 62.7 mm de concreto 62.7 mm PREMET OSACERO PREDECK 25 Acero Gr 37 Propiedades de la Sección de Acero PREDeck 25 Calibre de Peso Propiedades

Más detalles

Fundamentos de Diseño Estructural Parte I - Materiales. Argimiro Castillo Gandica

Fundamentos de Diseño Estructural Parte I - Materiales. Argimiro Castillo Gandica Fundamentos de Diseño Estructural Parte I - Materiales Argimiro Castillo Gandica Fundamentos básicos Formas de falla Por sobrecarga (resistencia insuficiente) Por deformación excesiva (rigidez insuficiente)

Más detalles

CAPITULO 9 DISEÑO DE CIMENTACION

CAPITULO 9 DISEÑO DE CIMENTACION 123 CAPITULO 9 DISEÑO DE CIMENTACION 9.1 ANALISIS Las cimentaciones son elementos que se encuentran en la base de las estructuras, se utilizan para transmitir las cargas de la estructura al suelo en que

Más detalles

Accesorios * CABLES DE ACERO *

Accesorios * CABLES DE ACERO * Accesorios * CABLES DE ACERO * Cables de Acero - Conformación Un cable de acero se conforma mediante un conjunto de alambres de acero, retorcidos helicoidalmente, que constituyen una cuerda de metal apta

Más detalles

Manual de Diseño para la Construcción con Acero www.ahmsa.com 1

Manual de Diseño para la Construcción con Acero www.ahmsa.com 1 Manual de Diseño para la Construcción con Acero www.ahmsa.com 1 NORMAS Y CARACTERÍSTICAS A LAS QUE SE SUJETAN LOS ACEROS FABRICADOS POR ALTOS HORNOS DE MÉXICO 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 SOCIEDAD AMERICANA

Más detalles

PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS

PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS Ing. Eduardo Pedoja Profesor de Hormigón Armado y Proyecto Facultad de Ingeniería, Universidad de Montevideo Una de las causas más frecuentes de la aparición

Más detalles

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Por Mitsuaki Tada Traducido por ENTESIS technology Este artículo describe la combinación de

Más detalles

CAPITULO 6 LA VIVIENDA UNIFAMILIAR

CAPITULO 6 LA VIVIENDA UNIFAMILIAR CAPITULO 6 LA VIVIENDA UNIFAMILIAR 6.1 Vivienda unifamiliar. Se define como vivienda unifamiliar la edificación tipo chalet o duplex de una sola planta que se apoye directamente sobre el suelo. 6.2 Diseño

Más detalles

TRANSDUCTORES CAPACITIVOS

TRANSDUCTORES CAPACITIVOS CLASE 10 -- TRANSDUCTORES CAPACITIVOS Un capacitor o condensador consiste en dos superficies conductivas separadas por un material dieléctrico, el cual puede ser un sólido, líquido, gas o vacío. La capacitancia

Más detalles

3. ESPECIFICACIÓN DE PROCEDIMIENTOS DE SOLDADURA

3. ESPECIFICACIÓN DE PROCEDIMIENTOS DE SOLDADURA 27 3. ESPECIFICACIÓN DE PROCEDIMIENTOS DE SOLDADURA 3.1. ALCANCE Este Capítulo cubre los requerimientos generales y específicos para la realización de la especificación de procedimiento de soldadura (EPS)

Más detalles

II.7. Estructuras de soporte

II.7. Estructuras de soporte II.7. Estructuras de soporte Capítulo ll. Señalamiento vertical / Estructuras de soporte / Versión 1 Capítulo ll. Señalamiento vertical / Estructuras de soporte / Versión 1 II.7. Estructuras de soporte

Más detalles

INDICE 1. La Naturaleza del Diseño Mecánico 2. Materiales en el Diseño Mecánico 3. Análisis de Tensiones

INDICE 1. La Naturaleza del Diseño Mecánico 2. Materiales en el Diseño Mecánico 3. Análisis de Tensiones INDICE 1. La Naturaleza del Diseño Mecánico 1 1.1. Objetivos del capitulo 2 1.2. Ejemplos de diseño mecánico 4 1.3. Conocimientos necesarios para el diseño mecánico 7 1.4. Funciones y especificaciones

Más detalles

ENSAYOS MECÁNICOS II: TRACCIÓN

ENSAYOS MECÁNICOS II: TRACCIÓN 1. INTRODUCCIÓN. El ensayo a tracción es la forma básica de obtener información sobre el comportamiento mecánico de los materiales. Mediante una máquina de ensayos se deforma una muestra o probeta del

Más detalles

GUÍA TÉCNICA DE APLICACIÓN - ANEXOS SIGNIFICADO Y EXPLICACIÓN DE LOS CÓDIGOS IP, IK

GUÍA TÉCNICA DE APLICACIÓN - ANEXOS SIGNIFICADO Y EXPLICACIÓN DE LOS CÓDIGOS IP, IK SIGNIFICADO Y EXPLICACIÓN DE LOS CÓDIGOS IP, IK 1 Introducción En el presente anexo se pretende dar una explicación acerca del significado del sistema de clasificación establecido por los códigos IP e

Más detalles

Temas CAPÍTULO 9 DISEÑO DE RESORTES 04/08/2011 DISEÑO I. 1. INTRODUCCIÓN Qué es un resorte? Funciones Tipos y configuraciones

Temas CAPÍTULO 9 DISEÑO DE RESORTES 04/08/2011 DISEÑO I. 1. INTRODUCCIÓN Qué es un resorte? Funciones Tipos y configuraciones PÍTULO 9 DISEÑO DE RESORTES DISEÑO I Profesor: Libardo Vanegas Useche 17 de mayo de 2011 Temas 1. INTRODUIÓN Qué es un resorte? unciones Tipos y configuraciones 2. RESORTES HELIOIDLES DE OMPRESIÓN 1 Qué

Más detalles

T R A C C I Ó N periodo de proporcionalidad o elástico. limite elástico o aparente o superior de fluencia.

T R A C C I Ó N periodo de proporcionalidad o elástico. limite elástico o aparente o superior de fluencia. T R A C C I Ó N Un cuerpo se encuentra sometido a tracción simple cuando sobre sus secciones transversales se le aplican cargas normales uniformemente repartidas y de modo de tender a producir su alargamiento.

Más detalles

TORRE DE ENFRIAMIENTO CICLO COMBINADO HÍBRIDO

TORRE DE ENFRIAMIENTO CICLO COMBINADO HÍBRIDO Capacidad: 26 a 650 toneladas (78 a 1,950 GPM @ 95 F/ 85 F / 78 F) Disponible en galvanizado, galvanizado con recubrimiento epóxico para ambiente marino o acero inoxidable Bajo costo de instalación y operación

Más detalles

I.1 Situación actual del acero inoxidable

I.1 Situación actual del acero inoxidable Capítulo I INTRODUCCIÓN I.1 Situación actual del acero inoxidable Los aceros inoxidables son materiales modernos, sin embargo, desde su aparición han tenido una gran aceptación y se han ido extendiendo

Más detalles

Todo sobre las bujias

Todo sobre las bujias Las Bujías utilizadas en el modelismo son denominada en ingles "Glow Plugs". Estas Bujías en el transcurso del tiempo han sido rediseñadas y modificadas para trabajar según las características del motor,

Más detalles

Tema 19 Modelo de Weibull para predecir la fractura de los materiales frágiles.

Tema 19 Modelo de Weibull para predecir la fractura de los materiales frágiles. Tema 19 Modelo de Weibull para predecir la fractura de los materiales frágiles. Los Materiales Cerámicos tienen las siguientes características: Son compuestos químicos o soluciones complejas que contienen

Más detalles

Comprobación de una viga biapoyada de hormigón armado con sección rectangular

Comprobación de una viga biapoyada de hormigón armado con sección rectangular Comprobación de una viga biapoyada de hormigón armado con sección rectangular J. Alcalá * V. Yepes Enero 2014 Índice 1. Introducción 2 2. Descripción del problema 2 2.1. Definición geométrica........................

Más detalles

Selección de manómetros de presión

Selección de manómetros de presión Selección de manómetros de presión Qué es un manómetro de presión? Es un instrumento diseñado para medir los cambios en una presión y convertir estos cambios en un movimiento mecánico, indicándolos sobre

Más detalles

Manchas de Color Oscuro en Planchas Galvannealed

Manchas de Color Oscuro en Planchas Galvannealed 3. Corrosión Mecanismos, Prevención, y Ensayos GalvInfoNote 3.3 Manchas de Color Oscuro en Planchas Galvannealed Rev. 0 Jan-07 Introduccion Normalmente, la plancha de acero galvannealed tiene una apariencia

Más detalles

JORNADA DE ACTUALIZACIÓN TÉCNICA DISEÑO Y CONSTRUCCIÓN DE PAVIMENTOS URBANOS DE HORMIGÓN DISEÑO DE JUNTAS

JORNADA DE ACTUALIZACIÓN TÉCNICA DISEÑO Y CONSTRUCCIÓN DE PAVIMENTOS URBANOS DE HORMIGÓN DISEÑO DE JUNTAS JORNADA DE ACTUALIZACIÓN TÉCNICA DISEÑO Y CONSTRUCCIÓN DE PAVIMENTOS URBANOS DE HORMIGÓN DISEÑO DE JUNTAS Ing. Diego H. Calo Dpto. Técnico de Pavimentos 16-17 de Octubre de 2013 Ciudad Autónoma de Buenos

Más detalles

2.6.1. Ensayo a tensión de un material

2.6.1. Ensayo a tensión de un material .6 Criterios de falla.6. Criterios de falla.6.1. Ensayo a tensión de un material En una prueba a tensión de un material dúctil realizado en laboratorio, Fig..3, existen seis magnitudes que, cuando inicia

Más detalles

NORMA DE DISTRIBUCIÓN NO-DIS-MA-9001 ELECTRODOS DE PUESTA A TIERRA. Jabalinas cilíndricas de acero-cobre

NORMA DE DISTRIBUCIÓN NO-DIS-MA-9001 ELECTRODOS DE PUESTA A TIERRA. Jabalinas cilíndricas de acero-cobre NORMA DE DISTRIBUCIÓN NO-DIS-MA-9001 ELECTRODOS DE PUESTA A TIERRA Jabalinas cilíndricas de acero-cobre FECHA: 23/07/2012 NO-DIS-MA-9001 2012/07/23 ÍNDICE 0. REVISIONES... 3 1. OBJETO... 1 2. CAMPO DE

Más detalles

MARCADO CE PARA COMPONENTES ESTRUCTURALES DE ACERO Y ALUMINIO

MARCADO CE PARA COMPONENTES ESTRUCTURALES DE ACERO Y ALUMINIO MARCADO CE PARA COMPONENTES ESTRUCTURALES DE ACERO Y ALUMINIO El pasado 1 de Julio entró en vigor la aplicación obligatoria del marcado CE para los componentes de acero y aluminio estructural, en base

Más detalles

Determinación del equivalente eléctrico del calor

Determinación del equivalente eléctrico del calor Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar

Más detalles

Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes

Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes Aunque se tenga un valor nominal determinado, nunca se podrá definir el valor real del mismo, pues nunca se podría asegurar que el sistema

Más detalles

Fallo estructural del concreto en diagramas de dominio

Fallo estructural del concreto en diagramas de dominio Fallo estructural del concreto en diagramas de dominio (Parte II) Eduardo de J. Vidaud Quintana Ingeniero Civil/Maestría en Ingeniería. Su correo electrónico es: evidaud@mail.imcyc.com Ingrid N. Vidaud

Más detalles

CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS

CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS 112 111 CAPITULO 8 ANALISIS Y DISEÑO DE PLACAS 8.1 ANALISIS 8.1.1 CRITERIOS Las placas son los elementos que gobiernan el comportamiento sísmico de la edificación. Como lo hemos mencionado anteriormente,

Más detalles

B23K 23/00 //E01B 29/42 B60M 5/00

B23K 23/00 //E01B 29/42 B60M 5/00 k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 k N. de publicación: ES 2 036 42 21 k Número de solicitud: 91412 1 k Int. Cl. : H01R 4/02 B23K 23/00 //E01B 29/42 BM /00 k 12 SOLICITUD DE PATENTE A2

Más detalles

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA. CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través

Más detalles

Montalbán y Rodríguez, S.A. Prefabricados de hormigón.

Montalbán y Rodríguez, S.A. Prefabricados de hormigón. El objeto de este documento es proporcionar una serie de recomendaciones y criterios prácticos para la correcta colocación de adoquines según se describe en la normativa UNE-EN 1338. 1. CARACTERÍSTICAS

Más detalles

28 Evaluación de la resistencia de estructuras existentes

28 Evaluación de la resistencia de estructuras existentes 28 Evaluación de la resistencia de estructuras existentes ACTUALIZACIÓN PARA EL CÓDIGO 2002 Se revisaron los factores de reducción de la resistencia a utilizar para la evaluación analítica de la resistencia

Más detalles

CONTABILIZACIÓN DE INVERSIONES EN ASOCIADAS. NEC 20 Norma Ecuatoriana de Contabilidad 20

CONTABILIZACIÓN DE INVERSIONES EN ASOCIADAS. NEC 20 Norma Ecuatoriana de Contabilidad 20 CONTABILIZACIÓN DE INVERSIONES EN ASOCIADAS CONTENIDO NEC 20 Norma Ecuatoriana de Contabilidad 20 Contabilización de Inversiones en Asociadas Alcance Definiciones Influencia significativa Métodos de contabilidad

Más detalles

OS.050 REDES DE DISTRIBUCIÓN DE AGUA PARA CONSUMO HUMANO

OS.050 REDES DE DISTRIBUCIÓN DE AGUA PARA CONSUMO HUMANO OS.050 REDES DE DISTRIBUCIÓN DE AGUA PARA CONSUMO HUMANO ÍNDICE PÁG. 1. OBJETIVO 2 2. ALCANCE 2. DEFINICIONES 2 4. DISPOSICIONES ESPECÍFICAS PARA DISEÑO 2 4.1 Levantamiento Topográfico 4.2 Suelos 4. Población

Más detalles

Contracciones y deformaciones en las piezas de plástico

Contracciones y deformaciones en las piezas de plástico Contracciones y deformaciones en las piezas de plástico Las contracciones en el diseño o del molde Juan de Juanes Márquez M Sevillano Contracción n y deformación Contracción: : cambio de volumen que sufre

Más detalles

www.constructa.com.mx Fijación Puntual

www.constructa.com.mx Fijación Puntual www.constructa.com.mx Fijación Puntual 1 QUÉ ES EL SISTEMA DE FIJACIÓN PUNTUAL? Es un sistema de recubrimiento acristalado donde el vidrio es soportado en sus esquinas con placas, rótulas o arañas metálicas;

Más detalles

Informe 1: Ensayos de Tracción Ciencias de los Materiales CM3201

Informe 1: Ensayos de Tracción Ciencias de los Materiales CM3201 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ciencia de los Materiales Informe 1: Ensayos de Tracción Ciencias de los Materiales CM3201 Alumno: Pablo J. Cabello H. Grupo:

Más detalles

ANTENAS: Teledistribución y televisión por cable

ANTENAS: Teledistribución y televisión por cable 5.1 INTRODUCCIÓN A LA TELEDISTRIBUCIÓN La teledistribución o CATV, podemos considerarla como una gran instalación colectiva, con algunos servicios adicionales que puede soportar y que conectará por cable

Más detalles

LEAL TRAINING CENTER, C.A. LATINOAMERICANA DE ENTRENAMIENTO ASESORIA Y LOGISTICA RIF. J-29464316-7 - INCES. N0. 715033 - Inst: Alexis J Leal B

LEAL TRAINING CENTER, C.A. LATINOAMERICANA DE ENTRENAMIENTO ASESORIA Y LOGISTICA RIF. J-29464316-7 - INCES. N0. 715033 - Inst: Alexis J Leal B APENDICE I - ASME B31.8 PREPARACION DE EXTREMOS PARA SOLDADURA A TOPE NOTAS EXPLICATIVAS I1.1General El presente Apéndice se aplica a la preparación de extremos para la soldadura a tope de secciones que

Más detalles

AMPLIACION Y REHABILITACION EDIFICIOS

AMPLIACION Y REHABILITACION EDIFICIOS AMPLIACION Y REHABILITACION EDIFICIOS El acero conformado en frío (STEEL FRAMING) se está utilizando en los EE.UU. para proyectos en vivienda de unifamiliares y plurifamiliares de mediana altura. Es la

Más detalles

Capítulo 5. Propiedades Mecánicas. 1.5. Ensayos mecánicos. 1.5.1. Prueba Tensil

Capítulo 5. Propiedades Mecánicas. 1.5. Ensayos mecánicos. 1.5.1. Prueba Tensil Capítulo 5 Propiedades Mecánicas 1.5. Ensayos mecánicos 1.5.1. Prueba Tensil Figura 49 Curva esfuerzo deformación obtenida a través de la prueba tensil. El esfuerzo de ingeniería y deformación de ingeniería

Más detalles

TECNOLOGÍA. Tema 1. Materiales metálicos.

TECNOLOGÍA. Tema 1. Materiales metálicos. TECNOLOGÍA Tema 1. Materiales metálicos. 1. LOS METALES. Debido a que es un material que se puede encontrar como tal en la naturaleza (solo unos pocos) o que son fáciles de obtener a partir del mineral

Más detalles

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional Curso: Eurocódigo 3 Módulo 4 : Eurocódigo para Estructuras de cero Desarrollo de Una Propuesta Transnacional Lección 10: Resumen: La resistencia de una pieza a tracción se obtiene suponiendo que la sección

Más detalles

BARRAS ARMÓNICAS EN INSTRUMENTOS MUSICALES

BARRAS ARMÓNICAS EN INSTRUMENTOS MUSICALES BARRAS ARMÓNICAS EN INSTRUMENTOS MUSICALES Introducción: Una barra armónica es un elemento que se encuentra unido en el cuerpo acústico del instrumento musical, más específico en la tapa, que es la que

Más detalles

Los hilos de aluminio SUPERGLAZE están fabricados por INDALCO ALLOYS, compañía cien por cien perteneciente a Lincoln Electric.

Los hilos de aluminio SUPERGLAZE están fabricados por INDALCO ALLOYS, compañía cien por cien perteneciente a Lincoln Electric. Los hilos de aluminio SUPERGLAZE están fabricados por INDALCO ALLOYS, compañía cien por cien perteneciente a Lincoln Electric. Indalco es uno de los 3 principales fabricantes de hilo de aluminio del mundo.

Más detalles

PUENTE TORO AMARILLO- RUTA 774

PUENTE TORO AMARILLO- RUTA 774 CONAVI-MOPT INFORME SOBRE EL ESTADO ESTRUCTURAL DEL PUENTE SOBRE EL TORO AMARILLO PUENTE TORO AMARILLO- RUTA 774 22 DE FEBRERO 2010 E mail: cym@camachoymora.com www.camachoymora.com Dirección: Los Yoses

Más detalles

CLASIFICACION DE LOS ACEROS (según normas SAE) donde XX es el contenido de C

CLASIFICACION DE LOS ACEROS (según normas SAE) donde XX es el contenido de C CLASIFICACION DE LOS ACEROS (según normas SAE) SAE clasifica los aceros en: al carbono, de media aleación, aleados, inoxidables, de alta resistencia, de herramientas, etc. Aceros al carbono 10XX donde

Más detalles

Boletín Técnico Boletín Técnico N 5 Noviembre/2008

Boletín Técnico Boletín Técnico N 5 Noviembre/2008 Boletín Técnico Boletín Técnico N 5 Noviembre/2008 Introducción El más usado de todos los aceros inoxidables en el mundo, es el tipo 304. Así como el cromo juega un importante papel en la resistencia a

Más detalles

GUIA SOBRE LOS REQUISITOS DE LA DOCUMENTACION DE ISO 9000:2000

GUIA SOBRE LOS REQUISITOS DE LA DOCUMENTACION DE ISO 9000:2000 1 INTRODUCCIÓN Dos de los objetivos más importantes en la revisión de la serie de normas ISO 9000 han sido: desarrollar un grupo simple de normas que sean igualmente aplicables a las pequeñas, a las medianas

Más detalles

1 Sistemas con Caucho EPDM

1 Sistemas con Caucho EPDM 1 Sistemas con Caucho EPDM de Firestone 1. Sistemas Para que hoy en día estando bajo una cubierta podamos asegurarnos una tranquilidad larga y duradera, no es suficiente con fabricar membranas impermeabilizantes

Más detalles

DESCRIPCION GENERAL DE LOS MATERIALES UTILIZADOS EN LAS VIVIENDAS MODULARES

DESCRIPCION GENERAL DE LOS MATERIALES UTILIZADOS EN LAS VIVIENDAS MODULARES DESCRIPCION GENERAL DE LOS MATERIALES UTILIZADOS EN LAS VIVIENDAS MODULARES En este documento ofrecemos una breve descripción de los materiales de fachada y cubierta utilizados para la construcción de

Más detalles

SECRETARIA DE COMERCIO FOMENTO INDUSTRIAL NORMA MEXICANA NMX-EE-87-1980 ENVASE Y EMBALAJE.- TARIMAS.- PRUEBAS. PACKAGING.- PALLETS.- TESTS.

SECRETARIA DE COMERCIO FOMENTO INDUSTRIAL NORMA MEXICANA NMX-EE-87-1980 ENVASE Y EMBALAJE.- TARIMAS.- PRUEBAS. PACKAGING.- PALLETS.- TESTS. SECRETARIA DE COMERCIO Y FOMENTO INDUSTRIAL NORMA MEXICANA NMX-EE-87-1980 ENVASE Y EMBALAJE.- TARIMAS.- PRUEBAS. PACKAGING.- PALLETS.- TESTS. DIRECCION GENERAL DE NORMAS PREFACIO En la elaboración de esta

Más detalles

FIGURA 3.62(a) Doblado de lámina metálica; (b) en el doblado ocurre elongación a la tensión y a la compresión.

FIGURA 3.62(a) Doblado de lámina metálica; (b) en el doblado ocurre elongación a la tensión y a la compresión. 09... OPERACIONES DE DOBLADO En el trabajo de láminas metálicas el doblado se define como la deformación del metal alrededor de un eje recto, como se muestra en la figura.6. Durante la operación de doblado,

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

N3 ETP MEX C03 TER LS 25/24 2008 Especificación Técnica de Producto Entrepiso Ternium Losacero 25/24

N3 ETP MEX C03 TER LS 25/24 2008 Especificación Técnica de Producto Entrepiso Ternium Losacero 25/24 Elaborado por Perla Arizbé Cantú González Revisado por Felipe Cavazos René Garza Cavazos Aprobado por Fernando Actis N3 ETP MEX C03 TER LS 25/24 2008 Especificación Técnica de Producto Entrepiso Ternium

Más detalles

Apuntes del Curso de Diseño en Acero INTRODUCCION. 7.1. Conectores Mecánicos

Apuntes del Curso de Diseño en Acero INTRODUCCION. 7.1. Conectores Mecánicos INTRODUCCION. Uno de los aspectos importantes en el diseño de elementos estructurales lo constituye el diseño de sus conexiones. El diseñador cuenta con varias formas para unir piezas metálicas. Conectores

Más detalles

Calderas y Sistemas de Agua Caliente.

Calderas y Sistemas de Agua Caliente. Calderas y Sistemas de Agua Caliente. El objetivo del presente artículo es entregar información técnica para diseñar, especificar y operar sistemas de agua caliente industriales. 1. Introducción Con frecuencia

Más detalles

Guías _SGO. Gestione administradores, usuarios y grupos de su empresa. Sistema de Gestión Online

Guías _SGO. Gestione administradores, usuarios y grupos de su empresa. Sistema de Gestión Online Guías _SGO Gestione administradores, usuarios y grupos de su empresa Sistema de Gestión Online Índice General 1. Parámetros Generales... 4 1.1 Qué es?... 4 1.2 Consumo por Cuentas... 6 1.3 Días Feriados...

Más detalles

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007 Enunciado Se desea efectuar el testing funcional de un programa que ejecuta transferencias entre cuentas bancarias. El programa recibe como parámetros la cuenta de origen, la de cuenta de destino y el

Más detalles

Capítulo I. Convertidores de CA-CD y CD-CA

Capítulo I. Convertidores de CA-CD y CD-CA Capítulo I. Convertidores de CA-CD y CD-CA 1.1 Convertidor CA-CD Un convertidor de corriente alterna a corriente directa parte de un rectificador de onda completa. Su carga puede ser puramente resistiva,

Más detalles

CARACTERISTICAS TÉCNICAS QUE DEFINEN LOS CABLES DE ACERO

CARACTERISTICAS TÉCNICAS QUE DEFINEN LOS CABLES DE ACERO CARACTERISTICAS TÉCNICAS QUE DEFINEN LOS CABLES DE ACERO CONSTRUCCIÓN La construcción de los cables se realiza de la forma siguiente: 1-Alambre central, 2- Cordón, 3- Alambre, 4- Cable, 5- Alma MASA DEL

Más detalles

Mesh Track. Slurry seal Membrana elástica impermeable absorción de deformaciones entrecapas. Mesh Track

Mesh Track. Slurry seal Membrana elástica impermeable absorción de deformaciones entrecapas. Mesh Track Mesh Track SOLUCIÓN RÁPIDA, ECONÓMICA Y EFICIENTE PARA EL DISEÑO Y REPARACIÓN DE CARRETERAS Mesh Track es un sistema combinado, conformado por una malla de refuerzo de acero Bezinal - Malla metálica y

Más detalles

Descripción general. Especificaciones Generales. Ventajas del calentador solar IUSA. Ahorro. Tabla de especificaciones generales

Descripción general. Especificaciones Generales. Ventajas del calentador solar IUSA. Ahorro. Tabla de especificaciones generales Descripción general El calentador solar IUSA, es un sistema de calentamiento solar para agua a base de recirculación natural. Funciona como un calentador de agua alterno a su calentador de gas tradicional

Más detalles

Después de que un producto agrícola sale de la explotación agrícola, puede pasar a través de uno o incluso dos mercados mayoristas y una cadena de

Después de que un producto agrícola sale de la explotación agrícola, puede pasar a través de uno o incluso dos mercados mayoristas y una cadena de 1 Los precios son un importante factor económico en una economía de mercado. Desde el punto de vista del análisis económico los precios son el medio de agregación para proporcionar un panorama general

Más detalles

10 buenas razones para galvanizar en caliente

10 buenas razones para galvanizar en caliente 10 buenas razones para galvanizar en caliente 1. LARGA DURACIÓN Muchos años de experiencia en la utilización del acero galvanizado en caliente en todo el mundo, han permitido conocer con bastante exactitud

Más detalles