Recuperación paisajística y estudio de inundabilidad del sistema hídrico a su paso por Tena CÁLCULO ESTRUCTURAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Recuperación paisajística y estudio de inundabilidad del sistema hídrico a su paso por Tena CÁLCULO ESTRUCTURAL"

Transcripción

1 CÁLCULO ESTRUCTURAL ÍNDICE 1 OBJETIVO DEL ANEJO 1.1 Características de la estructura 1. Descripción de las cargas 1.3 Pre-Dimensionamiento de la plataforma de la estructura: 1.4 Cálculo de los pilares 1.5 Cálculo de erosión local en caso de inundación 1.6 Cálculo de la cimentación ELEMENTOS AUXILIARES.1 Cálculo de las escaleras. Elementos de apoyo entre la viga transversal y los pilares.3 Elementos de unión entre piezas de Tramex.4 Elementos de unión vigas transversales y vigas longitudinales 1 OBJETIVO DEL ANEJO El presente anejo se describe los cálculos estructurales realizados para la realización de todas las estructuras existentes en el Proyecto. 1.1 Características de la estructura La alternativa adoptada ha sido un conjunto de pasarelas elevadas, con el tablero formado por TRAMEX, que es una rejilla metálica prefabricada. El Tramex se coloca por piezas de unas dimensiones determinados y para construir la pasarela van unidas entre sí mediante elementos de conexión tipo tornillos. Dichos elementos se sitúan encima de unos perfiles tubulares dispuestos longitudinalmente, los cuales a su vez de apoyan en cada extremo en otros perfiles metálicos en forma de cajón colocados transversalmente a la pasarela y que son los elementos de conexión con los pilares. Según se ha consultado con algunos ingenieros de Tena, sería posible que los perfiles tubulares longitudinales fueran cedidos por parte de las refinerías del país ya que los tubos que se escogerán tendrán uno de los diámetros utilizados en los oleoductos. Para el cálculo de todos estos elementos se ha tenido en cuenta la Instrucción de puentes IAP para determinar las cargas, la RPM 95 para puentes y pasarelas metálicas, la NSCE normativa sismorresistente. Anejo 8: Cálculo Estructural 1

2 1. Descripción de las cargas Las cargas a tener en cuenta en este diseño son las siguientes: Peso propio: que será el peso de la estructura Carga muerta: formado por el peso de los elementos de las pasarelas sin función estructural como las barandillas u otros Sobrecarga de uso: de 4 N/m Viento: que se despreciará al ser una pasarela situada muy cerca del suelo (máximo a unos 3 metros) Seísmo: también despreciable esta carga al no tener casi masa la pasarela No se tendrá en cuenta en ningún caso el efecto de la nieve por ser una zona en la que no se producen nevadas como se puede deducir de la climatología mostrada en la memoria de este proyecto. 1.3 Pre-Dimensionamiento de la plataforma de la estructura: Para el tablero de la pasarela se ha escogido el tramex, que se subministra en piezas de diferentes tamaños y puede tener diferentes características en función de las cargas existentes. Se ha trabajado en base al catálogo de la marca RELESA, aunque se entiende que se podrá buscar cualquier otro proveedor que pueda ofrecer un producto similar. Estos elementos prefabricados que son de fácil y económica colocación, y se ensamblan entre ellos mediante tornillos o soldándolos a las vigas. El tramex es una rejilla prensada formada por pletinas portantes provistas de ranuras especiales donde se colocan perpendicularmente las transversales y aplicando una presión uniforme se fijan unas a otras obteniendo un enrejado con mallas exactas y uniformes. El portante es de mayo altura que la transversal, pudiendo ser de un mínimo de 0 mm de altura y mm de espesor. La transversal más común es de 10 mm de altura y mm de espesor. En principio, la luz de la rejilla mayor recomendable es de 100 x 100, y la menor de 0 x 0, aunque existe la posibilidad de producir también hasta 8 x 8 mm de abertura de malla. Las más habituales son de alrededor de los 30 x 30. Figura 1. Muestra de una pieza de Tramex de la marca RELESA Anejo 8: Cálculo Estructural

3 De entre las dimensiones posibles según el cuadro que acompaña la figura se han escogido las piezas mayores ya que su longitud de metros coincide con el ancho de la pasarela, facilitando así su colocación. Por lo tanto las piezas tienen unas dimensiones de m x 1m, con una abertura de malla de 34 x 38 mm, con un portante de 30 mm de altura y un espesor de mm, y la pletina separadora de 10 mm de altura por de espesor. Su peso es de 1,7 g/m (0,13 N/m ). 1. En primer lugar es necesario saber cuantos perfiles tubulares se deberán colocar longitudinalmente en función de las características del material empleado. Las cargas que se tienen en cuenta son: Cargas (N/m ) Peso propio 0.13 Cargas muertas 0.6 Sobrecarga de uso 4 Tabla 1. Cargas existentes Teniendo en cuenta que la apertura de malla es de 0,038m, entonces: Cargas (N/m) Peso propio Cargas muertas Sobrecarga de uso Tabla. Cargas existentes por metro lineal La primera hipótesis propuesta es poner tres vigas longitudinales, situadas dos en los extremos y una en el centro. Si con esto cumple, ya no será necesario poner más. Según el fabricante esta rejilla, si la luz es de un metro, aguanta un máximo de 1060 g/m, es decir, 10,4 N/m. Luego si la apertura de malla es de 38 mm, 0,4 N/m por lo tanto, a priori sí cumplirá. Figura. Sección transversal propuesta. Anejo 8: Cálculo Estructural 3

4 Con la sección transversal propuesta se hará la simplificación de tener una viga contínua de dos vanos. La hipótesis de carga realizada es la más desfavorable que seria la siguiente: Figura 3. Viga continua de vanos que simula los 3 apoyos que serán los perfiles tubulares. El resultado es el siguiente: Momento (Nm) en x (m) M máx M máx Cortante (N) en x (m) Q 0,1 1 Q min Tabla 3. Resultados obtenidos del cálculo de la viga contínua de vanos. Con las características de la rejilla, su inercia es la siguiente: b * h 3 I = 1 donde b es el espesor de la pletina portante h es su altura 3 0,00*0, I = = 4,5*10 m 1 Si el acero de las placas es un S35 JR, con un e =35MPa = N/m. M * y / 0.0 * = 66666,66N / m I 4.5*10 Q 0,1 = = 000N / m A 0.00*0.03 = = 9 τ = (se han escogido los valores más desfavorables para estar del lado de la seguridad, aunque el cortante máximo y el momento máximo no se producen en la misma sección). Aplicando Von Misses se tiene que: Anejo 8: Cálculo Estructural 4

5 co = + 3* τ co = 66756,6N / m Como se cumple que co < e, se acepta la hipótesis y por lo tanto se utilizaran tres perfiles tubulares situados equidistantes entre ellas de manera que la tercera esté justo en el centro, y tendrán una longitud igual a la distancia entre pilas.. A continuación se determinará la distancia entre pilas y también la sección tubular a utilizar. Se hará la hipótesis de utilizar un tubo de 6 pulgadas (15,4 cm) de diámetro con un espesor de 5 mm y se comprobará que cumpla las limitaciones de ELS y ELU. También se hará la hipótesis de que la distancia entre pilas es de 5 metros. Entonces se debe calcular la viga como una biapoyada ya que los perfiles van apoyados sobre los otros perfiles transversales en cajón y son independientes unos de otros. Figura 4. Viga longitudinal que simula la pasarela l ELS condición de flecha fadmisible = según la RMP Si l=500 cm, fadmisible= 0,4 cm. Como la viga es biapoyada se tiene que 4 5 p * l f = * 384 E * I donde p es la carga repartida tributaria correspondiente a la vigueta central, con un ancho efectivo de 0,75 m, y sin mayorar. CARGAS N/m Peso vigueta 0.5 Peso piso 0.1 cargas muertas 0.45 sobrecarga uso 3 p 3.91 Tabla 4. Cargas a aplicar en la viga longitudinal. Por lo tanto imponiendo una flecha máxima de 0,4 cm, encontramos que el perfil debe tener una inercia mínima de I=3607 cm 4. Por lo que se da por correcta la sección propuesta ya que tiene una inercia de I=59 cm 4. Luego su peso será de 0,1 N/m, al Anejo 8: Cálculo Estructural 5

6 que se añadirá otros 0,15 N/m para tener en cuenta el peso de las piezas que tendrán que unir la pasarela y el tubo, debido a su forma circular. ELU Condición de resistencia (acero de N/m de límite elástico) Al tener una viga biapoyada, el momento se calculará de la siguiente manera: p * l M = 8 donde p se ha mayorado con los coeficientes 1,6 para cargas permanentes y 1,8 para las no permanentes porque se considerará el nivel de control de ejecución reducido, de manera que: CARGAS N/m Peso vigueta 0.4 Peso piso 0.34 cargas muertas 0.7 sobrecarga uso 5.4 P 6.86 Tabla 5. Cargas mayoradas de la viga longitudinal Luego se impone la siguiente condición para hallar el módulo resistente necesario: M e = = 35000N / m Wx Por lo tanto sustituyendo se tiene que W x =91, cm 3. Por lo tanto el perfil tubular escogido cumple las dos condiciones porque tiene las siguientes características: I x =59 cm 4 W x =173,6 cm Finalmente se calculará la jácena de soporte de los tres perfiles que se situará en la zona de pilas y que irá apoyada en éstas. En este caso las cargas a tener en cuenta son las que le transmitirán, por lo tanto serán cargas puntuales: Figura 5. Viga que simula la viga transversal que soportará las viguetas longitudinales. donde P i son las reacciones encontradas en el apartado en el cálculo de la viga biapoyada. Anejo 8: Cálculo Estructural 6

7 Considerando que todas las viguetas se comportan como la viga calculada en el apartado, se tiene que: p * l 3,91* 5 P i = = = 9, 775N (reacción de una viga biapoyada) l ELS flecha máxima admisible = 100 Si l=m, fadmisible=0,167 cm 3 4 P * l 5* p * l f = + 48* E * I 348* E * I 3 4 9,775* 5* p * f = + 48* E * I 348* E * I f 1,7 0, cm E * I 167 = < I > 484,7 cm 4 ELU Condición de resistencia (acero de 3500 N/m de límite elástico): Se mayoran las cargas, teniendo en cuenta que aproximadamente el 5% de la P i son cargas permanentes y el otro 75% son variables, y se obtiene: P i = 9,775 * (0,5*1,6+0,75*1,8) = 17,1 N p = 0,*1,6 = 0,3 N/m El momento máximo se calcula de la siguiente manera: P * l p * l M = M 8, 7Nm = Imponiendo la condición de resistencia se tiene que M = W e = x 35000N / m W x 37,06cm 3 Dicha jácena deberá tener como mínimo las características halladas. En este caso se usará un perfil rectangular tubular de dimensiones 100 x 150 mm. Estas dimensiones se han escogido para que cumplieran las condiciones y también para que las viguetas de cinco metros puedan apoyar cómodamente. Anejo 8: Cálculo Estructural 7

8 Figura 6. Sección transversal de la viga de apoyo de los perfiles tubulares. Este perfil tiene las siguientes características: I = 617 cm 4 Wx = 83 cm 3 A= 19,36 cm 1.4 Cálculo de los pilares Los pilares que soportaran la estructura tendrán una altura variable en función de la cota del terreno en cada punto, aunque esta no variará más que dentro de un rango de entre 0,5 metros y 3,5 metros. Se considerará un pilar de hormigón armado HA-5/B/0/IIa (por estar expuesto a humedades muy elevadas debido a la alta lluviosidad de la zona). Será de sección circular con un diámetro de 30 cm, y el recubrimiento mínimo correspondiente es de 30 mm. Hay que tener en cuenta que el diámetro debe permitir apoyar dos vigas transversales. El acero de las armaduras será B-500-S. Cálculo de flexión compuesta esviada. El axil es la reacción de la viga biapoyada calculada en el apartado anterior. p * l 3 N = + P * * (se multiplica por dos porque habrá dos vigas transversales, una para soportar los tubos de un lado, y otro para las del otro). 0,3* 3 N = * + 17,1* * = 5N (ya mayorado) El momento mínimo que hay que tener en cuenta es el axil aplicado con una h excentricidad de emin = cm, cm. En este caso 0 Anejo 8: Cálculo Estructural 8

9 M = N * e min = 5 * 0,0m = 1, 1Nm Por otra parte debería tener en cuenta la norma sismorresistente para el cálculo de la acción correspondiente a sismo, pero hay que tener en cuenta que el puente es muy liviano y por lo tanto como la fuerza de sismo es proporcional a la masa que debe mover, en este caso este seria despreciable. Este cálculo se ha llevado a cabo con el programa Prontuario informático de la EHE. Los resultados obtenidos del armado del pilar se presentan a continuación: CÁLCULOS::::::::::::::::: Los cálculos presentados anteriormente muestran que la armadura necesaria para los pilares es la armadura mínima. Por eso se dispondrán 6 Φ1 por pilar. Además es necesario colocar cercos para sujetar la armadura comprimida, de forma que no pandee. Esta armadura debe cumplir lo siguiente: 1 φ * φ t por lo tanto se utilizará un diámetro de cerco Φ 8. 4 S t mínimo{ 15* φmin,300mm, b} Por lo que los cercos tienen que estar a una distancia máxima de 18 cm. Por lo tanto se dispondrán aproximadamente a una distancia de 15 cm. 1.5 Cálculo de erosión local en caso de inundación Para determinar la profundidad a la que se debe situar la cimentación, en este caso las zapatas que sostendrán las pilas de la pasarela, es necesario calcular previamente la erosión local que puede suceder cuando existan avenidas en el río Tena que inunden las márgenes donde se proyectará la pasarela. En esos casos el flujo del agua es posible que provoque una socavación el la zona de pilas que se tendrá en cuenta con el siguiente cálculo. En primer lugar se procederá a calcular la posible erosión según los datos sacados del estudio de inundabilidad y que ha proporcionado el programa HEC-Ras. Existen una gran cantidad de fórmulas y métodos para el cálculo de la erosión local, pero se utilizará el descrito por Richardson, por su sencillez y porque nos da un valor absoluto de erosión, no relativo como otros autores: e = * 1 * * B * y1 * Fr1 donde e es la erosión máxima (m) 1 es una constante que tiene en cuenta la forma de la pila (para pilas circulares es igual a 1) es una constante del ángulo de ataque B es el ancho de la pila Anejo 8: Cálculo Estructural 9

10 y 1 es el calado aguas arriba F r1 es el número de Froude aguas arriba Se utilizaran los valores máximos obtenidos para el HEC-Ras para estar siempre del lado de la seguridad e = *1*1*0,4 * e = 1,1 m 0.35 *0,55 Luego según recomendaciones realizadas por varios estudiosos en el tema (Melville), la zapata debería ir situada como mínimo,4*b respecto a la cota del terreno. Por lo tanto, la profundidad mínima será:,4* B =,4*0,4 = 0, 96m Por lo tanto como el cálculo de la erosión es mayor que este valor se colocará la zapata por debajo de 1,1 metro bajo el nivel actual del suelo. Para tener un margen, se situará a 1,5 metros de profundidad. Otras recomendaciones del mismo autor, Melville, es que la dimensión mínima de la zapata es la siguiente: 0.43 Figura 7. Mínimas magnitudes de la zapata Teniendo en cuenta que la construcción de este proyecto se va a llevar a cabo en Ecuador, donde en principio son más caros los materiales que la mano de obra, se construirá una zapata por cada pilar, ya que resulta más económico que construir una zapata corrida, que ahorraría trabajo pero aumentaría la cantidad de hormigón y hierro utilizado. 1.6 Cálculo de la cimentación La cimentación de las pilas de la pasarela será unas zapatas situadas a una profundidad tal que es la que determine el estudio de erosión local realizado en el anterior apartado. Anejo 8: Cálculo Estructural 10

11 Hay que tener en cuenta que la cimentación se sitúa en los márgenes del río, donde el terreno existente no es de muy buena calidad, por esta razón la tensión media admisible no será nunca superior a 150 Pa. PREDIMENSIONAMIENTO Determinación del ancho de la zapata Se imponen tres condiciones: 1. Que la tensión media admisible sea menor que la tensión admisible del suelo med adm. Que la tensión máxima sea inferior o igual a 1,3 por la tensión admisible: 1,3 * adm 3. I finalmente para asegurar que todo el ancho de la zapata se encuentre en contacto con el terreno: 0 min 1. med N = p + adm adm p B B N 3 I B. Si W = = entonces: y 6 N M 3 N 6 * M mas = p + + = 1,3 * adm B * B 0 B W 1,3* p 1,3* p N M 3 N 6 * M 3. min = p B + * B 0 B W 1,3* p 1,3* p adm 3 Si el suelo tiene una densidad de γ t = 15N / m y teniendo en cuenta que la zapata se colocará a una profundidad de unos de 1,5 metros, el peso p que tiene en cuenta el peso propio de la zapata y el peso de tierras por encima será aproximadamente de: p = altura zapata*5 + altura tierras*15 p = 0,5*5 + 1,5*15 = 35 N/m N = 30 + (1,5+3,5)*0,15 *π*5 =39 N Teniendo en cuenta que es necesario considerar una excentricidad mínima que h provocaría el momento y que es igual a: emin = cm, cm 0 M = N *e min = 39* 0,0 = 0,8 Nm (momento mínimo) 1. B 0, 71m. B 0, 5m 3. B 0, 6m adm adm adm Anejo 8: Cálculo Estructural 11

12 Por lo tanto se tomará B=1 m teniendo en cuenta el segundo criterio y la limitación que impuso el cálculo de la erosión local. Determinación del canto de la zapata El canto se halla condicionado por la necesaria resistencia a cortante de la zapata. Para proponer un canto a priori se sugiere seguir la siguiente fórmula estimativa: adm d * ν 00 + adm donde d es el canto útil en metros, v es el vuelo de la zapata (m) y la tensión admisible se encuentra en Pa. En este caso d 0, 15m Esta primera aproximación da un canto demasiado pequeño, ya que la Instrucción limita el canto a un mínimo de 35 cm, al que hay que sumarle los recubrimientos mecánicos y un poco más. Por lo tanto se tomará de momento h=0,5 m. COMPROVACIÓN DE LAS TENSIONES ADMISIBLES Como se ha determinado que h= 0,5, p no cambia y por lo tanto las tensiones el terreno resiste la tensión admisible ya que el ancho de la zapata calculado así lo asegura DIMENSIONAMIENTO DE LA ARMADURA NECESARIA Y COMPROVACIÓN A CORTANTE Según la instrucción EHE, la zapata será de tipo flexible si el vuelo es mayor que dos veces el canto, y será rígida en caso contrario. En este caso la zapata será rígida. Las acciones de cálculo, teniendo en cuenta que el 30% de los esfuerzos producidos sobre el pilar son causados por cargas permanentes y el 70% por variables y teniendo en cuenta que el nivel de control es reducido y entonces los coeficientes de seguridad serán γ s1 = 1,6 y γ s = 1, 8 y por lo tanto las acciones son: N = γ + *0,7 * N dtotal N dtotal = 88N d s1 *( h * B * γ c + 0,3* N ) γ s M = γ + *0,7 * M M d = 1, 5Nm s1 * 0,3* M γ s El cálculo de zapata rígida se realiza a partir del modelo de bielas y tirantes indicado en la figura. Las fórmulas de cálculo resultan simplemente de imponer la condición de equilibrio entre las fuerzas aplicadas (acciones y reacción del terreno) y entre los elementos de la celosía. Anejo 8: Cálculo Estructural 1

13 N d med = = N / = 88 m B M d = 9N / m W = + 97N m med = / = med = N / 79 m bielas tirantes R1d med Rd min Figura 8. Esquema para el cálculo de una zapata rígida med + x = * B = 0,5 m med + 1 R1 d = *( + med ) * B = 46,5 N 4 R1 d 46,5 Td = *( x1 0,5* a) = *(0,5 0,5*0,3) = 1, N 0,85* d 0,85*0,45 Cuando se utiliza el método de bielas y tirantes hay que tomar f yd no superior a 400MPa independientemente del límite elástico real del acero. La armadura necesaria es por lo tanto: 0,01 A s = = 0,000053m / m = 53mm / m 400 Como la cuantía de acero es tan pequeña se procederá a disponer la cuantía mínima, teniendo en cuenta que el diámetro mínimo son φ = 1mm y no distaran más de 30 cm entre ellas. La cuantía geométrica mínima es del por 1000: A s *1000*500 = 1000mm 1000 Anejo 8: Cálculo Estructural 13

14 Esto significa 9 φ = 1 cada metro o aproximadamente un φ = 1 cada 11 cm. Esta armadura se dispondrá en las dos direcciones de la zapata. Para atarla se pondrán cercos que estarán a una distancia máxima de 0,75*d que en este caso son 33 cm. Por lo tanto se dispondrán cada 30 cm y serán φ = 1 ya que es el diámetro mínimo permitido para elementos en contacto con el terreno. Finalmente se calculará la longitud de solapo, que es la longitud que se deben solapar las barras de acero pasivas en caso de empalme mecánico: l b = m * φ = 15*1, = 1, 6cm l A = lb * β * A s b, neta = 1,6 *1*1 = 1, 6 sreal cm φ 1 / 10 φ 1 / cm hormigón limpieza Figura 9. Armado de la zapata A pesar del cálculo realizado, por razones constructivas, en vez de colocar dos zapatas que estarían situadas muy juntas, se construirá una zapata corrida con las dimensiones aquí calculadas. Esto permitirá un ahorro de trabajo y por lo tanto de tiempo. ELEMENTOS AUXILIARES Para el correcto funcionamiento de toda la estructura en general será necesario el uso de algunos elementos auxiliares..1 Cálculo de las escaleras A pesar de tener medidas diferentes algunas de las escaleras, se calculará la más desfavorable, que sería la siguiente, con un ancho de escalera de metros. Anejo 8: Cálculo Estructural 14

15 Figura 10. Vista lateral de la escalera del acceso 3. Esta escalera irá apoyada sobre dos UPN en sentido longitudinal y para que los escalones se apoyen correctamente y sean horizontales se colocarán unas eles metálicas. Por lo tanto es necesario calcular el perfil UPN a colocar. Se supondrá que se coloca dos UPN 10 y se verifica. Las cargas por metro lineal que carga cada UPN son las siguientes: Cargas N/m Peso UPN 0.13 Peso tramex 0.8 cargas muertas 0.6 sobrecarga uso 4 p 5.01 Tabla 6. Cargas que aguanta cada vigueta de las escaleras. ELS: Si la máxima flecha admisible es 1/1000 y la longitud máxima de escaleras es de 4,5 metros, f _ admisible < 4, 5cm. Si es una viga biapoyada: 5 f = 384 * 4 p * l E * I I>83 cm 4 Por lo tanto el perfil escogido es correcto ya que su inercia es igual a I>364 cm 4. ELU: Por otra parte se calcula teniendo en cuenta que el acero es de N/m de límite elástico. Las cargas en este caso son: CARGAS N/m Peso vigueta 0.1 Peso piso 0.45 cargas muertas 0.96 sobrecarga uso 7. p 8.84 Tabla 8. Cargas mayoradas que aguantan cada una de las vigueta de las escaleras. Anejo 8: Cálculo Estructural 15

16 El momento es: p * l M = 8 M Se impone la condición e = = 75000N / m y entonces Wx W>81 cm 3 Condición que también cumple el perfil ya que tiene W=8 cm 3. Aunque se pueda pensar que es demasiado justo hay que tener en cuenta que se han calculado para las dimensiones más desfavorables.. Elementos de apoyo entre la viga transversal y los pilares Para que las vigas transversales en forma de cajón se apoyen correctamente a las pilas de hormigón y puedan así transmitirles los esfuerzos de las cargas de la pasarela, es necesario colocar unos elementos de neopreno. Estos aparatos de apoyo, como ya se ha visto, no tienen que soportar grandes cargas, con lo que se colocará sobre cada pila un neopreno embutido de 100*70 mm de base con un espesor de 0 mm. Este neopreno se coloca entre unas cuñas de nivelación o de soporte de tamaño 150*85 mm..3 Elementos de unión entre piezas de Tramex Las piezas usadas para la pasarela son piezas prefabricadas metálicas que pueden ir unidas entre ellas mediante soldadura o mediante tornillos. En este caso se ha pensado en la unión por medio de tornillos entre las piezas ya que así no se va a requerir personal cualificado especialmente para soldaduras. Existen diferentes tipos de tornillos para esto como se muestra a continuación: Figura 11. Elementos de unión. Anejo 8: Cálculo Estructural 16

17 Figura 1. Tornillo de unión entre piezas de tramex. Estos tornillos son los que se usan también para la unión de las vigas tubulares longitudinales con la pasarela..4 Elementos de unión vigas transversales y vigas longitudinales El apoyo entre las vigas transversales y los tubulares longitudinales requiere una atención especial debido a la geometría del problema. Para ello se han diseñado unas piezas especiales que permitirán el apoyo cómodo de las secciones tubulares en las vigas transversales. Se dispondrá una cuña soldada sobre las vigas transversales justo debajo de donde se sitúen los perfiles longitudinales, de manera que estos se apoyen encima de la cuña y no se puedan desplazar. Esta cuña sí permitirá los desplazamientos de dilatación y contracción por temperatura. 3 ELEMENTOS AUXILIARES A continuación se presenta un listado de los resultados obtenidos en el cálculo del armado de los pilares realizados con el programa Prontuario Informático del Hormigón EHE. Anejo 8: Cálculo Estructural 17

Comprobación de una viga biapoyada de hormigón armado con sección rectangular

Comprobación de una viga biapoyada de hormigón armado con sección rectangular Comprobación de una viga biapoyada de hormigón armado con sección rectangular J. Alcalá * V. Yepes Enero 2014 Índice 1. Introducción 2 2. Descripción del problema 2 2.1. Definición geométrica........................

Más detalles

1.2.4. ANEJO Nº 4 PASARELA DE MADERA ÍNDICE 1. PREDIMENSIONAMIENTO DE LA ESTRUCTURA DE MADERA

1.2.4. ANEJO Nº 4 PASARELA DE MADERA ÍNDICE 1. PREDIMENSIONAMIENTO DE LA ESTRUCTURA DE MADERA 1.2.4. ANEJO Nº 4 PASARELA DE MADERA ÍNDICE 1. PREDIMENSIONAMIENTO DE LA ESTRUCTURA DE MADERA 1.1. MEMORIA 1.1.1. Consideraciones previas, objeto y alcance. 1.1.2. Descripción de las estructuras propuestas.

Más detalles

Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Supongamos que se tiene que montar un pilar de referenciaa localizado en un plano de replanteo. EJEMPLOS DE SELECCIÓN DE GRÚAS TELESCÓPICAS Ejemplo 1: selección de la grúa para el montaje de pilares. Supongamos que se tiene que montar un pilar de referencia"a" localizado en un plano de replanteo.

Más detalles

Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada

Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada Diseño y cálculo de bases de soporte solicitadas a flexocompresión, compresión o tracción según la combinación considerada Apellidos, nombre Departamento Centro Arianna Guardiola Víllora (aguardio@mes.upv.es)

Más detalles

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO

CONFERENCIA CIMENTACIONES EN ANTONIO BLANCO BLASCO CONFERENCIA CIMENTACIONES EN EDIFICACIONES ANTONIO BLANCO BLASCO LAS CIMENTACIONES SON ELEMENTOS ESTRUCTURALES QUE TIENEN COMO FUNCIÓN TRANSMITIR LAS CARGAS Y MOMENTOS DE UNA EDIFICACIÓN HACIA EL SUELO,

Más detalles

obprbiqlp=`lk=bi=`qb=

obprbiqlp=`lk=bi=`qb= bpqor`qro^p=jbqžif`^p= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk=s= obprbiqlp=`lk=bi=`qb= = `ìêëç=ommvlnm= = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw= = iìáë=_~ μå=_ä

Más detalles

bibjbkqlp=ab=`fjbkq^`fþk

bibjbkqlp=ab=`fjbkq^`fþk OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos bibjbkqlp=ab=`fjbkq^`fþk iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

Predimensionado de vigas. Prof. Argimiro Castillo Gandica

Predimensionado de vigas. Prof. Argimiro Castillo Gandica Predimensionado de vigas Prof. Argimiro Castillo Gandica Teoría Fundamental Los principios fundamentales del predimensionado de vigas lo comprende: Teoría de la flexión: explica las relaciones entre las

Más detalles

ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS

ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS. 1. Consideraciones previas.. Cálculo de las correas. 3. Cálculo de la cercha. Cálculo del

Más detalles

Cálculo y elección óptima de un depósito de agua 199

Cálculo y elección óptima de un depósito de agua 199 Cálculo y elección óptima de un depósito de agua 199 CAPÍTULO 6 CONCLUSIONES 6.1.- INTRODUCCIÓN En este capítulo se exponen las conclusiones que se derivan de los distintos estudios desarrollados a lo

Más detalles

LOSA DE HORMIGON ARMADO

LOSA DE HORMIGON ARMADO MINISTERIO DE VIVIENDA, ORDENAMIENTO TERRITORIAL Y MEDIO AMBIENTE LOSA DE HORMIGON ARMADO Veamos un ejemplo de una losa horizontal simple J.G.BARCALA DETERMINACION DE ALTURA DE ENCOFRADO Para armar el

Más detalles

ARRIOSTRAMIENTOS - 1 -

ARRIOSTRAMIENTOS - 1 - 1. DE EDIFICIOS INDUSTRIALES Los arriostramientos se consideran habitualmente elementos secundarios en las estructuras, sin embargo conviene no prescindir de ellos para que el comportamiento del conjunto

Más detalles

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO LOS MUROS DE CONTENCIÓN SON ELEMENTOS QUE SE USAN PARA CONTENER TIERRA, AGUA, GRANOS Y DIFERENTES MINERALES, CUANDO HAY DESNIVELES QUE CUBRIR.

Más detalles

elojfdþk=^oj^al=v=mobqbkp^al= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= = = = mol_ibj^p= ab=bu^jbk= = = `ìêëç=ommtlmu= = = = = = = = = mêçñk=iìáë=_~

elojfdþk=^oj^al=v=mobqbkp^al= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= = = = mol_ibj^p= ab=bu^jbk= = = `ìêëç=ommtlmu= = = = = = = = = mêçñk=iìáë=_~ elojfdþk=^oj^al=v=mobqbkp^al= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= = = = mol_ibj^p= ab=bu^jbk= = = `ìêëç=ommtlmu= = = = = = = = = mêçñk=iìáë=_~ μå=_ä òèìéò= oéëéçåë~ääé=çé=ä~=~ëáöå~íìê~= = mêçñk=p~äî~ççê=bëíéîé=séêç

Más detalles

DISEÑADOR DE ESCALERAS

DISEÑADOR DE ESCALERAS DISEÑADOR DE ESCALERAS Guia del usuario DesignSoft 1 2 DISEÑADOR DE ESCALERAS El Diseñador de Escaleras le hace más fácil definir y colocar escaleras personalizadas en su proyecto. Puede empezar el diseñador

Más detalles

obprbiqlp=`lk=bi=`qb=

obprbiqlp=`lk=bi=`qb= bpqor`qro^p=jbqžif`^p= fåöéåáéê ~=q ÅåáÅ~=ÇÉ=lÄê~ë=m ÄäáÅ~ë= fåöéåáéê ~=déçäμöáå~= = mol_ibj^p= ab=bu^jbk=fs= obprbiqlp=`lk=bi=`qb= = `ìêëçë=ommtlmu=ó=ommulmv= = = = = = bä~äçê~ççë=éçê=äçë=éêçñéëçêéëw=

Más detalles

ÍNDICE 1.- NORMA Y MATERIALES 2.- ACCIONES 3.- DATOS GENERALES 4.- DESCRIPCIÓN DEL TERRENO 5.- GEOMETRÍA 6.- ESQUEMA DE LAS FASES

ÍNDICE 1.- NORMA Y MATERIALES 2.- ACCIONES 3.- DATOS GENERALES 4.- DESCRIPCIÓN DEL TERRENO 5.- GEOMETRÍA 6.- ESQUEMA DE LAS FASES ÍNDICE 1.- NORMA Y MATERIALES 2.- ACCIONES 3.- DATOS GENERALES 4.- DESCRIPCIÓN DEL TERRENO 5.- GEOMETRÍA 6.- ESQUEMA DE LAS FASES 7.- RESULTADOS DE LAS FASES 8.- COMBINACIONES 9.- DESCRIPCIÓN DEL ARMADO

Más detalles

1.1. Sección del núcleo

1.1. Sección del núcleo 1. CALCULO ANALÍTICO DE TRANSFORMADORES DE PEQUEÑA POTENCIA Los transformadores tienen rendimiento muy alto; aunque éste no lo sea tanto en la pequeña potencia, podemos considerar que la potencia del primario

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Febrero 96 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Febrero 96 Nombre... Examen de TECNOLOGIA DE MAQUINAS Febrero 96 Nombre... Xerardiño es un niño de cuatro años que vive con sus padres en una casa con jardín. Aunque ya ha empezado a ir al colegio, se aburre mucho cuando está

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de

CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de CAPÍTULO VI PREPARACIÓN DEL MODELO EN ALGOR. En este capítulo, se hablará acerca de los pasos a seguir para poder realizar el análisis de cualquier modelo en el software Algor. La preparación de un modelo,

Más detalles

Tema 12: El contacto con el terreno.

Tema 12: El contacto con el terreno. Tema 12: El contacto con el terreno. Parte I: Cimentación:Transferencia de cargas de la estructura al terreno Parte II: Contención de tierras y mejora de suelos: Cerramientos en contacto con el terreno,

Más detalles

Tema 11:Vigas, pilares y pórticos

Tema 11:Vigas, pilares y pórticos Tema 11:Vigas, pilares y pórticos 1. Vigas. El trabajo a flexión: canto y rigidez. 2. Pilares. El trabajo a compresión y el Pandeo. 3. Uniones de elementos estructurales lineales: nudos. 4. El pórtico

Más detalles

Curso Diseño en Hormigón Armado según ACI 318-14

Curso Diseño en Hormigón Armado según ACI 318-14 SANTIAGO 27 y 29 Octubre 2015 Curso Diseño en Hormigón Armado según ACI 318-14 Clase: Diseño de Diafragmas y Losas Relator: Matías Hube G. Diseño de Diafragmas y Losas Losas en una dirección (Cáp. 7) Losas

Más detalles

ANEXO 2: MURO DE DELIMITACIÓN DE LA CALLE B TOMO II.- PROYECTO DE MOVIMIENTO DE TIERRAS, PAVIMENTACION Y SEÑALIZACION

ANEXO 2: MURO DE DELIMITACIÓN DE LA CALLE B TOMO II.- PROYECTO DE MOVIMIENTO DE TIERRAS, PAVIMENTACION Y SEÑALIZACION PROYECTO DE URBANIZACIÓN SOLICRUP, SUBSECTOR 2 - SECTOR 3.5-VILANOVA I LA GELTRÚ (BARCELONA) ANEXO 2: MURO DE DELIMITACIÓN DE LA CALLE B TOMO II.- PROYECTO DE MOVIMIENTO DE TIERRAS, PAVIMENTACION Y SEÑALIZACION

Más detalles

TEMA VI: Cálculo de recipientes de pared delgada

TEMA VI: Cálculo de recipientes de pared delgada TEMA VI: Cálculo de recipientes de pared delgada 1. Introducción. Envolventes de pequeño espesor Podemos definir una envolvente como aquel sólido elástico en el que una de sus dimensiones es mucha menor

Más detalles

Construcción de Techos Sistema Vigueta y Bovedilla. Autoconstrucción. Nuevas Tecnologías en Acero de Refuerzo

Construcción de Techos Sistema Vigueta y Bovedilla. Autoconstrucción. Nuevas Tecnologías en Acero de Refuerzo Construcción de Techos Sistema Vigueta y Bovedilla Autoconstrucción Nuevas Tecnologías en Acero de Refuerzo MATERIAL DESARROLLADO POR: ASOCIACIÓN NACIONAL DE TRANSFORMADORES DE ACERO A.C. COMISIÓN NACIONAL

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

LOSAS CONSTRUIDAS CON VIGUETAS PRETENSADAS Y BLOQUES

LOSAS CONSTRUIDAS CON VIGUETAS PRETENSADAS Y BLOQUES LOSAS CONSTRUIDAS CON VIGUETAS PRETENSADAS Y BLOQUES Este tipo de losas, es muy común en la construcción actual de viviendas unifamiliares (realización de viviendas en Country, Duplex, etc.). Las principales

Más detalles

Estructuras Metálicas

Estructuras Metálicas Estructuras Metálicas I. Medios de unión II. Elementos compuestos III. Ejecución de nudos y apoyos IV. Estructuras reticulares (armaduras) V. Naves industriales Estructuras Metálicas I. Medios de unión

Más detalles

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL

I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.- ELEMENTOS EN UNA ESTRUCTURA METÁLICA DE TIPO INDUSTRIAL I.1.- Elementos que componen una estructura metálica de tipo industrial. Una estructura de tipo industrial está compuesta (Fig. I.1) por marcos

Más detalles

Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes

Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes Pequeñas charlas para montaje industrial Fernando Espinosa Fuentes Aunque se tenga un valor nominal determinado, nunca se podrá definir el valor real del mismo, pues nunca se podría asegurar que el sistema

Más detalles

DISEÑO DE CIMENTACIONES DE HORMIGON ARMADO

DISEÑO DE CIMENTACIONES DE HORMIGON ARMADO Página 1 de 7 DISEÑO DE CIMENTACIONES DE HORMIGON ARMADO 8.1 INTRODUCCION La cimentación es la parte de la estructura que permite la transmisión de las cargas que actúan, hacia el suelo o hacia la roca

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

6. RECOMENDACIONES PARA PROYECTO

6. RECOMENDACIONES PARA PROYECTO 6. RECOMENDACIONES PARA PROYECTO En principio, por motivos de confort y mantenimiento de la vía, deben disponerse el mínimo número de aparatos de dilatación de vía. Con esta premisa se ha realizado, en

Más detalles

**********************************************************************

********************************************************************** 1..- a) Dimensionar la sección de la viga sabiendo que está compuesta por dos tablones dispuestos como se indica en la figura (se trata de hallar a). Tensión admisible de la madera: σ adm, tracción = 50

Más detalles

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal. ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio

Más detalles

1.2.7. CALCULO DE MUROS

1.2.7. CALCULO DE MUROS 1.2.7. CALCULO DE MUROS MEMORIA DE CÁLCULO MUROS CONTENCIÓN RAMPA DE ACCESO A LA PLATAFORMA ARGAL Memoria de Obra Índice ÍNDICE MEMORIA DE CÁLCULO... 1 1. Objeto del proyecto y datos generales... 1 1.1.

Más detalles

plettac Andamio modular

plettac Andamio modular Página 1 plettac Andamio modular Assco perfect Futuro contur Instrucciones de de montaje montaje seguro y de y aplicación Edición Enero 2006 Edición Diciembre 2004 Página 2 Andamio modular ASSCO FUTURO

Más detalles

Capítulo V. Análisis de costos de las cúpulas monocapa en comparación con las estructuras tradicionales

Capítulo V. Análisis de costos de las cúpulas monocapa en comparación con las estructuras tradicionales Capítulo V Análisis de costos de las cúpulas monocapa en comparación con las estructuras tradicionales En este capítulo se comparará los costos generados al fabricar y realizar el montaje de la cúpula

Más detalles

4- CUANTIFICACIÓN DE LAS ACCIONES TRANSMITIDAS POR LA CIMENTACIÓN AL TERRENO 5- ESTADO DE TENSIONES SOBRE EL CIMIENTO DIMENSIONADO

4- CUANTIFICACIÓN DE LAS ACCIONES TRANSMITIDAS POR LA CIMENTACIÓN AL TERRENO 5- ESTADO DE TENSIONES SOBRE EL CIMIENTO DIMENSIONADO INDICE DE MEMORIA DE CIMENTACION 1- ANTECEDENTES 2- DESCRIPCIÓN DE LA CIMENTACIÓN 3- NORMATIVA UTILIZADA 4- CUANTIFICACIÓN DE LAS ACCIONES TRANSMITIDAS POR LA CIMENTACIÓN AL TERRENO 5- ESTADO DE TENSIONES

Más detalles

PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS

PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS Ing. Eduardo Pedoja Profesor de Hormigón Armado y Proyecto Facultad de Ingeniería, Universidad de Montevideo Una de las causas más frecuentes de la aparición

Más detalles

PUBLICACIONES GRATUITAS PARA EL CÁLCULO DE MUROS DE CARGA DE LADRILLO O TERMOARCILLA

PUBLICACIONES GRATUITAS PARA EL CÁLCULO DE MUROS DE CARGA DE LADRILLO O TERMOARCILLA PUBLICACIONES GRATUITAS PARA EL CÁLCULO DE MUROS DE CARGA DE LADRILLO O TERMOARCILLA Para facilitar al prescriptor el cálculo de estructuras con muros de carga de ladrillo o bloque cerámico, Hispalyt y

Más detalles

CÁLCULO Y DISEÑO DE LA MARQUESINA DE UNA ESTACIÓN DE SERVICIO

CÁLCULO Y DISEÑO DE LA MARQUESINA DE UNA ESTACIÓN DE SERVICIO PROYECTO FIN DE CARRERA DE INGENIERIA INDUSTRIAL CÁLCULO Y DISEÑO DE LA MARQUESINA DE UNA ESTACIÓN DE SERVICIO ESCUELA POLITÉCNICA SUPERIOR DEPARTAMENTO DE MECÁNICA DE MEDIOS CONTINUOS Y TEORÍA Autor:

Más detalles

TEMA 1: DISEÑO Y DIBUJO DE OBJETOS.

TEMA 1: DISEÑO Y DIBUJO DE OBJETOS. TEMA 1: DISEÑO Y DIBUJO DE OBJETOS. Francisco Raposo Tecnología 3ºESO 1. LA REPRESENTACIÓN DE OBJETOS 1.1.EL DIBUJO TÉCNICO Es una de las técnicas que se utilizan para describir un objeto, con la intención

Más detalles

PUENTE SAN SEBASTIAN

PUENTE SAN SEBASTIAN PUENTE SAN SEBASTIAN Leonardo FERNÁNDEZ TROYANO Dr. Ingeniero de Caminos Carlos Fernández Casado, S.L cfcsl@cfcsl.com Lucía FERNÁNDEZ MUÑOZ Ingeniero de Caminos Carlos Fernández Casado, S.L. luciafm@cfcsl.com

Más detalles

11 knúmero de publicación: 2 150 799. 51 kint. Cl. 7 : B65G 1/02

11 knúmero de publicación: 2 150 799. 51 kint. Cl. 7 : B65G 1/02 k 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 knúmero de publicación: 2 799 1 kint. Cl. 7 : B6G 1/02 A47B 47/02 12 k TRADUCCION DE PATENTE EUROPEA T3 86 knúmero de solicitud europea: 98221.0 86

Más detalles

7. Estudio del ciclo de vida para distintas soluciones constructivas del sistema estructural de un edificio industrial.

7. Estudio del ciclo de vida para distintas soluciones constructivas del sistema estructural de un edificio industrial. Capítulo 7. Estudio del ciclo de vida para distintas soluciones constructivas del sistema estructural de un edificio industrial 147 7. Estudio del ciclo de vida para distintas soluciones constructivas

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

ESCALERAS DE HORMIGÓN ARMADO

ESCALERAS DE HORMIGÓN ARMADO ESCALERAS DE HORMIGÓN ARMADO Fuente: www.vitadelia.com Una escalera es uno de los recursos arquitectónicos que, con más frecuencia, se utiliza para comunicar espacios situados en diferentes planos. Breve

Más detalles

Tensión admisible del terreno y asientos admisibles. Los valores más usualmente manejados oscilan entre 1 y 2 kp/cm 2.

Tensión admisible del terreno y asientos admisibles. Los valores más usualmente manejados oscilan entre 1 y 2 kp/cm 2. ZAPATAS Las zapatas son cimentaciones superficiales o directas, como toda cimentación ha de garantizar, de forma permanente, la estabilidad de la obra que soporta. Los tipos de zapatas pueden ser: Por

Más detalles

VIGAS DE ALMA ALIGERADA

VIGAS DE ALMA ALIGERADA 1.TIPOS: VIGAS DE ALMA ALIGERADA -Aberturas eagonales u octogonales (Castellated beams) -Aberturas circulares en el alma (Cellular beams) - 1 - - 2 - VIGAS DE ALMA ALIGERADA 2 PROCESO DE FABRICACIÓN Viga

Más detalles

Otros ejemplos de estructuras son: coches, mesas, bolígrafos, pizarra, lámparas, relojes,

Otros ejemplos de estructuras son: coches, mesas, bolígrafos, pizarra, lámparas, relojes, Tema 2. ESTRUCTURAS En la naturaleza podemos encontrar estructuras como los esqueletos, el caparazón de una tortuga o la concha de una ostra, pero el ser humano ha sabido construir las propias para resolver

Más detalles

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno.

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno. MECANISMOS En tecnología, cuando se diseña una máquina, lo más normal es que esté movida por un motor, que tiene un movimiento circular, pero a veces no es ese el tipo de movimiento que necesitamos. En

Más detalles

Programa: Ventanilla Única de radicación de emprendimientos económicos

Programa: Ventanilla Única de radicación de emprendimientos económicos Programa: Ventanilla Única de radicación de emprendimientos económicos INSTRUCTIVO: Acceso y circulación para personas con movilidad reducida Decreto Reglamentario 914/97. Anexo I, Artículo 20 y 21º, Elementos

Más detalles

RESISTENCIA A LA FLEXIÓN DEL CONCRETO MÉTODO DE LA VIGA SIMPLE CARGADA EN LOS TERCIOS DE LA LUZ I.N.V. E 414 07

RESISTENCIA A LA FLEXIÓN DEL CONCRETO MÉTODO DE LA VIGA SIMPLE CARGADA EN LOS TERCIOS DE LA LUZ I.N.V. E 414 07 RESISTENCIA A LA FLEXIÓN DEL CONCRETO MÉTODO DE LA VIGA SIMPLE CARGADA EN LOS TERCIOS DE LA LUZ I.N.V. E 414 07 1. OBJETO 1.1 Esta norma tiene por objeto establecer el procedimiento que se debe seguir

Más detalles

SISTEMAS MECÁNICOS Septiembre 2001

SISTEMAS MECÁNICOS Septiembre 2001 SISTEMAS MECÁNICOS Septiembre 2001 Dos resortes helicoidales de compresión, ambos de hilo del mismo acero y diámetro del alambre d=1,5 cm y 7 espiras cada uno, escuadradas y rectificadas, tiene la misma

Más detalles

ANCLAJES Y EMPALMES POR ADHERENCIA

ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.- ANCLAJES ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.1.- Anclaje de barras y alambres rectos traccionados 9.A.1.1.- Expresión general El CIRSOC 201-2005, artículo 12.2.3, indica la siguiente expresión

Más detalles

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 1 097 480 Número de solicitud: 1331388 1 Int. CI.: A47G 29/00 (06.01) 12 SOLICITUD DE MODELO DE UTILIDAD U 22 Fecha de presentación:

Más detalles

PvMax3 - manual de montaje

PvMax3 - manual de montaje PvMax3 Manual de montaje CONTENIDO PÁGINA 1 Información general 1 2 Cimentación 2 3 Montaje de soportes 3 4 Montaje de perfiles portantes de módulos 5 5 Montaje de módulos 5 6 Montaje de cables 6 7 Tolerancias

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

II.7. Estructuras de soporte

II.7. Estructuras de soporte II.7. Estructuras de soporte Capítulo ll. Señalamiento vertical / Estructuras de soporte / Versión 1 Capítulo ll. Señalamiento vertical / Estructuras de soporte / Versión 1 II.7. Estructuras de soporte

Más detalles

(REDACCION DADA EN LA ORDEN FOM/1382/02, incluye CORRECCION DE ERRATAS) 400 CUNETAS DE HORMIGON EJECUTADAS EN OBRA

(REDACCION DADA EN LA ORDEN FOM/1382/02, incluye CORRECCION DE ERRATAS) 400 CUNETAS DE HORMIGON EJECUTADAS EN OBRA (REDACCION DADA EN LA ORDEN FOM/1382/02, incluye CORRECCION DE ERRATAS) 400 CUNETAS DE HORMIGON EJECUTADAS EN OBRA 400.1 DEFINICION Cuneta de hormigón ejecutada en obra es una zanja longitudinal abierta

Más detalles

4 CIMENTACIONES 4.1 RESEÑA TEORICA

4 CIMENTACIONES 4.1 RESEÑA TEORICA 4 CIMENTACIONES En este apartado se da cuenta de las cimentaciones de las pilas del puente y de los estribos en caso de ser necesarios, se permite escoger entre diversas tipologías de cimentación y mediante

Más detalles

APUNTES CURSO DE APEOS II

APUNTES CURSO DE APEOS II APUNTES CURSO DE APEOS II FORMADOR CÉSAR CANO ALMON Ingeniero de Edificación Barcelona, 15 de marzo de 2013 ÍNDICE CONTENIDO DEL CURSO 1. INTRODUCCIÓN 2. ANÁLISIS DEL MODELO DE CÁLCULO ESTRUCTURAL 3. COMPROBACIONES

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

ESPECIFICACIONES TECNICAS PARA GRADERIAS DE ASENTAMIENTO EVENTUAL

ESPECIFICACIONES TECNICAS PARA GRADERIAS DE ASENTAMIENTO EVENTUAL ESPECIFICACIONES TECNICAS PARA GRADERIAS DE ASENTAMIENTO EVENTUAL Ítem: ESTRUCTURA METALICA Unidad: M2. El ítem de instalación de graderías, comprende los trabajos que significan la total instalación de

Más detalles

PROCEDIMIENTOS DE ENTREGA

PROCEDIMIENTOS DE ENTREGA PROCEDIMIENTOS DE ENTREGA Prefabricados OJEFER dispone de tres modalidades o procedimientos de entrega: 1. Recogida directa por parte de cliente en las instalaciones de Prefabricados OJEFER S.L. En esta

Más detalles

MEMORIA DE CÁLCULO DE ESTRUCTURA Y CIMENTACIÓN NAVE

MEMORIA DE CÁLCULO DE ESTRUCTURA Y CIMENTACIÓN NAVE MEMORIA DE CÁLCULO DE ESTRUCTURA Y CIMENTACIÓN NAVE ÍNDICE 1. DESCRIPCIÓN DE LA ESTRUCTURA 2. ACCIONES ESTRUCTURA. VALOR CARACTERÍSTICO. 1. ACCIÓNES DE VIENTO EDIFICIO Y SOLICITACIONES EN VIGAS CONTRAVIENTO.

Más detalles

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE 2.1 Comportamiento, modos de falla y resistencia de elementos sujetos a compresión axial En este capítulo se presentan los procedimientos necesarios para

Más detalles

1 CONDUCCIÓN DE EVACUACIÓN DE ESCORRENTÍAS... 1

1 CONDUCCIÓN DE EVACUACIÓN DE ESCORRENTÍAS... 1 1 CONDUCCIÓN DE EVACUACIÓN DE ESCORRENTÍAS... 1 1 CONDUCCIÓN DE EVACUACIÓN DE ESCORRENTÍAS Las estructuras flexibles enterradas forman una unidad conjunta sueloacero que deben de considerarse para la capacidad

Más detalles

REPRESENTACIÓN GRÁFICA. La representación gráfica que realizamos de nuestros proyectos están sujetas a las normas UNE, siguientes:

REPRESENTACIÓN GRÁFICA. La representación gráfica que realizamos de nuestros proyectos están sujetas a las normas UNE, siguientes: REPRESENTACIÓN GRÁFICA La representación gráfica que realizamos de nuestros proyectos están sujetas a las normas UNE, siguientes: NORMA UNE 1032 NORMA UNE 1026 NORMA UNE 1011 NORMA UNE 1041 NORMA UNE 1036

Más detalles

Cimentación. Zapata, Cimientos Corridos y Pilotes

Cimentación. Zapata, Cimientos Corridos y Pilotes Cimentación Zapata, Cimientos Corridos y Pilotes Que es..? Cimentación Las cimentaciones o también llamadas fundaciones, es la parte de la construcción que se apoya sobre el terreno, se constituye así

Más detalles

DESCRIPCION DEL PRODUCTO

DESCRIPCION DEL PRODUCTO DESCRIPCION DEL PRODUCTO El Panel SIP, ( Abreviatura por la sigla en Inglés, Structural Insulated Panel), se creó en los EE.UU. de N.A., como una respuesta a una creciente demanda del mercado por construir

Más detalles

MANUAL DE ARMADO. Sistema de Andamiaje Multidireccional y Multifuncional Certificado

MANUAL DE ARMADO. Sistema de Andamiaje Multidireccional y Multifuncional Certificado MANUAL DE ARMADO Sistema de Andamiaje Multidireccional y Multifuncional Certificado COMPONENTES DEL SISTEMA 1 ROSETA Fabricada en lámina HR de 9mm de espesor Para tubo de 48mm. Se utilizan en los verticales.

Más detalles

ESTUDIO DE PREDISEÑO DE FUNDACIONES CONTENIDO

ESTUDIO DE PREDISEÑO DE FUNDACIONES CONTENIDO INSTITUTO DE DESARROLLO URBANO 1-1 ESTUDIO PARA EL PREDISEÑO DE FUNDACIONES CONTENIDO 1. INTRODUCCIÓN... 1-1 1.1. OBJETIVO... 1-1 1.2. LOCALIZACIÓN... 1-1 1.3. DESCRIPCIÓN DEL PROYECTO... 1-1 2. INVESTIGACIÓN

Más detalles

INFORME SOBRE ANÁLISIS DE CIMENTACIÓN. Obra: MERCADO DE SANTA ANA (BADAJOZ) Peticionario: AYUNTAMIENTO DE BADAJOZ

INFORME SOBRE ANÁLISIS DE CIMENTACIÓN. Obra: MERCADO DE SANTA ANA (BADAJOZ) Peticionario: AYUNTAMIENTO DE BADAJOZ INFORME SOBRE ANÁLISIS DE CIMENTACIÓN I-003P-09 CÓDIGO 1246/08 Obra: MERCADO DE SANTA ANA (BADAJOZ) Peticionario: AYUNTAMIENTO DE BADAJOZ Badajoz, Febrero de 2009 Página 1 ÍNDICE 1. INTRODUCCIÓN... 3 2.

Más detalles

ISOLFORG, SISTEMA DE FORJADO UNIDIRECCIONAL PATENTADO

ISOLFORG, SISTEMA DE FORJADO UNIDIRECCIONAL PATENTADO ISOLFORG, SISTEMA DE FORJADO UNIDIRECCIONAL PATENTADO Las viguetas ISOLFORG son un sistema de forjados que se compone de una vigueta armada con celosía la cual incorpora un entrevigado aligerado de EPS

Más detalles

EXPANSIÓN POR HUMEDAD DE LAS PIEZAS CERÁMICAS

EXPANSIÓN POR HUMEDAD DE LAS PIEZAS CERÁMICAS EXPANSIÓN POR HUMEDAD DE LAS PIEZAS CERÁMICAS 1.- DEFINICIÓN. La expansión por humedad (EPH) es la característica que presentan los materiales de arcilla cocida consistente en aumentar sus dimensiones

Más detalles

PROYECTO GRÚA PLUMA PÓRTICO P3

PROYECTO GRÚA PLUMA PÓRTICO P3 Escuela Universitaria Politécnica PROYECTO GRÚA PLUMA PÓRTICO P3 Asignatura: Tecnologías de fabricación Diego Cabaleiro Sabín ÍNDICE GENERAL 1 MEMORIA... 2 1.1 Objeto... 2 1.2 Características técnicas

Más detalles

Unidad Didáctica. Leyes de Kirchhoff

Unidad Didáctica. Leyes de Kirchhoff Unidad Didáctica Leyes de Kirchhoff Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

Tema 19 Modelo de Weibull para predecir la fractura de los materiales frágiles.

Tema 19 Modelo de Weibull para predecir la fractura de los materiales frágiles. Tema 19 Modelo de Weibull para predecir la fractura de los materiales frágiles. Los Materiales Cerámicos tienen las siguientes características: Son compuestos químicos o soluciones complejas que contienen

Más detalles

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA

INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA INTERACCIÓN DE UNA CIMENTACIÓN PROFUNDA CON LA ESTRUCTURA Fernando MUZÁS LABAD, Doctor Ingeniero de Caminos Canales y Puertos Profesor Titular de Mecánica del Suelo ETSAM RESUMEN En el presente artículo

Más detalles

EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. (CONTINUACIÓN)

EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. (CONTINUACIÓN) EL CONCEPTO DE CUBICAR EN LA ACTIVIDAD DE LA CONSTRUCCIÓN. (CONTINUACIÓN) En el artículo anterior definimos conceptos básicos de esta verdadera disciplina que es cubicar. Ahora quiero describir algunos

Más detalles

2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS

2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS 2. CARACTERÍSTICAS Y COMPORTAMIENTO DE LAS PLACAS BASE PARA COLUMNAS Y LAS PLACAS DE SOPORTE PARA VIGAS En este capítulo se exponen los aspectos más relevantes para este proyecto, acerca de las placas

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

CALCULO DE LA ALTURA MANOMÉTRICA

CALCULO DE LA ALTURA MANOMÉTRICA CALCULO E LA ALTURA MANOMÉTRICA PRESIONES Presión atmosférica. Es la fuerza ejercida por la atmósfera por unidad superficie. El valor la presión atmosférica en condiciones normales al nivel l mar es: atmósfera

Más detalles

La Pedrera inicia la limpieza y restauración general de la fachada

La Pedrera inicia la limpieza y restauración general de la fachada La Pedrera inicia la limpieza y restauración general de la fachada La Fundación Catalunya-La Pedrera pone en marcha un proyecto orientado a la preservación y mantenimiento del edificio, declarado Patrimonio

Más detalles

CAPITULO 9 DISEÑO DE CIMENTACION

CAPITULO 9 DISEÑO DE CIMENTACION 123 CAPITULO 9 DISEÑO DE CIMENTACION 9.1 ANALISIS Las cimentaciones son elementos que se encuentran en la base de las estructuras, se utilizan para transmitir las cargas de la estructura al suelo en que

Más detalles

RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E 618-2000

RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E 618-2000 RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E 618-2000 Este Modo Operativo está basado en la Norma ASTM C 348, el mismo que se ha adaptado al nivel de implementación y a las condiciones

Más detalles

k 11 N. de publicación: ES 2 004 757 k 21 Número de solicitud: 8702091 k 51 Int. Cl. 4 : A47B 47/00

k 11 N. de publicación: ES 2 004 757 k 21 Número de solicitud: 8702091 k 51 Int. Cl. 4 : A47B 47/00 k 19 REGISTRO DE LA PROPIEDAD INDUSTRIAL ESPAÑA k 11 N. de publicación: ES 2 004 757 k 21 Número de solicitud: 8702091 k 51 Int. Cl. 4 : A47B 47/00 k 12 PATENTEDEINVENCION A6 k 22 Fecha de presentación:

Más detalles

Medida del recubrimiento de hormigón y localización de barras

Medida del recubrimiento de hormigón y localización de barras González,E.yAlloza,A.M. Medida del recubrimiento de hormigón y localización de barras FUNDAMENTO El recubrimiento actúa como una barrera física entre la armadura y el ambiente al que se encuentra expuesta

Más detalles

3. Construcción y prefabricación de zapatas aisladas de concreto reforzado.

3. Construcción y prefabricación de zapatas aisladas de concreto reforzado. 3. Construcción y prefabricación de zapatas aisladas de concreto reforzado. 3.1. Generalidades Las zapatas son miembros estructurales que se encargan de transmitir la carga total de columnas, pilares o

Más detalles

CURSILLO DE ORIENTACIÓN

CURSILLO DE ORIENTACIÓN CURSILLO DE ORIENTACIÓN MAPAS Un mapa es una proyección de una superficie sobre un plano, y reducido a través de una ESCALA. Esta escala nos da el grado de reducción y precisión de la realidad y se representa

Más detalles

Diseño de cimentaciones y estructuras de contención: Situación 1 CAPÍTULO 4 DISEÑO DE CIMENTACIONES Y ESTRUCTURAS DE CONTENCIÓN: SITUACIÓN 1

Diseño de cimentaciones y estructuras de contención: Situación 1 CAPÍTULO 4 DISEÑO DE CIMENTACIONES Y ESTRUCTURAS DE CONTENCIÓN: SITUACIÓN 1 Diseño de cimentaciones y estructuras de contención: Situación 1 CAPÍTULO 4 DISEÑO DE CIMENTACIONES Y ESTRUCTURAS DE CONTENCIÓN: SITUACIÓN 1 4.1 INTRODUCCIÓN En este capítulo se plantea el diseño y comprobación

Más detalles

CAPÍTULO X SIMULACIÓN DEL MODELO. piezas que lo conforman bien ensambladas en un orden determinado para que cuando

CAPÍTULO X SIMULACIÓN DEL MODELO. piezas que lo conforman bien ensambladas en un orden determinado para que cuando CAPÍTULO X SIMULACIÓN DEL MODELO. Para poder simular el modelo lo primero que se tiene que hacer es tener cada una de las piezas que lo conforman bien ensambladas en un orden determinado para que cuando

Más detalles

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional

Eurocódigo para Estructuras de Acero Desarrollo de Una Propuesta Transnacional Curso: Eurocódigo 3 Módulo 4 : Eurocódigo para Estructuras de cero Desarrollo de Una Propuesta Transnacional Lección 10: Resumen: La resistencia de una pieza a tracción se obtiene suponiendo que la sección

Más detalles