Aplicando la Transformada de Laplace a Redes Eléctricas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicando la Transformada de Laplace a Redes Eléctricas"

Transcripción

1 Aplicando la Tranformada de Laplace a Rede Eléctrica J.I. Huircán Univeridad de La Frontera April 5, 006 Abtract Se aplica la Tranformada de Laplace a ditinta rede eléctrica, primero excitacione báica conocida, luego, excitacione tipo exponencial y inuoidal. La parte má compleja reulta al determinar la tranformada invera. Introduction La Tranformada de Laplace, Lfg, permite analizar rede eléctrica lineale con excitacione ditinta a la inuoidal y la continua. Se plantean la ecuacione en el dominio del tiempo, para luego aplicar la tranformada, quedando un itema de ecuacione lineale en el dominio. Se reuelve el itema para la variable deeada y e aplica la tranformada invera L fg para tener la repueta en el tiempo. Otra forma conite en aplicar directamente la tranformada de Laplace al circuito, y luego plantear la ecuacione de Kircchoff en el dominio. La di cultad de ambo cao erá determinar la Tranformada invera de Laplace. Tranformada de Laplace. De nición La tranformada e de ne de acuerdo a () y u invera de acuerdo a (). F () L ff(t)g Z f(t) L ff ()g j 0 f(t)e t () Z j Aí, e etablecen tranformada báica en la Tabla. j F ()e t d ()

2 Table : Reumen. f(t) F () $ ff(t)g (t) u(t) t e at a! in!t co!t e at! in!t e at co!t!! (a)! a (a)!. Propiedade Propiedade en el tiempo tienen u tranformada de acuerdo a la Tabla. Table : Reumen. Función en el tiempo Tranformada Linealidad K f (t) K f (t) K F () K F () df(t) Derivada F () f(0) d f(t) F () f(0) f 0 (0) R t Integral 0 f(x)dx F () Valor nal lim f(t) lim F () t!!0 3 La Tranformada y elemento paivo Dado que para el capacitor e tiene que dv (t) i (t) C v (t) C Z t Aplicando la Lfg a (3), e tiene i () d C Z t (3) t 0 i () d v (t 0 ) (4) dv (t) L fi (t)g I() CL I() CV () cv(t 0 ) (5)

3 Para la ecuación (4) Z t Z t V () L i () d v (t 0 ) L i () d v (t 0) C t 0 C t 0 I() C v (t 0) (6) Si la condicione iniciale on cero, entonce, V () I() C Para una bobina e tiene v(t) L di(t) i(t) L Z t Luego para (7) y (8) en el dominio e tiene (7) t 0 v(x)dx i(t 0 ) (8) V () LI() Li(t 0 ) (9) I() V () L i(t 0) (0) Si la condicione iniciale on cero, V () I() L: Para el reitor, dado que v(t) R i(t), entonce, aplicando la tranformada e tiene V () L fr i(t)g RI(): 3. Elemento paivo en el epacio De acuerdo a la ecuacione (5) y (6) e etablece que el capacitor erá reprenetado de acuerdo a la Fig.. I() I() V() C v(t o ) V() C C v(t o ) Figure : Capacitor en el epacio. De acuerdo a (9) y (0), el inductor e repreenta de acuerdo a la Fig.. 3

4 I() I() V() L V() L L i(t o ) L i(t o ) Figure : el inductor en el epacio. 4 Aplicación a rede eléctrica 4. Circuito RL erie Sea la red in condicione iniciale v(t)v a t0 eg R L i (t) L Figure 3: Red RL erie. Planteando la LVK, e tiene L di L(t) i L (t)r v i (t) V a u(t) () Aplicando la Tranformada de laplace LI L () I L ()R V a I L () V a L R h A Uando fraccione parciale e tiene I L () V a L R y B L R : " I L () V a R R Aplicando la tranformada invera para t 0 R L!# B R L () (3) i ; luego, A (4) i L (t) V a e R t L u(t) (5) R 4

5 4. Red RLC con excitación tipo ecalón Sea el circuito de la Fig. 4. Tranformando el circuito al plano, coniderando que i(0) 0, y luego, planteando la LCK 3 [Ω] [H] [V] t0 eg 0.5[F] v(t) [Ω] Figure 4: Red RLC in condicione iniciale. V () 3 Se depeja la variable bucada V () V () 0:5 (6) V () V i () (3 0:5 (3 ) ) ( 5 8) Por fraccione parciale y luego reordenando (7) V () :5 :5 ( :5) :75 :75 :75! ( :5) :75 (8) De acuerdo a la Tabla, e tiene v(t) u(t) e :5t co p :5 7t :75 e :5t in p 7t (9) 4.3 Red RLC con condicione iniciale Sea el circuito de la Fig. 5a. Determinar i(t) para todo t. Para t < 0 ; e tiene que i(0 ) 4[V ] [] [A] i(0 ) i(0) Para t > 0 ; trapaando la red al plano (Fig. 5b), luego haciendo tranformación de fuente y nalmente planteando la LVK e tiene 5

6 4[Ω] [H] 8[Ω] 4 8 4[V] t0 eg i (t) 4 [Ω] 4[V] 4 4 I() Li(0) 4 (a) (b) Figure 5: Red con condicione iniciale. I() [ 8] 4 Depejando I(), e tiene Li(0) (0) 4 I() Li(0) 0 Separando en fraccione parciale 4 0 ( 5) I() 5 ( 5) 5 Aplicando la tranformada invera de Laplace () () i(t) 5 e 5t 5 u(t) e 5t u(t) (3) 4.4 Red RL con excitación exponencial y inuoidal Para el circuito de la Fig. 3 e cambia la excitación por v(t) V a e bt, luego e tiene que L di L(t) i L (t)r V a e bt u(t) (4) Aplicando L fg y depejando la corriente LI L () I L ()R Uando fraccione parciale I L () V a b V a ( b) (R L) V a R bl b V a ( R bl) R L! V a R bl b R L (5) (6) 6

7 i L (t) V a R bl e bt e R L t u(t) (7) Para la red de la Fig. 4, e cambia la excitación por v(t) V a co!t, aí, dada la LVK e tiene que L di L(t) Luego, LI L () I L ()R Luego por fraccione parciale i L (t)r V a co!t u(t) (8) Va! ; por lo tanto I L () V a (! ) (R L) (9) I L () V a! L R (R L! ) (! ) V a! L R (R L! ) (! ) RV a L (R L! ) (R L) (30) RV a (R L! ) R (3) L Aplicando la L fg i L (t) V h a (R L!!L in!t R co!t Re R ti L (3) ) 4.5 Red RLC con excitación exponencial Sutituyendo la fuente de 4 [V ] continuo por una fuente exponencial, v i 4e 5t [V ] en la red de la Fig. 5b, y luego planteando la LVK 5 I() [ 8] 4 Depejando la corriente, dado que Li(0) 4 Li(0) (33) I() ( 0) ( 5) ( 0) 4 ( 0) 4 0 ( 5) ( 5) ( 5) 5 ( 5) 5 5 ( 5) 5 (34) Aplicando la L fg 7

8 i(t) te 5t 5 u(t) 5 e 5t (35) 5 Concluione La Lfg permite la convertir la ecuacione diferenciale en ecuacione algebraica en el plano. Se puede depejar má facilmente la variable bucada, luego aplicando L fg, e determina la variable en el dominio del tiempo. Si exiten componente con condicione iniciale e má fácil paar el circuito al plano, e incorporar la condición inicial. La parte má complicada del proceo e determinar la tranformada invera. 8

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE TRANSFORMADA DE LAPLACE DEFINICION La transformada de Laplace es una ecuación integral que involucra para el caso específico del desarrollo de circuitos, las señales en el dominio del tiempo y de la frecuencia,

Más detalles

MA26A, Auxiliar 5, 26 de Abril, 2007

MA26A, Auxiliar 5, 26 de Abril, 2007 MA26A, Auxiliar 5, 26 de Abril, 27 Profeor Cátedra: Raúl Manaevich Profeor Auxiliar : Alfredo Núnez. Tranformada de Laplace... Sea f : [, ) R función continua a trozo y de orden exponencial. Demuetre que

Más detalles

q = CV Donde c es una constante de proporcionalidad conocida como capacitancia y su unidad es el Faradio (F) =.

q = CV Donde c es una constante de proporcionalidad conocida como capacitancia y su unidad es el Faradio (F) =. 9 CAPACITORES. Un capacitor es un dispositivo de dos terminales, consiste en cuerpos conductores separados por un material no conductor que se conoce con el nombre de aislante o dieléctrico. El símbolo

Más detalles

Tema II: Análisis de circuitos mediante la transformada de Laplace

Tema II: Análisis de circuitos mediante la transformada de Laplace Tema II: Análisis de circuitos mediante la transformada de Laplace La transformada de Laplace... 29 Concepto e interés práctico... 29 Definición... 30 Observaciones... 30 Transformadas de Laplace funcionales...

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden APÍTULO 5 Aplicaciones de ED de segundo orden 5.3.3 ircuito de corriente continua V I L onsideremos ahora un circuito formado por un resistor, un capacitor y un inductor L conectados en serie con una fuente

Más detalles

2 Electrónica Analógica

2 Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2009-2010 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2 2 A li i d l A lifi d O i l 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3

Más detalles

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34

SECO 2014-II. Félix Monasterio-Huelin y Álvaro Gutiérrez. 6 de marzo de 2014. Índice 33. Índice de Figuras. Índice de Tablas 34 SECO 2014-II Félix Monaterio-Huelin y Álvaro Gutiérre 6 de maro de 2014 Índice Índice 33 Índice de Figura 33 Índice de Tabla 34 12.Muetreador ideal y relación entre y 35 13.Muetreo de Sitema en erie 38

Más detalles

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica)

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica) MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL Con el apoyo académico de la Univeridad Católica de Lovaina y la Univeridad de Gante Bélgica PROGRAMA DE AUTOMATIZACION INDUSTRIAL Univeridad de Ibagué Marzo

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Autor: José Arturo Barreto M.A. Páginas web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Aplicación de la Transformada de Laplace y las ecuaciones

Más detalles

Análisis En El Dominio De La Frecuencia

Análisis En El Dominio De La Frecuencia Análii En El Dominio De La Frecuencia.-Introducción..-Repueta en frecuencia...-diagrama cero-polar. 3.-Repreentación gráfica de la repueta en frecuencia. 3..-Diagrama de Bode. 3..-Diagrama polar (Nyquit.

Más detalles

ELEMENTOS ALMACENADORES DE

ELEMENTOS ALMACENADORES DE Capítulo ELEMENTOS ALMACENADORES DE ENERGÍA ELÉCTRICA Portada del Capítulo 5 2CAPÍTULO. ELEMENTOS ALMACENADORES DE ENERGÍA ELÉCTRICA. INTRODUCCIÓN Hasta este capitulo solo se han tratado circuitos resistivos,

Más detalles

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos

Estudio de una ecuación del calor semilineal en dominios no-cilíndricos XXI Congreo de Ecuacione Diferenciale y Aplicacione XI Congreo de Matemática Aplicada Ciudad Real, 21-25 eptiembre 2009 (pp. 1 8) Etudio de una ecuación del calor emilineal en dominio no-cilíndrico P.

Más detalles

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1

1. Modelos Orientados al Proceso. 1. Modelos Orientados al Proceso 1 . Modelo Orientado al Proceo. Modelo Orientado al Proceo.. Introducción.. Mecanimo de Muetreo.3. Modelo de Modulación.3.. Modelo de un Muetreador-Retenedor 3.3.. Repueta a una entrada u: 5.3.3. Simulación

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace.

2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada de Laplace. TEMA 4: INTRODUCCIÓN A LA TRANSFORMADA DE LAPLACE 1.- La transformada de Laplace de una función. Definición. 2.- Tabla de transformadas de Laplace (funciones más usuales) 3.- Propiedades de la transformada

Más detalles

Ecuaciones Diferenciales para Circuitos Eléctricos

Ecuaciones Diferenciales para Circuitos Eléctricos Ecuaciones Diferenciales para ircuitos Eléctricos Aplicación de una Ecuación Diferencial a un circuito eléctrico conectado en serie del tipo R Leyendo éste artículo aprenderás a aplicar las ecuaciones

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

AnÁlisis De Redes ElÉctricas

AnÁlisis De Redes ElÉctricas 1. CÓDIGO Y NÚMERO DE CRÉDITOS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación AnÁlisis De Redes ElÉctricas CÓDIGO: FIEC01784 NÚMERO DE CRÉDITOS: 5 Teóricos:

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun. 2007 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 2007 Dr. Rodolfo Salinas abril 2007 Control Moderno N1 abril 2007 Dr. Rodolfo Salinas Modelo Ecuación

Más detalles

MOTORES DE C.C. Y C.A.

MOTORES DE C.C. Y C.A. MOTORES DE C.C. Y C.A. La neumática e la tecnología que utiliza el aire comprimido como fluido de trabajo. El compreor e el elemento que comprime el aire dede la preión atmoférica hata lo 6-8 bar; la válvula

Más detalles

Elementos almacenadotes de energía

Elementos almacenadotes de energía V Elementos almacenadotes de energía Objetivos: o Describir uno de los elementos importantes almacenadores de energía muy comúnmente utilizado en los circuitos eléctricos como es el Capacitor o Calcular

Más detalles

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable.

PROGRAMA IEM-212 Unidad I: Circuitos AC en el Estado Senoidal Estable. PROGRAMA IEM-212 1.1 Introducción. En el curso anterior consideramos la Respuesta Natural y Forzada de una red. Encontramos que la respuesta natural era una característica de la red, e independiente de

Más detalles

SISTEMAS DE CONTROL I MODELADO DE SISTEMAS FÍSICOS

SISTEMAS DE CONTROL I MODELADO DE SISTEMAS FÍSICOS SISTEMAS DE CONTROL I MODELADO DE SISTEMAS FÍSICOS Ing. Miguel G. Alarcón Agosto de 2011 Temario Sistema Físico. Modelado del Sistema Real. Sistemas Eléctricos. Sistemas Mecánicos. Sistemas Térmicos. Qué

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Electrónica Industrial Boletín n o 4 AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Indutrial. Epecialidad en Electrónica Indutrial Boletín n o. Hallar la tranformada de Laplace de cada una de la iguiente funcione: a) n Ch n + Sh n) b) en c)

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

La transformada de Laplace

La transformada de Laplace Capítulo 1 La transformada de Laplace 1.1. Introducción La transformada de laplace es un operador LINEAL muy útil para la resolución de ecuaciones diferenciales. Laplace demostró cómo transformar las ecuaciones

Más detalles

5. MODELO DE UN INTERCAMBIADOR DE CALOR

5. MODELO DE UN INTERCAMBIADOR DE CALOR 5. MODELO DE UN INERCAMBIADOR DE CALOR Para la explicación del modelo matemático de un intercambiador de calor aire agua, e neceario en primer lugar definir una erie de término. Éto aparecen en la abla

Más detalles

Circuitos eléctricos Básicos

Circuitos eléctricos Básicos Circuitos eléctricos Básicos Escuela de Ingeniería Civil en Informática Universidad de Valparaíso, Chile http:// Fecha revisión: 02/09/2014 Modelos de sistemas eléctricos 2 Diagramas eléctricos v a 3 Cables

Más detalles

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en CAPACITORES Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en su campo eléctrico. Construcción Están

Más detalles

Sistemas de orden superior

Sistemas de orden superior 7 Sitema de orden uperior Hata ahora ólo e ha etudiado la repueta del régimen tranitorio de lo itema de primer y egundo orden imple. En ete capítulo e pretende analizar la evolución temporal de itema de

Más detalles

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados.

CORRIENTE ALTERNA. Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. CORRIENTE ALTERNA Formas de Onda. Formas de ondas más usuales en Electrotecnia. Formas de onda senoidales y valores asociados. Generalidades sobre la c. alterna. Respuesta de los elementos pasivos básicos

Más detalles

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES

ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Simpoio de Metrología 00 7 al 9 de Octubre ESTIMACIÓN DE LA INCERTIDUMBRE DE MEDICIÓN DE UN ANALIZADOR VECTORIAL DE REDES Suana Padilla-Corral, Irael García-Ruiz km 4.5 carretera a Lo Cué, El Marqué, Querétaro

Más detalles

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002.

Equipo Docente de Fundamentos Físicos de la Informática. Dpto.I.I.E.C.-U.N.E.D. Curso 2001/2002. TEMA 11. FENÓMENOS TRANSITORIOS. 11 Fenómenos transitorios. Introducción. 11.1. Evolución temporal del estado de un circuito. 11.2. Circuitos de primer y segundo orden. 11.3. Circuitos RL y RC en régimen

Más detalles

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s.

- S o b r e los m o d e l o s de ge s t i ó n y pri v a t i z a c i o n e s. ACTO DE SALUD EN VILADECA N S, 4 DE MARZO DE 2010. B u e n a s tar d e s : E s t a m o s aq u í p a r a h a b l a r de sal u d y d e at e n c i ó n sa n i t a r i a pú b l i c a en el B a i x Ll o b r

Más detalles

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004

Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004 Solución del examen de Variable Compleja y Transformadas I. T. I. Electrónica y Electricidad 29 de enero de 2004. Estudia si existe alguna función de variable compleja f() entera cuya parte real sea x

Más detalles

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara

Realizado por: Juan Manuel Bardallo González Miguel Ángel de Vega Alcántara CONTROL POR COMPUTADOR Temario. Ingeniería Informática. Realiado por: Juan Manuel Bardallo Gonále Miguel Ángel de Vega Alcántara Huelva. Curo 06/07. INDICE Tema. MODELIZACIÓN DE SISTEMAS DISCRETOS. Introducción..

Más detalles

Contenidos Control y Automatización

Contenidos Control y Automatización Tema 2: Modelos Matemáticos Susana Borromeo Juan Antonio Hernández Tamames Curso 2014-2015 Contenidos 1. Conceptos básicos. 2. Modelado matemático de sistemas Físicos. Linealización. Función de Transferencia

Más detalles

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).

Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior). íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar

Más detalles

Ejemplo DII.1 Resolver el sistema formado por dx x y dt = + y dy. dx =, para. Transformando ambas ecuaciones (1) (2)

Ejemplo DII.1 Resolver el sistema formado por dx x y dt = + y dy. dx =, para. Transformando ambas ecuaciones (1) (2) traformada de Laplace 5 Apéndice DII_UIV Má Ejercicio de Solución de un itema de ecuacione diferenciale lineale con condicione iniciale por medio de la traformada de Laplace. (ecc. 4.) [4] Ejemplo DII.

Más detalles

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO En el Capítulo e obtuvieron la ecuacione para lo flujo electrocinético en término del potencial electrotático promedio ψ() en el interior del poro cilíndrico.

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Transformaciones geométricas

Transformaciones geométricas Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

Tema 4: Programación lineal con variables continuas: método del Simplex

Tema 4: Programación lineal con variables continuas: método del Simplex Tema 4: Programación lineal con variable continua: método del Simple Obetivo del tema: Reolver de forma gráfica un problema de programación lineal continuo Etudiar la forma equivalente de repreentación

Más detalles

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail.

Ingeniero electrónico. Investigador de la Universidad Pedagógica y Tecnológica de Colombia. Sogamoso, Colombia. Contacto: landres87@hotmail. Boot LENNY ANDRÉS HERNÁNDEZ FONSECA Ingeniero electrónico. Invetigador de la Univeridad Pedagógica y Tecnológica de Colombia. Sogamoo, Colombia. Contacto: landre87@hotmail.com DIEGO RICARDO GÓMEZ LEÓN

Más detalles

Guía promocional de tarifas

Guía promocional de tarifas Guía promocional de tarifas P a q u e te s E s p e c ia les P a q u e te D e s c r ip c ión T a r if a p o r p a q u e t e 1 Ocu la r E x p r e s s A p e r tu r a d e l c o n ten e d o r p o r I P M s

Más detalles

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS

COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA COLECCIÓN: ELECTROTECNIA PARA INGENIEROS NO ESPECIALISTAS Miguel Angel Rodríguez Pozueta Doctor Ingeniero Indutrial 008, Miguel

Más detalles

CAPITULO IV FORMAS DE ONDA. CONDENSADORES E INDUCTORES

CAPITULO IV FORMAS DE ONDA. CONDENSADORES E INDUCTORES CAPITULO IV FORMAS DE ONDA. CONDENSADORES E INDUCTORES 4.1.- FORMAS DE ONDA. 4.1.1.- Introducción. En la mayor parte de los análisis que se han realizado hasta el momento se han utilizado fuentes continuas,

Más detalles

Tema 1. La negociación de las operaciones financieras.

Tema 1. La negociación de las operaciones financieras. OPERACIONES Y MERCADOS DE RENTA FIJA. Tema. La negociación de la operacione financiera.. Operación financiera... Concepto y reerva matemática..2. Operación de prétamo..3. Tanto efectivo y caracterítica

Más detalles

TEMA II TRANSFORMADAS DE LAPLACE. FUNCIONES DE TRANSFERENCIA. 2.1.-Introducción. 2.2.-Transformada de Laplace. 2.3.-Transformada Inversa de Laplace.

TEMA II TRANSFORMADAS DE LAPLACE. FUNCIONES DE TRANSFERENCIA. 2.1.-Introducción. 2.2.-Transformada de Laplace. 2.3.-Transformada Inversa de Laplace. TEMA II TRANSFORMADAS DE LAPLACE. FUNCIONES DE TRANSFERENCIA 2.1.-Introducción. 2.2.-Transformada de Laplace. 2.3.-Transformada Inversa de Laplace. 2.4.-Análisis de Circuitos en el dominio de Laplace.

Más detalles

1 E L E C T R Ó N I C A ELECTRÓNICA

1 E L E C T R Ó N I C A ELECTRÓNICA 1 E L E C T R Ó N I C A ELECTRÓNICA CAPACITORES 2 E L E C T R Ó N I C A CAPACITORES Capacitor Modelo Lineal: Capacitor De Placas Planas Paralelas: E = Permeabilidad Magnética A = Área de las placas planas

Más detalles

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156 nductancia Auto-nductancia, Circuitos R X X XX X X XXXX X X XX a b R a b e 1 e1 /R B e ( d / dt) 0.0183156 1 0 1 2 3 4 Vx f( ) 0.5 0 t A NERCA Y A NDUCTANCA a oposición que presentan los cuerpos al intentar

Más detalles

Transformada de Laplace: Análisis de circuitos en el dominio S

Transformada de Laplace: Análisis de circuitos en el dominio S Transformada de Laplace: Análisis de circuitos en el dominio S Trippel Nagel Juan Manuel Estudiante de Ingeniería en Sistemas de Computación Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

La frecuencia propia del sistema es la frecuencia fundamental en alguno de sus modos de vibración.

La frecuencia propia del sistema es la frecuencia fundamental en alguno de sus modos de vibración. APITULO 8 RESONANIA 8. INTRODUION Todo sistema oscilante tiene una frecuencia característica (oscilaciones que da en un segundo) llamada de resonancia. uando lo sometemos a una fuerza exterior, periódica

Más detalles

2.5 Linealización de sistemas dinámicos no lineales

2.5 Linealización de sistemas dinámicos no lineales 25 Linealización de sistemas dinámicos no lineales En las secciones anteriores hemos visto como representar los sistemas lineales En esta sección se estudia una manera de obtener una aproximación lineal

Más detalles

Diagramas de bloques

Diagramas de bloques UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D

Más detalles

Transformada de Laplace

Transformada de Laplace Tranformada de Laplace Prof. André Roldán Aranda amroldan ugr.e http : electronica.ugr.e amroldan 5 03 2009 Etudio de la tranformada de Laplace para u uo en el cálculo de la eñale de alida de circuito

Más detalles

2. Modelos y Control

2. Modelos y Control SESIÓN 8 2. Modelos y Control PARTE 4-2: LOS ELEMENTOS DE LOS CIRCUITOS ELÉCTRICOS JCMG - 2013 261 Los elementos de los circuitos eléctricos En la ingeniería eléctrica los circuitos juegan un rol muy importante,

Más detalles

Inductancia y Circuítos LRC

Inductancia y Circuítos LRC Inductancia Mutua Inductancia y Circuítos LRC un campo magnético en la bobina 2, creando un flujo magnético en 2 Φ B2 = M 21 i 1. De la ley de Faraday se tiene la fem inducida en 2 debido al cambio temporal

Más detalles

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA

SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA SECUENCIA DIDÁCTICA TEÓRICA - PRÁCTICA * Análii de Sitema en el Dominio del Tiempo. * I. NOMBRE : Análii de Sitema en el Dominio del Tiempo. II. OBJETIVOS : El etudiante conocerá y aplicará un oftware

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

Sistemas y Circuitos

Sistemas y Circuitos Sistemas y Circuitos Práctica 4: Circuitos Analógicos Curso Académico 09/10 Objetivos En esta práctica el alumno aprenderá a calcular impedancias equivalentes analizar filtros de primer orden Normas La

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA TALLER : Fabricación y medición de inductancia OBJETIVO: Lograr la habilidad ara imlementar inductore de caracterítica

Más detalles

Circuitos de Corriente Alterna

Circuitos de Corriente Alterna Tema 5 Circuitos de Corriente Alterna 5.1. Introducción Dado que en el Tema 4 se han establecido algunas de las leyes físicas que rigen el comportamiento de los campos eléctrico y magnético cuando éstos

Más detalles

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad.

TEST. Cinemática 103. 1.- Un móvil que va con M.R.U. inicia su movimiento en x = 12 m y luego de 8 s está en x = 28 m. Hallar su velocidad. Cinemática 103 TEST 1.- Un móvil que va con M.R.U. inicia u movimiento en x = 12 m y luego de 8 etá en x = 28 m. Hallar u velocidad. a) 2 m/ d) 6 m/ ) 8 m/ e) 7 m/ c) 4 m/ 2.- Señalar verdadero o falo

Más detalles

Elementos almacenadores de energía

Elementos almacenadores de energía Elementos almacenadores de energía Objetivos. Explicar los conceptos esenciales sobre capacitores e inductores, utilizando los criterios dados en el texto. 2. Ampliar los conocimientos sobre dualidad,

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

Information, Attention et R éputation : le c a s de l'économie numérique

Information, Attention et R éputation : le c a s de l'économie numérique Information, Attention et R éputation : le c a s de l'économie numérique F r é d é ri q u e A l f o n si G r â c e a u x p o t e n ti alit é s o ff e rt e s p a r la n u m é ri s a ti o n d e s d o n n

Más detalles

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Univeridad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Documento UTN Nº EA3-5- Adaptación de impedancia en amplif de RF Introducción o amplificadore de potencia e uan generalmente

Más detalles

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...

4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad... TEMA 4: CAPACITORES E INDUCTORES 4.1. Índice del tema 4.1. Índice del tema...1 4.2. El Condensador...2 4.2.1. Introducción...2 4.2.2. Potencia...3 4.2.3. Energía...3 4.2.4. Condición de continuidad...4

Más detalles

El Ampli cador Operacional Ideal

El Ampli cador Operacional Ideal El Ampli cador Operacional Ideal J.I. Huircán Abstract El Ampli cador Operacional Ideal es un ampli- cador de oltaje de alta ganancia, controlado por oltaje, que posee una resistencia de entrada in nita.

Más detalles

Resistencias en serie I =I 1 +I 2 = V R 1

Resistencias en serie I =I 1 +I 2 = V R 1 Resistencias en serie Circuitos de Corriente Continua: La Dirección de la corriente no cambia con el tiempo. De la ley de Ohm:Entre los extremos de una resistencia R hay una diferencia de potencialv en

Más detalles

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA

17 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA 7 ANÁLISIS EN EL DOMINIO DE LA FRECUENCIA El aálii e el domiio de la frecuecia e u herramieta cláica e la teoría de cotrol, i bie e geeral lo itema que varía co ua periodicidad defiida o uele er lo má

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CONTROL AUTOMATICO MODELOS DE SISTEMAS (SEMANA 7-29/10/2012)

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CONTROL AUTOMATICO MODELOS DE SISTEMAS (SEMANA 7-29/10/2012) UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CONTROL AUTOMATICO MODELOS DE SISTEMAS (SEMANA 7-29/10/2012) I. CONTENIDO 1. DEFINICION DE MODELO DE SISTEMA 2. BLOQUES FUNCIONALES PARA

Más detalles

Análisis de Sistemas Lineales: segunda parte

Análisis de Sistemas Lineales: segunda parte UCV, Facultad de Ingeniería, Escuela de Ingeniería Eléctrica. Análisis de Sistemas Lineales: segunda parte Ebert Brea 7 de marzo de 204 Contenido. Análisis de sistemas en el plano S 2. Análisis de sistemas

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el CAPÍTULO 1. VARIABLES DEL CIRCUITO ELÉCTRICO 1.1. Reto de diseño: Controlador de una válvula para tobera 1.2. Albores de la ciencia eléctrica 1.3. Circuitos eléctricos y flujo de corriente 1.4. Sistemas

Más detalles

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos INDICE Capítulo 1. Variables del Circuito Eléctrico 1 Introducción 1 1.1. Reto de diseño: Controlador de una válvula para tobera 2 1.2. Albores de la ciencia eléctrica 2 1.3. Circuitos eléctricos y flujo

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace

2.2 Transformada de Laplace y Transformada. 2.2.1 Definiciones. 2.2.1.1 Transformada de Laplace 2.2 Transformada de Laplace y Transformada 2.2.1 Definiciones 2.2.1.1 Transformada de Laplace Dada una función de los reales en los reales, Existe una función denominada Transformada de Laplace que toma

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

GUIAS UNICAS DE LABORATORIO DE ELECTRONICA I RESPUESTA NATURAL DE CIRCUITOS RLC

GUIAS UNICAS DE LABORATORIO DE ELECTRONICA I RESPUESTA NATURAL DE CIRCUITOS RLC GUIAS UNICAS DE LABORATORIO DE ELECTRONICA I RESPUESTA NATURAL DE CIRCUITOS RLC SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS RESPUESTA NATURAL DE CIRCUITOS RLC SERIE - PARALELO

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

2 El Ampli cador Operacional Ideal

2 El Ampli cador Operacional Ideal El Ampli cador Operacional Ideal J.I.Huircan Uniersidad de La Frontera January 4, 202 Abstract El Ampli cador Operacional Ideal es un ampli cador de oltaje de alta ganancia, controlado por oltaje, que

Más detalles

EJERCICIOS TEMA 4 FUNCIONES DE VARIAS VARIABLES

EJERCICIOS TEMA 4 FUNCIONES DE VARIAS VARIABLES EJERCICIOS TEMA 4 FUNCIONES DE VARIAS VARIABLES EJERCICIOS TEMA 4 EJERCICIOS TEMA 4 3 TOPOLOGÍA Ejercicio 1 Sea el conjunto A = 0; 1) [ fg. Hallar A, A, A 0 fra). Solución: A = 0; 1); A = [0; 1] [ fg;

Más detalles

Transmisión Digital Paso Banda

Transmisión Digital Paso Banda Tranmiión Digital Pao Banda PRÁCTICA 9 ( eione) Laboratorio de Señale y Comunicacione 3 er curo Ingeniería de Telecomunicación Javier Ramo Fernando Díaz de María y David Luengo García 1. Objetivo Simular

Más detalles

En su forma más simple, un sistema mecánico de traslación consiste de una masa, un resorte y un amortiguador, tal como lo ilustra la figura 1.

En su forma más simple, un sistema mecánico de traslación consiste de una masa, un resorte y un amortiguador, tal como lo ilustra la figura 1. ANALOGÍA ENTRE UN SISTEMA MECÁNICO DE TRASLACIÓN Y UN SISTEMA ELÉCTRICO. Tomado del texto de Circuitos III del Profesor Norman Mercado. 1. INTRODUCCIÓN. Tradicionalmente, las analogías entre los sistemas

Más detalles