Control de un péndulo invertido usando métodos de diseño no lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Control de un péndulo invertido usando métodos de diseño no lineales"

Transcripción

1 Conrol de un péndulo inverido usando méodos de diseño no lineales F. Salas J.Aracil F. Gordillo Depo de Ingeniería de Sisemas y Auomáica.Escuela Superior de Ingenieros. Universidad de Sevilla Camino de los descubrimienos s/n. 49. Sevilla. Tlf: Fa Resumen En ese arículo se diseña una ley de conrol para un sisema no lineal inesable subacuado, en concreo el objeivo es conrolar un péndulo inverido lineal péndulo en carro) en orno a su posición verical superior pariendo de condiciones iniciales del brazo del péndulo por encima de la horizonal. Para la deerminación de la ley de conrol se usan méodos de diseño no lineales basados en forwarding. Palabras clave: Sisemas subacuados, forwarding, conrol no lineal.. Inroducción La aplicación de la eoría de conrol a problemas prácicos ha sido demosrada en muchas ocasiones diseñando leyes de conrol para sisemas simples. Un ejemplo ípico de uno de esos sisemas es el péndulo inverido como ejemplo de sisema inesable. El péndulo inverido es un sisema muy usado ambién en educación en la eoría de conrol moderna [5]. Se compone básicamene de un brazo ariculado en un carro que puede moverse de forma horizonal. El brazo se mueve libremene alrededor de la ariculación en el carro y el objeivo del conrol es llevar el brazo a la posición de equilibrio inesable superior moviendo el carro en el plano horizonal. Debido a que la aceleración del brazo no puede ser conrolada direcamene, el péndulo inverido se dice que es un sisema subacuado. Por eso las écnicas desarrolladas para robos manipuladores oalmene acuados no pueden usarse en ese ipo de sisemas. El objeivo de ese rabajo es calcular una ley de conrol que esabilice el sisema en la posición deseada siempre que el puno de parida del brazo esé por encima de la horizonal.. Descripción del sisema El sisema, como se ha comenado en la inroducción, se compone de un carro en el que va monado el péndulo y que puede moverse linealmene en el plano horizonal. En ese rabajo no se endrá en cuena la limiación de recorrido del carro en dicho plano que daría lugar a una sauración en la variable correspondiene. El sisema usado se muesra en la figura. Se consideran las suposiciones habiuales de masas punuales, no fricción,..., donde M es la masa del carro, m es la masa del brazo concenrada en el eremo superior, θ es el ángulo medido respeco a la posición superior y l es la longiud del brazo. Las ecuaciones del sisema pueden obenerse aplicando las leyes de Newon o la formulación de Euler- Lagrange [4], []. M m mg Figura : Péndulo inverido lineal. Las ecuaciones una vez normalizadas quedan de la forma ẋ = ) ẋ = sen cos u ) ẋ 3 = u 3) donde = θ es la posición angular del péndulo; = θ es la velocidad angular del péndulo; 3 = ẋ es la velocidad del carro y u es la acción de conrol. Como puede observarse en las ecuaciones no eise f

2 una ecuación para la posición del carro, eso es debido a que se preende esabilizar el péndulo en la posición superior, con el carro parado, pero no impora cual sea la posición de ese úlimo. Eso puede hacerse gracias a la suposición de que el sisema no esá saurado horizonalmene, fenómeno que será esudiado en rabajos poseriores. 3. Deerminación de la ley de conrol El objeivo del conrol, como ya se ha pueso de manifieso aneriormene, es esabilizar el sisema en la posición verical superior, pariendo de una posición superior a la horizonal, es decir sólo podrá esar en el inervalo π, π ). Para diseñar la esraegia de conrol nos vamos a basar en écnicas similares al forwarding [6] ya que el sisema iene esrucura riangular superior. Para poder aplicar ese méodo el sisema ha de ser epresado según el formulismo ż = fz) + Ψz, ξ) + gz, ξ)u 4) ξ = aξ) + bξ)u 5) En nuesro caso se puede idenificar el subsisema inferior 5) con las ecuaciones ) y ) y el subsisema superior 4) con la ecuación 3). Una de la condiciones para poder aplicar esa écnica es que la ecuación ξ = aξ) ha de ser esable y, como puede verse fácilmene, en ese caso, esa condición no se cumple ya que el subsisema inferior es inesable. Para eviar ese problema y poder aplicar la écnica elegida se aplica una ley de conrol u = an + u d 6) donde se define una nueva variable de conrol u d. Aplicando esa ley el sisema queda ẋ = 7) ẋ = sen cos u d 8) ẋ 3 = an + u d 9) cuyas ecuaciones pueden ser asociadas ambién a un sisema riangular superior idenificando el subsisema superior 4) con la ecuaciones 9) y el subsisema inferior 5) con las ecuaciónes 7) y 8). También es fácil ver que el sisema ż = fz),que en ese caso es ẋ 3 =, es globalmene esable y por lo ano puede aplicarse la écnica de diseño elegida. Ora inerpreación de la ley de conrol propuesa es que la pare an de la ley de conrol u es la que se encarga de esabilizar el subsiema superior, es decir el brazo del péndulo mienras que la señal de conrol u d es la señal de conrol que se encarga de esabilizar el carro. Para calcular la ley u d omamos una candidaa a función de Lyapunov como la suma de una función de Lyapunov del subsisema inferior cos ) y un érmino cuadráico que hay que deerminar. V = cos + ν. ) Hay que asegurar que la derivada de la función de Lyapunov es definida posiiva. Calculando la derivada V = ẋ + sen ẋ + ν νẋ donde susiuyendo los valores correspondienes se obiene la epresión V = ν sen + ) an + 3 u d cos + ν cos + )) 3 de la que, para poder asegurar que es negaiva, se obiene la ecuación de derivadas parciales sen + 3 an = Resolviendo la EDP se obiene las soluciones ) 4 arcan E ν = 3 + si E < E ) ν = 3 E arcanh si E > E donde E es la energía del subsisema superior E = cos. Puede comprobarse de manera fácil que sólo es posible la primera de las ecuaciones ya que al moverse el péndulo en el inervalo π, π ) si la energía fuera posiiva E > el érmino E > implicaría que la función arcanh ) no esuviera definida y por lo ano la epresión de ν carecer de senido. Así pues, sólo se va a ener en cuena los casos en que E <. En ese caso esa condición implica que la energía cinéica es inferior a la poencial, lo que crea una siuación análoga a la que ocurre cuando con oras leyes de conrol más simples se inroduce amoriguamieno para esabilizar el sisema. Por lo ano para que se cumpla la condición V hacemos u d = cos + ν cos + )) 3 donde susiuyendo el valor de ν se obiene la ley de conrol mosrada en la epresión ). E

3 cos cos + ) 4 arcan u d = cos + cos cos + cos ) 3 ) ) + + cos + cos ) 4 arcan + cos + cos ) 3 ) Con esa ley de conrol se asegura que la función de Lyapunov es semidefinida posiiva V, y por lo ano que el sisema es esable. Para probar el carácer de la esabilidad del sisema usando esa ley de conrol se recurre al eorema de LaSalle [] para buscar un conjuno invariane de punos en que V =. Si dicho conjuno es sólo el origen enonces dicho equilibrio será asinóicamene esable. Para que se cumpla la condición de V = u d ) = ha de cumplirse que u d =. El conjuno Ω de punos que cumplen la condición es Ω = { R 3 : V PSfrag replacemens = } = { R, = R, 3 = R} ) Obsérvese que V = si y sólo si = y 3 =. Para que una solución perenezca a Ω para odo, es necesario y suficiene que = y 3 =. Por lo ano ambién ha de saisfacerse que ẋ = y ẋ 3 = para odo. Tomando eso en consideración, de las ecuaciones del sisema se concluye que si Ω para odo, enonces ẋ = sen = 3) ẋ 3 = an = 4) de lo que se deduce que = para odo. Por lo que el eorema de LaSalle nos permie concluir que el origen es asinóicamene esable. 4. Resulados En esa sección se simula el sisema con la ley de conrol calculada en el aparado anerior mosrándose la evolución de las disinas variables del sisema. En la figura se muesra, juno con la evolución del sisema en el plano, ), la cuenca de aracción del sisema con esa ley de conrol. Esa cuenca esá limiada por la curva E = fuera de la cual la energía sería posiiva y la ley de conrol no esá definida. Esa cuenca, que en el plano, ) es una curva cerrada, en realidad es un cilindro en el espacio de fases del sisema, de al forma que pariendo de condiciones iniciales denro del mismo el sisema evoluciona al origen E = Figura : Espacio de fases en el plano, ) mosrando la cuenca de aracción delimiada por la curva E =. En las figuras 3 y 4 esán represenada la evolución emporal de las variables de esado y de la energía E y en el figura 6 la represenación ridimensional de la evolución de las variables de esado, donde puede observarse que, además de la evolución oscilane del brazo del péndulo que se observa en la figura, la variable 3, que recordamos es la velocidad del carro, ambién oscila para poder esabilizar el brazo en la posición deseada. Ora conclusión que se puede obener a parir de las figuras donde se la evolución del sisema en función de las res variables de esado además de confirmar el hecho de que el origen es asinóicamene esable para cualquier condición inicial denro de la cuenca de aracción, es la posible reinerpreación de la evolución del sisema conrolado según la filosofía de las dos escalas de iempo [3]. Efecivamene, en la figura 7 se presenan el comporamieno del sisema pariendo desde disinas condiciones iniciales, y se observa fácilmene cómo el sisema iene una superficie donde las variables oscilan hasa llegar al puno de equilibrio, pero que fuera de ella el sisema evoluciona de manera rápida y direca hasa alcanzar dicha superficie. Eso

4 frag replacemens PSfrag replacemens Figura 3: Simulación del sisema pariendo de condiciones iniciales =,3, =,, 3 =.3.4 Figura 6: Simulación del sisema pariendo de condiciones iniciales =,3, =,, 3 = se une muy bien con la eoría de sisemas singularmene perurbados y dos escalas de iempo donde eise una dinámica rápida que se encarga de llevar al sisema a la superficie invariane que corresponde con la dinámica lena donde se procede a esabilizar el sisema en la posición deseada..5.6 E frag replacemens Figura 4: Evolución de la función de energía E = cos PSfrag replacemens Figura 7: Simulación del sisema donde se ponen de manifieso las dos dinámicas del sisema.5 frag replacemens V Figura 5: Evolución de la función de Lyapunov. 5. Conclusiones En ese rabajo se ha usado un sisema mecánicamene simple pero que presena una gran complejidad a la hora de diseñar conroladores debido a su carácer inesable y a ser subacuado. Por eso es una plaaforma muy usada para la prueba de diferenes esraegias de conrol. Se ha diseñado una ley de conrol basándose en écnicas de diseño no lineal, en concreo usando forwarding, de forma que la posición superior del

5 péndulo inverible pasa a ser asinóicamene esable para condiciones iniciales que esén denro de la cuenca de aracción definida por la curva E =. Una vez realizadas y mosradas las correspondienes simulaciones del sisema conrolado, se pone de manifieso la similiud del comporamieno del sisema con uno que presene dos escalas de iempo. En efeco el sisema presena una dinámica rápida que lleva al sisema desde cualquier condición inicial denro de la cuenca de racción a una superficie invariane que se encarga de esabilizar el sisema. Agradecimienos Los auores agradecen a la CICYT por el apoyo recibido a ravés de sus proyecos DPI-8- C4- y DPI-44-C-. Referencias [] Chung Choo Chung and John Hauser. Nonlinear conrol of a swinging pendulum. Auomáica, 3:85 86, 995. [] R. Kelly and V. Sanibañez. Conrol de Movimieno de Robos Manipuladores. Pearson Educación, 3. [3] H. Khalil. Nonlinear sysems. Prenice-Hall,. Third Ediion. [4] S. Mori, H.Ñishihara, and K. Furua. Conrol of unsable mechanical sysem. conrol of pendulum. In. J. Conrol, 3:673 69, 976. [5] K. Ogaa. Ingeniería de conrol moderna. 4 Edición. [6] R. Sepulchre, M. Janković, and P.V. Kokoović. Consrucive Nonlinear Conrol. Springer, 997.

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios La Conducción de la Políica Monearia del Banco de México a ravés del Régimen de Saldos Diarios INDICE I. INTRODUCCIÓN...2 II. LA OPERACIÓN DEL BANCO DE MÉXICO EN EL MERCADO DE DINERO...3 III. IV. II.1.

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

Aplicaciones del Ampli cador Operacional

Aplicaciones del Ampli cador Operacional Aplicaciones del Ampli cador Operacional J.I.Huircan Universidad de La Fronera January 6, 202 Absrac Exisen muchas aplicaciones con el Ampli cador Operacional (AO). El análisis en aplicaciones lineales

Más detalles

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 38 6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 6.1 Méodo general Para valorar los usos recreacionales del agua, se propone una meodología por eapas que combina el uso de diferenes écnicas

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

TEMA I: FUNCIONES ELEMENTALES

TEMA I: FUNCIONES ELEMENTALES TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

Análisis espectral Tareas

Análisis espectral Tareas Análisis especral Tareas T3.1: Implemenación y represenación del periodograma El objeivo de esa area es que los alumnos se familiaricen con la función más sencilla de análisis especral no paramérico. Programe

Más detalles

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE.

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. Invesigación y écnicas de Mercado Previsión de Venas ÉCNICAS CUANIAIVAS ELEMENALES DE PREVISIÓN UNIVARIANE. (II) écnicas elemenales: Modelos Naive y Medias Móviles. Medición del error de previsión. Profesor:

Más detalles

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9

DERECHOS BÁSICOS DE APRENDIZAJE matemáticas - grado 9 4 Reconoce el significado de los eponenes racionales posiivos negaivos uiliza las lees de los eponenes. Por ejemplo: 7 7 7 + 7 4 7 7 7 7 40 ( 7 / ) / 7 / / 7 /0 0 7,... Uiliza la noación cienífica para

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

CAPÍTULO 3: INFILTRACIÓN

CAPÍTULO 3: INFILTRACIÓN 27 CAPÍTULO 3: INFILTRACIÓN 3.1 DEFINICIÓN El agua precipiada sobre la supericie de la ierra, queda deenida, se evapora, discurre por ella o penera hacia el inerior. Se deine como inilración al paso del

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

Medición del tiempo de alza y de estabilización.

Medición del tiempo de alza y de estabilización. PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

Definición. Elementos de un Sistema de Control

Definición. Elementos de un Sistema de Control TEORÍA DE CONTROL. Tema 1. Inroducción a los Sisemas de Conrol Sisema de Conrol Los conroles auomáicos o sisemas de conrol consiuyen una pare muy imporane en los procesos indusriales modernos, donde se

Más detalles

El comportamiento del precio de las acciones

El comportamiento del precio de las acciones El comporamieno del precio de las acciones Esrella Peroi Invesigador enior Bolsa de Comercio de Rosario eperoi@bcr.com.ar Para comprender el funcionamieno de los modelos de valuación de opciones sobre

Más detalles

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan

Tema 3. El modelo neoclásico de crecimiento: el modelo de Solow-Swan Tema 3. El modelo neoclásico de crecimieno: el modelo de Solow-Swan Inroducción Esquema El modelo neoclásico SIN progreso ecnológico a ecuación fundamenal del modelo neoclásico El esado esacionario Transición

Más detalles

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández Inroducción a la Esadísica Empresarial. Capíulo 4.- Series emporales CAPITULO 4.- SERIES TEMPORALES 4. Inroducción. Hasa ahora odas las variables que se han esudiado enían en común que, por lo general,

Más detalles

El OSCILOSCOPIO * X V d

El OSCILOSCOPIO * X V d UNIVERSIDAD NACIONAL DE COLOMBIA Deparameno de Física Fundamenos de Elecricidad y Magneismo Guía de laboraorio N o 10 Objeivos 1. Conocer y aprender a usar el osciloscopio. 2. Aprender a medir volajes

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos...

1 Introducción... 2. 2 Tiempo de vida... 3. 3 Función de fiabilidad... 4. 4 Vida media... 6. 5 Tasa de fallo... 9. 6 Relación entre conceptos... Asignaura: Ingeniería Indusrial Índice de Conenidos 1 Inroducción... 2 2 Tiempo de vida... 3 3 Función de fiabilidad... 4 4 Vida media... 6 5 Tasa de fallo... 9 6 Relación enre concepos... 12 7 Observaciones

Más detalles

Sistemade indicadores compuestos coincidentey adelantado julio,2010

Sistemade indicadores compuestos coincidentey adelantado julio,2010 Sisemade indicadores compuesos coincideney adelanado julio,2010 Sisema de Indicadores Compuesos: Coincidene y Adelanado SI REQUIERE INFORMACIÓN MÁS DETALLADA DE ESTA OBRA, FAVOR DE COMUNICARSE A: Insiuo

Más detalles

Resolución Prueba Oficial

Resolución Prueba Oficial JUEVES 6 DE sepiembre DE 01 en n 1 on el maerial de esa edición podrás revisar ocho pregunas del Área emáica de Funciones siee de Geomería. El jueves 1 de sepiembre publicaremos la ercera pare de la resolución

Más detalles

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS **

Observatorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** Revisa de Economía Aplicada E Número 53 (vol. XVIII), 2010, págs. 163 a 183 A Observaorio * EL AUMENTO DEL IVA EN ESPAÑA: UNA CUANTIFICACIÓN ANTICIPADA DE SUS EFECTOS ** GONZALO FERNÁNDEZ-DE-CÓRDOBA Universidad

Más detalles

Un algoritmo para la Planificación de Producción en un Sistema en Red de Fabricación basada en Sistemas Multiagente 1

Un algoritmo para la Planificación de Producción en un Sistema en Red de Fabricación basada en Sistemas Multiagente 1 X Congreso de Ingeniería de Organización Valencia, 7 y 8 de sepiembre de 2006 Un algorimo para la Planificación de Producción en un Sisema en Red de Fabricación basada en Sisemas Muliagene 1 Julio J. García-Sabaer

Más detalles

UNIDAD IX. Técnicas de Suavización

UNIDAD IX. Técnicas de Suavización UNIDAD IX Técnicas de Suavización UNIDAD IX La esadísica demuesra que suele ser más fácil hacer algo bien que explicar por qué se hizo mal. Allen L. Webser, 1998 Cuál es el objeivo de la Técnica de suavización?

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyeco PMME - Curso 8 Insiuo de Física Faculad de Ineniería UdelaR CÓMO GANAR UN PARTIDO DE FÚTBOL SABIENDO FÍSICA Nahuel Barrios, Juan Pablo Gadea, Valenina Groposo, Luciana Marínez. INTRODUCCIÓN

Más detalles

Diagnóstico y reparaciones automotrices con osciloscopio

Diagnóstico y reparaciones automotrices con osciloscopio Tu Manual combo Fascículo + DD Diagnósico y reparaciones auomorices con osciloscopio Los conroles del osciloscopio Cómo inerprear los oscilogramas Pruebas a sensores y acuadores Mediciones en el bus CAN

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido.

De las siguientes funciones decir cuál de ellas son funciones, y en ese caso indica el dominio y el recorrido. EJERCICIOS FUNCIONES 4º OPCIÓN B 1 De las siguienes funciones decir cuál de ellas son funciones, en ese caso indica el dominio el recorrido. a) b) c) Aplicando el es de la línea verical se observa que

Más detalles

Tema 8: SERIES TEMPORALES

Tema 8: SERIES TEMPORALES Inroducción a la Economería Tema 8: ERIE TEMPORALE Tema 8: ERIE TEMPORALE. Concepo y componenes de una serie emporal. Definiremos una serie emporal como cualquier conjuno de N observaciones cuaniaivas

Más detalles

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001

METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 METODOLOGÍA PARA EL AJUSTE DE LAS TASAS DE ESCOLARIZACIÓN A PARTIR DE LA INFORMACIÓN DEL CENSO NACIONAL DE POBLACIÓN, HOGARES Y VIVIENDA DE 2001 Insiuo Nacional de Esadísica y Censos (INDEC) Dirección

Más detalles

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA

UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA UNA MODELIZACIÓN PARA LOS ACCIDENTES DE TRABAJO EN ESPAÑA Y ANDALUCÍA Por Mónica Orega Moreno Profesora Esadísica. Deparameno Economía General y Esadísica RESUMEN El aumeno de la siniesralidad laboral

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley Modelos de Ajuse Nominal Incompleo Por Agusín Casas, UdeSa. Diego Hofman, Princeon. Analía Olgiai, BID. Javier DiFiori, Morgan Sanley JEL CLASS: E12 - Keynes; Keynesian; Pos-Keynesian E13 - Neoclassical

Más detalles

13.0 COSTOS Y VALORACIÓN ECONÓMICA

13.0 COSTOS Y VALORACIÓN ECONÓMICA 13.0 COSTOS Y VALORACIÓN ECONÓMICA 13.1 INTRODUCCIÓN En esa sección, se calcula el valor económico de los impacos ambienales que generará el Proyeco Cruce Aéreo de la Fibra Ópica en el Kp 184+900, el cual

Más detalles

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas.

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas. IGEP Tema 2. Leyas financieras básicas: esudio usando aplicaciones informáicas. onenido. apial financiero... 2. Leyes financieras: capialización y descueno...4 2. Leyes de capialización...4 2.2 Leyes de

Más detalles

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN.

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN. El seguro de vida como variable aleaoria. Cómo calcular su función de disribución. Nieo Ranero, Armando Universiy of Valencia, Spain Do. Maemáicas Económico Empresarial, Edificio Deparamenal Orienal, Av.

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

MECANISMOS DE TRANSMISIÓN

MECANISMOS DE TRANSMISIÓN MECANISMOS DE TRANSMISIÓN DE LA POLÍTICA MONETARIA EN MÉXICO MIGUEL MESSMACHER LINARTAS* * Las opiniones expresadas en ese documeno son exclusivamene del auor y no necesariamene reflejan las del Banco

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 ADAPTACION DE LOS TIPOS DE INTERES DE INTERVENCION A LA REGLA DE TAYLOR. UN ANALISIS ECONOMETRICO Carlos Paeiro Rodríguez 1, Deparameno de Análisis

Más detalles

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto) Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación

Más detalles

RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES

RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES CONSIDERANDO: Que el arículo 86 de la Ley 87-01 de fecha 9 de mayo de 2001, que crea el Sisema Dominicano de Seguridad Social,

Más detalles

MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA

MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA MEDICIÓ N DEL VALOR ECONÓ MICO AGREGADO: INVERSIÓ N RECUPERADA Y VALOR AGREGADO IRVA (Borrador) Ignacio Vélez-Pareja Deparameno de Adminisración Universidad Javeriana, Bogoá, Colombia Abril de 2000 Resumen

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

Control estadístico de procesos con dinámica: revisión del estado del arte y perspectivas de futuro

Control estadístico de procesos con dinámica: revisión del estado del arte y perspectivas de futuro ESTADÍSTICA ESPAÑOLA Vol. 46, Núm. 155, 2004, págs. 19 a 47 Conrol esadísico de procesos con dinámica: revisión del esado del are y perspecivas de fuuro por ALBERTO FERRER Dpo. Esadísica e Invesigación

Más detalles

ESTIMACIÓN DE UNA FUNCIÓN DE REACCIÓN PARA LA TASA DE INTERÉS DE POLÍTICA DEL BANCO CENTRAL DE COSTA RICA

ESTIMACIÓN DE UNA FUNCIÓN DE REACCIÓN PARA LA TASA DE INTERÉS DE POLÍTICA DEL BANCO CENTRAL DE COSTA RICA BANCO CENTRAL DE COSTA RICA DEPARTAMENTO DE INVESTIGACIONES ECONÓMICAS DIVISIÓN ECONÓMICA DOCUMENTO DE INVESTIGACIÓN DIE-04-2003-DI/R OCTUBRE 2003 ESTIMACIÓN DE UNA FUNCIÓN DE REACCIÓN PARA LA TASA DE

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA

TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA TEMA 2 LOS MODELOS ECONOMETRICOS Y SU PROBLEMATICA 1. CONCEPTO DE MODELO El ermino modelo debe de idenificarse con un esquema menal ya que es una represenación de la realidad. En ese senido, Pulido (1983)

Más detalles

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396 ISSN 0124 4396 ECONOMÍA BORRADORES DE INVESTTI I IGACIÓN No. 87. Enero 2006 Teoría del conrol ópimo: Una guía para principianes! David Bardey y Hélène Bonne UNIVERSIDAD DEL ROSARIO Colegio Mayor de Nuesra

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

Tema 5 El Transistor MOS

Tema 5 El Transistor MOS FUNAMENTO FÍCO Y TECNOLÓGCO E LA NFORMÁTCA Tema 5 El Transisor MO Agusín Álvarez Marquina Esrucura física y polarización del ransisor nmo de acumulación (ource= Fuene) G (Gae= Puera) (rain= renador) (+)

Más detalles

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA APUNTE: EECTRICIDAD- INDUCCIÓN EECTROMAGNÉTICA Área de EET Página de 3 Derechos Reservados Tiular del Derecho: INACAP N de inscripción en el Regisro de Propiedad Inelecual #. de fecha - -. INACAP 00. Página

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Cenro Educaivo de Nivel Secundario Nº 45 Anexo Universidad Tecnológica Nacional Dirección de Capaciación No Docene Dirección General de Culura y Educación Provincia de Buenos Aires FÍSICA Segundo Año Unidad

Más detalles

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar.

{ 3} Nota. La raíz no impone condiciones al dominio por ser de índice impar. . Esudia el dominio de las siguienes unciones: a ( : Función Racional, el dominio son odos los números reales ecepo los que anulen el denominador. R / 0 : 0 : : ± [ ( ] { } R ± { } b ( : Función Racional,

Más detalles

NORMAS TÉCNICAS PARA EL CÁLCULO DE LOS ÍNDICES DE ESTRATEGIA SOBRE ACCIONES DE SOCIEDAD DE BOLSAS, S.A.

NORMAS TÉCNICAS PARA EL CÁLCULO DE LOS ÍNDICES DE ESTRATEGIA SOBRE ACCIONES DE SOCIEDAD DE BOLSAS, S.A. NORMAS TÉCNICAS PARA EL CÁLCULO DE LOS ÍNDICES DE ESTRATEGIA SOBRE ACCIONES DE SOCIEDAD DE BOLSAS, S.A. ÍNDICE BBVA INVERSO X3 ÍNDICE ITX INVERSO X3 ÍNDICE SAN INVERSO X3 ÍNDICE TEF INVERSO X3 ÍNDICE BBVA

Más detalles

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN

CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN CORRELACIÓN LINEAL Y ANÁLISIS DE REGRESIÓN Auores: Alicia Vila (avilag@uoc.edu), Máximo Sedano (msedanoh@uoc.edu), Ana López (alopezra@uoc.edu), Ángel A. Juan (ajuanp@uoc.edu), MAPA CONCEPTUAL Definición

Más detalles

INSTITUTO NACIONAL DE PESCA

INSTITUTO NACIONAL DE PESCA INSTITUTO NACIONAL DE PESCA Dirección General de Invesigación Pesquera en el Pacífico Nore Subdirección de Tecnología en el Pacífico Nore. Indicadores económico-financieros para la capura de camarón y

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

DISEÑO DE UN SISTEMA ROBÓTICO CARTESIANO PARA APLICACIONES INDUSTRIALES

DISEÑO DE UN SISTEMA ROBÓTICO CARTESIANO PARA APLICACIONES INDUSTRIALES REVISA FACULAD DE INGENIERÍA, U..A. (CHILE), VOL 11 N 2, 2003, pp. 11-16 DISEÑO DE UN SISEMA ROBÓICO CARESIANO PARA APLICACIONES INDUSRIALES Jorge Roas V. 1 Ingeborg Mahla 2 A. Gerardo Muñoz C. 1 Daniel

Más detalles

ELECTRONICA DE POTENCIA

ELECTRONICA DE POTENCIA LTRONIA D POTNIA TIRISTORS Anonio Nachez A4322 LTRONIA IV A4.32.2 lecrónica IV 2 3 INDI 1. onmuación naural 2. onmuación forzada 3. Méodos de apagado: lasificación 4. lase A: Auoconmuado por carga resonane

Más detalles

ENLOSúltimos quince años, la extensión del método

ENLOSúltimos quince años, la extensión del método Esabilidad y Exaciud de una Exensión del Méodo FDTD Para la Incorporación de Ferrias Parcialmene Magneiadas José A. Pereda, Ana Grande, Oscar Gonále, y Ángel Vegas Deparameno de Ingeniería de Comunicaciones(DICom,

Más detalles

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005

RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 RESULTADOSEDUCATIVOS RE01 DIFERENCIA DEL LOGRO PROMEDIO EN COMPRENSIÓN LECTORA Y MATEMÁTICAS PARA 6 DE PRIMARIA Y 3 DE SECUNDARIA ENTRE 2000 Y 2005 FÓRMULA RE01 NOMBREdelINDICADOR Diferencia del loro promedio

Más detalles

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Acumulados

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Acumulados La Conducción de la Políica Monearia del Banco de México a ravés del Régimen de Saldos Acumulados INDICE I. INTRODUCCIÓN...2 II. LA OPERACIÓN DEL BANCO DE MÉXICO EN EL MERCADO DE DINERO...3 II.1. ETIVOS

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

Aplicación de la teoría de Opciones Reales al Análisis de Inversiones en Nuevas Tecnologías *. 41092 Sevilla, pedroluis@esi.us.

Aplicación de la teoría de Opciones Reales al Análisis de Inversiones en Nuevas Tecnologías *. 41092 Sevilla, pedroluis@esi.us. ƒ Índice Aplicación de la eoría de Opciones Reales al Análisis de Inversiones en Nuevas ecnologías *. José Miguel León Blanco 1, José Manuel Framiñán orres 2, Rafael Ruiz Usano 3, Pedro Luis González Rodríguez

Más detalles

Soluciones Acotadas para Ecuaciones Diferenciales Ordinarias de Orden 2

Soluciones Acotadas para Ecuaciones Diferenciales Ordinarias de Orden 2 Divulgaciones Maemáicas Vol. 7 No. 1 (1999), pp. 49 57 Soluciones Acoadas para Ecuaciones Diferenciales Ordinarias de Orden 2 Bounded Soluions for Second Order Ordinary Differenial Equaions Raúl Naulin

Más detalles

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE Evaluación de Proyecos de Inversión 4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE La generación de indicadores de renabilidad de los proyecos de inversión, surge como respuesa a la necesidad de disponer

Más detalles

UNA PROPUESTA DE MODELO INMUNIZADOR PRÁCTICO PARA FONDOS DE PENSIONES DE EMPLEO Y PRESTACIÓN DEFINIDA EN EL MERCADO ESPAÑOL

UNA PROPUESTA DE MODELO INMUNIZADOR PRÁCTICO PARA FONDOS DE PENSIONES DE EMPLEO Y PRESTACIÓN DEFINIDA EN EL MERCADO ESPAÑOL UNA PROPUESTA DE MODELO INMUNIZADOR PRÁCTICO PARA FONDOS DE PENSIONES DE EMPLEO Y PRESTACIÓN DEFINIDA EN EL MERCADO ESPAÑOL Amancio Bezuen; J. Iñaki de La Peña; Rosalía E. Gómez y Ana Tª Herrera ( ) Universidad

Más detalles

6.- Señales digitales

6.- Señales digitales EAL - #3-6.- Señales digiales Dado un mensaje digial (p.ej. ) exisen diversos méodos para ransmiirlo como una señal elécrica (señal digial), algunos de los mas comunes, suponiendo ransmisión sincrónica,

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

3. Matrices y álgebra matricial

3. Matrices y álgebra matricial Marices y álgebra maricial Repasaremos algunos concepos básicos de la eoría maricial Nos cenraremos en aspecos relacionados con el álgebra lineal, la inversión y la diagonalización de marices Veremos algunas

Más detalles