La transformada de Laplace

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La transformada de Laplace"

Transcripción

1 Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x) = f(x), p, q R, y(x ) = y, y (x ) = y. (8..) La idea consise en converir de alguna forma la EDO en una ecuación algebraica en general más sencilla de resolver y luego inverir el proceso de forma que obengamos la solución buscada. Es posible y si lo es, cómo hacerlo? La respuesa la da una conocida ransformada inegral. Para ener una idea de que es una rasformada inegral consideraremos, por ejemplo, el espacio R a,b de las funciones f(x) inegrables según Riemann en a, b y sea K(x, ) una función inegrable en a, b, para odo A R. Enonces podemos definir para cada una de las funciones de R a,b podemos definir un funcional 2 T f al que T f = b a K(x, )f(x)dx = F (). La función K(x, ) se suele denominar núcleo de la ransformación y a F () ransformada de la función f. Una propiedad inmediaa de ésas ransformadas es que son lineales, es decir, cuales quiera sean los números α y β y las funciones f(x) y g(x) de R a,b, T αf + βg = αt f + βt g La ransformada inegral de Laplace Vamos a inroducir ahora una ransformada inegral de especial imporancia: la ransformada de Laplace Definición 8.2. Sea f una función definida en, ). La ransformada de Laplace F() es la ransformada inegral F() = f() = f o e x f(x)dx, (8.2.) Es similar a la idea que llevó a la apariación de los logarimos. O sea, converir una operación complicada en ora más sencilla para luego, al inverir dicha operación obener el resulado. Es fácil comprobar que muliplicar dos números cualesquiera es mucho más complicado que sumarlos, de ahí la uilidad e imporancia que uvieron las primeras ablas de logarimos. 2 Un funcional no es más que una función definida sobre el espacio de funciones 53

2 54 Inroducción a las EDOs donde la inegral se eniende en el senido impropio, o sea z e x f(x)dx = lím e x f(x)dx. z Anes de coninuar debemos ener en cuena que esa inegral a diferencia de la ransformada T f anerior puede no esar definida para cieras funciones coninuas pues aunque exisa la inegral z e x f(x)dx para odo z puede que el límie no exisa, o bien, que exisa no para odo R. Por ejemplo, e ax () = a, > a, e x2 () = e x2 x dx =, R., s a Una preguna naural es por ano que clase de funciones ienen ransformadas de Laplace. En ese curso nos resringiremos a las funciones de orden exponencial. Definición Diremos que una función f es de orden exponencial si exisen dos consanes no negaivas c y M ales que f(x) Me cx para odo x. Teorema Si f es una función coninua a rozos de orden exponencial enonces f iene ransformada de Laplace para odo suficienemene grande. Demosración: Tenemos, para > c, Pero la inegral e x f(x) = e x f(x) Me x+cx = Me x( c). z e x( c) dx = lím e x( c) dx = lím M e(c )z = M z z c c, luego por el crierio de comparación de Weiersrass para las inegrales impropias la inegral e x f(x)dx es absoluamene convergene, y por ano converge. Nóese además que de la prueba se deduce que la ransformada de Laplace exise para odo > c. La siguiene abla de Transformadas de Laplace es de gran inerés. En ella esán las principales ransformadas de Laplace que usaremos incluida la de la función escalón χ c (s) definida como si x, c y en el reso. Proposición Si F() = f() enonces. f () = f() f() = F() f(), 2. f (n) () = n F() n k= k f (n k ) () = n F() n f() n 2 f () f (n ) (), 3. e ax f(x)() = F( a), 4. xf(x)() = F (), 5. x n f(x)() = ( ) n F (n) (), 6. χ c (x)f(x c)() = e c F(), 7. χ c (x)f(x)() = e c f(x + c)().

3 La ransformada de Laplace 55 f(x) F() = f() c c x n n! n+ e ax a, sen(ax) cos(ax) senh(ax) cosh(ax) a 2 + a a 2 a 2 a 2, 2 a 2, > a > a > a x /2 π, > χ c (x) e c, > Tabla 8.: Transformadas de Laplace de algunas funciones Demosración: Usando la inegración por pares para la inegral impropia enemos f () = e x f (x)dx = e x f(x) = F() f(). (e x ) f(x) = f() + e x f(x)dx Supongamos que es ciera para n, enonces ( ) n f (n+) () = (f (n) ) = f (n) () f (n) () = n F() k f (n k ) () f (n) () k= n = n+ F() k+ f (n k ) () f (n) () = n+ F() k= por ano lo es para n + y por inducción se deduce 2. Para probar 3 basa noar que e ax f(x)() = e ( a)x f(x)dx = F( a). n k f (n k) (), Para probar 4 basa derivar (8.2.) respeco a. 3 Derivando n veces se deduce 5. La propiedad 7 se deduce fácilmene de 6 y ésa, a su vez, es consecuencia de las igualdades χ c (x)f(x c) = c f(x c)e x dx = k= f(ξ)e (c+ξ) dξ = e c F(). 3 No siempre se puede hacer esa operación, no obsane en ese caso es posible.

4 56 Inroducción a las EDOs Veamos como usar las propiedades aneriores para resolver el problema de valores iniciales y ay + by = f(x), y() = y, y () = y. Usando que y = y y(), y = 2 y y() y (), y denoando por F() = f, enemos que la EDO anerior se ransforma en la siguiene ecuación algebraica 2 y y y + a y ay + b F() de donde se deduce que ransformada de la solución iene la forma F() + ( + a)y + y 2. (8.2.2) + a + b Así solo nos resa saber como enconrar la inversa de la ransformada anerior, es decir enconrar la función y(x) al que y. Ese problema no es sencillo de resolver y de hecho requiere un gran conocimieno de la eoría de funciones de variables complejas por lo que sólo nos limiaremos a adivinar muchas de ellas usando las propiedades anes descrias así como la abla de ransformadas conocidas. Definición Dada la función F(), diremos que la función f(x) es la aniransformada de F() si F() = f(), y lo denoaremos por f(x) = F(). Ejemplo Enconrar las aniransformadas de ( + a) 2 + b 2, ( + a) 2 + b 2. En el primer caso enemos sen(bx) = b/( 2 + b 2 ), luego e ax b sen(bx) = ( + a) 2 + b 2 ( + a) 2 + b 2 = b e ax sen(bx). Análogamene, cos(bx) = /( 2 + b 2 ), luego e ax cos(bx) = +a (+a) 2 +b 2, por ano ( + a) 2 + b 2 = + a ( + a) 2 + b 2 a ( + a) 2 + b 2 = e ax cos(bx) a b e ax sen(bx), de donde deducimos ( + a) 2 + b 2 = e ax b cos(bx) a sen(bx). b Ejemplo Calcular la aniransformada de e c ( + a) 2 + b 2. Como e ax sen(bx) = b (+a) 2 +b 2, enonces usando la propiedad 6 de la proposición enemos χ c (x)e a(x c) sen(b(x c) = e c e ax sen(bx), por ano, e c ( + a) 2 + b 2 = b χ c(x)e a(x c) sen(b(x c). Veamos ahora algunos ejemplos de aplicación a EDOs lineales de orden 2. Comenzaremos mosrando como resolver dos casos pariculares de la EDO homogénea.

5 La ransformada de Laplace 57 Ejemplo Resolver la EDO y + 3y + 2y = con y() = y e y () = y. Usando (8.2.2) enemos que en fracciones simples nos da ( 3)y + y , A + + B + 2. Ahora bien, como e x = /( + ) y e 2x = /( + 2), enemos A + + B + 2 = A ex + B e 2x = Ae x + Be 2x = y(x) = Ae x + Be 2x. Ejemplo Resolver la EDO y + 2y + y = con y() = y e y () = y. Usando (8.2.2) y aplicando el méodo de fracciones simples obenemos A + + B ( + ) 2. Como anes enemos e x = /(+) y nos fala enconrar la función f cuya ransformada es f = /( + ) 2. Exisen diversas formas de dar con esa función. Por ejemplo, combinando la propiedad 3 de la proposición y la ransformada x = / 2 enemos que xe ax = /( a) 2, por ano, escogiendo a = enemos xe x = /( + ) 2 y por ano A + + B ( + ) 2 = A e x +B xe x = Ae x +Bxe x = y(x) = Ae x +Be x. El mismo resulado se obiene si usamos la propiedad 4 de la proposición (8.2.4) escogiendo f(x) = e x. Ejemplo 8.2. Resolver el PVI y 3y + 2y = e 3x con y() =, y () =. Aplicamos la fórmula (8.2.2) y obenemos Ahora bien, luego ( 3)( ) ( 3)( ) = , = 2 + 2, = 2 e3x 2 e 2x ex, de donde deducimos que la solución es y(x) = e 3x /2 2e 2x + 5e x /2. 4 Ejercicio 8.2. Resolver el PVI y + 4y = 4x con y() =, y () =. Es imporane desacar que la ransformada de Laplace no sólo esá bien definida para muchas funciones coninuas, sino que ambién lo esá para funciones coninuas a rozos lo cual nos permiirá resolver direcamene el PVI (8..) cuando la función f sea coninua a rozos. 4 Resolverlo por el méodo del aparado anerior y comprobar que la solución es la misma.

6 58 Inroducción a las EDOs Ejemplo Resolver el PVI y + 4y = {, x 4, x > 4 con y() = 3, y () = 2. Aplicamos a la EDO y obenemos, usando (8.2.2) Ahora bien, y() = Y() = e 4 ( 2 + 4). ( 2 + 4) = 4 4( 2 + 4) = ( 4 así que la propiedad 6 de la proposición nos da e 4 ( 2 + 4) Además, es fácil comprobar que sen(2x) ), = 4 (χ 4(x) + χ 4 (x) sen(2x 8)) = 3 cos(2x) 2 sen(2x), + 4 luego χ 4 (x) Y() = 3 cos(2x) 2 sen(2x) + ( sen(2x 8)). 4 Ejemplo Resolver y + 3y + 2y = χ (x)e 3x con y() =, y () =. Al igual que en el ejemplo anerior enemos, usando (8.2.2) Ahora bien, Y() = e 3 e ( 3)( + )( + 2) ( + )( + 2). + 4 ( + )( + 2) = = 3e x 2e 2x, ( 3)( + )( + 2) = 2 ( 3) 4 ( + ) + 5 ( + 2) = Enonces, usando la propiedad 6 de la proposición obenemos e 3 e ( 3)( + )( + 2) = e3 e 2 e3x 4 e x + 5 e 2x 2 e3x 4 e x + 5 e 2x. = e 3 χ (x) 2 e3x 3 4 e x+ + 5 e 2x+2, luego y(x) = Y() = 3e x 2e 2x + χ (x) 2 e3x 4 e x e 2x+5. La úlima propiedad que consideraremos es la ransformada de una convolución de funciones. Definición Dadas dos funciones inegrables f y g, definiremos la convolución (f g) de ambas a la función

7 La ransformada de Laplace 59 (f g)(x) = x f(x z)g(z)dz. Si además, f y g son de orden exponencial siendo F() y G() las ransformadas de Laplace de f y g, respecivamene, enonces exise la ransformada de Laplace de (f g)(x) y Para comprobarlo basa noar que f g = = ( x e x f(x z)g(z)dz f g = F() G(). (8.2.3) ) dx = ( g(z) χ x (z)f(x z)e x dx ) dz = e x ( ) χ x (z)f(x z)g(z)dz dx g(z))e z F()dz = F()G(). Ejemplo Usando lo anerior calcula /( 2 + ) 2. Como sen x = F() = /( 2 + ), enemos ( 2 + ) 2 = = F()F(), luego, ( 2 + ) 2 = (sen x) (sen x) = x sen(x z) sen zdz = 2 x cos x + sen x. 2 Ejercicio Calcula /( a) /( b). Lo anerior nos permie ambién resolver las EDOs de orden dos de una forma direca al y como se muesra en el siguiene ejemplo Ejemplo Resuelve el PVI y + 5y + 4y = g(x), y() = y () =. Tomamos la ransformada de Laplace de forma que usando (8.2.2) enemos Y() = G() ( + )( + 4) = ( + )( + 4) G(). Si denoamos por y h (x) la aniransformada de /( + )( + 4) (cuyo valor en ese caso es /3e x + /3e 4x ), enonces la solución del PVI se puede escribir de la forma y(x) = x g(x z)y h (z)dz. (8.2.4) Ejemplo Resuelve el PVI y + 5y + 4y = g(x), y() =, y () = Problemas Problema 8.3. Calcula las ransformadas de Laplace de las funciones de la abla 8.2. Problema Calcula las ransformadas de Laplace de las funciones x cos(ωx) y x sen(ωx) y prueba que 2 ( 2 + ω 2 ) 2 = 2ω sen(ωx) + xω cos(ωx). Usando lo anerior encuenra la ransformada de la función ( 2 + ω 2 ) 2. Como aplicación resuelve el PVI

8 6 Inroducción a las EDOs y + ω 2 y = f sen(ωx), y() = y () =. Problema Calcula las aniransformadas de las siguienes funciones ( + a) 2, ( + a) n, ( 2 + a 2 )( 2 + b 2 ), e c ( + a) 2 + b 2. Problema Encuenra la solución de las EDOs. y 5y + 4y =, y() =, y () =, 2. y 4y + 4y =, y() =, y () =, 3. y + y = xe x, y() = y () =, 4. y + 2y + 5y = 3e x sen x, y() =, y () =, 5. y + 2y + y = χ π/2 (x) sen(2x), y() =, y () =, 6. y + 3y + 2y = χ π/2 (x)e 3x, y() =, y () =. Problema La EDO xy + y + xy =, se conoce como ecuación de Bessel de orden. Prueba que si Y() es la ransformada de Laplace de la solución de esa EDO con y() =, prueba que enonces Y saisface la EDO ( 2 + )Y () + Y() =. Prueba que la solución de la EDO anerior se puede expresar en serie como Y() = c n= ( ) n (2n)! 2 2n (n!) 2 2n+. A parir de lo anerior deduce la función y(x) solución de la EDO de Bessel. Problema Usar la ransformada de Laplace para resolver los siguienes PVI de SEDO: ( ) ( ) Y 3 = Y, Y () =, ( ) ( ) ( ) Y 4 = Y + e x 2, Y () =, ( ) ( ) ( ) Y 3 2 χπ (x) = Y +, Y () =. 2 2

TEMA I: FUNCIONES ELEMENTALES

TEMA I: FUNCIONES ELEMENTALES TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)

Más detalles

Capítulo 4 Sistemas lineales de primer orden

Capítulo 4 Sistemas lineales de primer orden Capíulo 4 Sisemas lineales de primer orden 4. Definición de sisema lineal de primer orden Un sisema de primer orden es aquel cuya salida puede ser modelada por una ecuación diferencial de primer orden

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

TOPOLOGÍA. De la misma forma se puede generalizar el concepto de convergencia, que para sucesiones

TOPOLOGÍA. De la misma forma se puede generalizar el concepto de convergencia, que para sucesiones Muy, muy cerca: Coninuidad y convergencia Una función f : IR IR es coninua en a si valores muy, muy cercanos a a se ransforman en valores muy, muy cercanos a f(a). Dicho de oro modo, por muy exigenes que

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

Tema 5: Diferenciabilidad: Aplicaciones

Tema 5: Diferenciabilidad: Aplicaciones Prof. Susana López 1 UniversidadAuónomadeMadrid Tema 5: Diferenciabilidad: Aplicaciones 1 Funciones compuesas y Regla de la cadena Recordemos que la regla de la cadena para funciones de una sola variable

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO

Práctica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO Prácica 20. CARGA Y DESCARGA DE UN CONDENSADOR ELÉCTRICO OBJETIVOS Esudiar los procesos de carga y de descarga de un condensador. Medida de capacidades por el méodo de la consane de iempo. MATERIAL Generador

Más detalles

Capítulo 5 Sistemas lineales de segundo orden

Capítulo 5 Sistemas lineales de segundo orden Capíulo 5 Sisemas lineales de segundo orden 5. Definición de sisema de segundo orden Un sisema de segundo orden es aquel cuya salida y puede ser descria por una ecuación diferencial de segundo orden: d

Más detalles

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables.

Y t = Y t Y t-1. Y t plantea problemas a la hora de efectuar comparaciones entre series de valores de distintas variables. ASAS DE VARIACIÓN ( véase Inroducción a la Esadísica Económica y Empresarial. eoría y Pácica. Pág. 513-551. Marín Pliego, F. J. Ed. homson. Madrid. 2004) Un aspeco del mundo económico que es de gran inerés

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω.

LÍNEAS DE FASES. Fig. 1. dx (1) dt se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden definida en Ω. LÍNEAS DE FASES E. SÁEZ Sea el dominio Ω R R y la función F : Ω R. F R Ω Una epresión de la forma Fig. 1 d (1) = F(,), o bien, ẋ = F(,) se llama Ecuación Diferencial Ordinaria (E.D.O.) de Primer Orden

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE

4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE Evaluación de Proyecos de Inversión 4. INDICADORES DE RENTABILIDAD EN CERTIDUMBRE La generación de indicadores de renabilidad de los proyecos de inversión, surge como respuesa a la necesidad de disponer

Más detalles

FUNCIONES VECTORIALES CON DERIVE.

FUNCIONES VECTORIALES CON DERIVE. FUNCIONES VECTORIALES CON DERIVE. Las operaciones de cálculo de Dominio, adición susracción, muliplicación escalar y vecorial de funciones vecoriales, se realizan de manera similar a las operaciones con

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C.

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Maemáicas 1 1 EJERCICIOS RESUELTOS: Funciones de varias variables Elena Álvarez Sáiz Dpo. Maemáica Aplicada C. Compuación Universidad de Canabria Ingeniería de Telecomunicación Ejercicios: Func. varias

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

Aplicaciones de la Probabilidad en la Industria

Aplicaciones de la Probabilidad en la Industria Aplicaciones de la Probabilidad en la Indusria Cuara pare Final Dr Enrique Villa Diharce CIMAT, Guanajuao, México Verano de probabilidad y esadísica CIMAT Guanajuao,Go Julio 010 Reglas para deección de

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

Soluciones Acotadas para Ecuaciones Diferenciales Ordinarias de Orden 2

Soluciones Acotadas para Ecuaciones Diferenciales Ordinarias de Orden 2 Divulgaciones Maemáicas Vol. 7 No. 1 (1999), pp. 49 57 Soluciones Acoadas para Ecuaciones Diferenciales Ordinarias de Orden 2 Bounded Soluions for Second Order Ordinary Differenial Equaions Raúl Naulin

Más detalles

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto)

Master en Economía Macroeconomía II. 1 Learning by Doing (versión en tiempo discreto) Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 4 - Soluciones 1 Learning by Doing (versión en iempo discreo) Considere una economía cuyas preferencias, ecnología, y acumulación

Más detalles

Control de un péndulo invertido usando métodos de diseño no lineales

Control de un péndulo invertido usando métodos de diseño no lineales Conrol de un péndulo inverido usando méodos de diseño no lineales F. Salas salas@caruja.us.es J.Aracil aracil@esi.us.es F. Gordillo gordillo@esi.us.es Depo de Ingeniería de Sisemas y Auomáica.Escuela Superior

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

Métodos de Previsión de la Demanda Datos

Métodos de Previsión de la Demanda Datos Daos Pronósico de la Demanda para Series Niveladas Esime la demanda a la que va a hacer frene la empresa "Don Pinzas". La información disponible para poder esablecer el pronósico de la demanda de ese produco

Más detalles

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN

March 2, 2009 CAPÍTULO 3: DERIVADAS PARCIALES Y DIFERENCIACIÓN March 2, 2009 1. Derivadas Parciales y Funciones Diferenciables En ese capíulo, D denoa un subconjuno abiero de R n. Definición 1.1. Consideremos una función f : D R y sea p D, i = 1,, n. Definimos la

Más detalles

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas III. M. en C.Luis Ignacio Sandoval Paéz Cuadernillo de Apunes de Maemáicas III M. en C.Luis Ignacio Sandoval Paéz Índice Unidad I vecores. Definición de un vecor en R, R (Inerpreación geomérica), y su n generalización en R.. Operaciones con

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

UNIDAD 5: MATRICES Y DETERMINANTES

UNIDAD 5: MATRICES Y DETERMINANTES UNIDD 5: MTRICES Y DETERMINNTES ÍNDICE DE L UNIDD - INTRODUCCIÓN - MTRICES CONCEPTOS BÁSICOS TIPOS DE MTRICES 3- OPERCIONES CON MTRICES 4 4- TRNSFORMCIONES ELEMENTLES EN UN MTRIZ6 5- MTRIZ INVERS 7 6-

Más detalles

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por

Representación gráfica de curvas en forma paramétrica x a(t sent) 1.- Representar la curva dada por Represenación gráfica de curvas en forma paramérica x a( sen) 1.- Represenar la curva dada por, siendo a > 0. y a(1 cos).- Emparejar cada curva con su gráfica ì ì x = a) ï x = í b) ï ì í ï c) ï x = - sen

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas.

IGEP Tema 2. Leyas financieras básicas: estudio usando aplicaciones informáticas. IGEP Tema 2. Leyas financieras básicas: esudio usando aplicaciones informáicas. onenido. apial financiero... 2. Leyes financieras: capialización y descueno...4 2. Leyes de capialización...4 2.2 Leyes de

Más detalles

Ecuaciones Diferenciales Ordinarias de Primer Orden

Ecuaciones Diferenciales Ordinarias de Primer Orden Tema 2 Ecuaciones Diferenciales Ordinarias de Primer Orden Introducción Estudiaremos en este tema varios tipos de E.D.O. de primer orden que es posible resolver de forma exacta. 2.1 Ecuaciones en variables

Más detalles

APLICACIONES DE LAS SERIES DE FOURIER

APLICACIONES DE LAS SERIES DE FOURIER APLICACIONES DE LAS SERIES DE FOURIER Renato Álvarez Nodarse 1. Resolución de EDPs 1.1. La ecuación de ondas En este apartado vamos a usar las series de Fourier para resolver la ecuación de ondas unidimensional

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Medición del tiempo de alza y de estabilización.

Medición del tiempo de alza y de estabilización. PRÁCTICA # 2 FORMAS DE ONDA 1. Finalidad Esudiar la respuesa de configuraciones circuiales simples a diferenes formas de exciación. Medición del iempo de alza y de esabilización. Medición del reardo. Medición

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

3. Matrices y álgebra matricial

3. Matrices y álgebra matricial Marices y álgebra maricial Repasaremos algunos concepos básicos de la eoría maricial Nos cenraremos en aspecos relacionados con el álgebra lineal, la inversión y la diagonalización de marices Veremos algunas

Más detalles

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN.

Keywords: seguro de vida, provisión matemática, probabilidad, función de distribución, solvencia, value at risk, VAT, valor actual neto, VAN. El seguro de vida como variable aleaoria. Cómo calcular su función de disribución. Nieo Ranero, Armando Universiy of Valencia, Spain Do. Maemáicas Económico Empresarial, Edificio Deparamenal Orienal, Av.

Más detalles

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO

PROCESOS ESTOCÁSTICOS PROCESOS ESTOCÁSTICOS INTEGRAL ESTOCÁSTICA ECUACIONES DIFERENCIALES ESTOCASTICAS: LEMA DE ITO PROCESOS ESOCÁSICOS PROCESOS ESOCÁSICOS INEGRAL ESOCÁSICA ECUACIONES DIFERENCIALES ESOCASICAS: LEMA DE IO Procesos esocásicos Un proceso esocásico describe la evolución emporal de una variable aleaoria.

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

Operador Diferencial y Ecuaciones Diferenciales

Operador Diferencial y Ecuaciones Diferenciales Operador Diferencial y Ecuaciones Diferenciales. Operador Diferencial Un operador es un objeto matemático que convierte una función en otra, por ejemplo, el operador derivada convierte una función en una

Más detalles

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2

x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2 Tema 5 Integración Indefinida Ejercicios resueltos Ejercicio Calcular la integral x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = x dx dv =

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones

01 Ejercicios de Selectividad Matrices y Sistemas de Ecuaciones 01 Ejercicios de Selecividad Marices y Sisemas de Ecuaciones Ejercicios propuesos en 009 1- [009-1-A-1] a) [1 5] En un comercio de bricolaje se venden lisones de madera de res longiudes: 090 m, 150 m y

Más detalles

Criterios de evaluación y selección de los proyectos de inversión en Cuba

Criterios de evaluación y selección de los proyectos de inversión en Cuba Crierios de evaluación y selección de los proyecos de inversión en Cuba Auor: Msc. Eliover Leiva Padrón E-Mail: eleyva@ucfinfo.ucf.edu.cu Insiución: Universidad de Cienfuegos Carlos Rafael Rodríguez Carreera

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

Dispositivos semiconductores

Dispositivos semiconductores Deparameno de Telecomunicaciones Disposiivos semiconducores 3 Inroduccion Veremos los disposiivos semiconducores más básicos: los diodos. Veremos las variables más comunes de esos semiconducores; El diodo

Más detalles

Matemática financiera

Matemática financiera UNDAD 2 Maemáica financiera L a necesidad de efecuar numerosos y complicados cálculos dio origen a los logarimos. Los más usados son los logarimos neperianos, llamados así en honor de John Neper (156 1617),

Más detalles

Ecuaciones de Primer Orden e Intervalo Maximal

Ecuaciones de Primer Orden e Intervalo Maximal 2 Ecuaciones de Primer Orden e Inervalo Maximal 2.1 Algunos Méodos de Resolución En general, es muy difícil resolver ecuaciones diferenciales de primer orden. Pero hay cieros ipos canónicos de ésas para

Más detalles

PRÁCTICA 3: Sistemas de Orden Superior:

PRÁCTICA 3: Sistemas de Orden Superior: PRÁCTICA 3: Sisemas de Orden Superior: Idenificación de modelo de POMTM. Esabilidad y Régimen Permanene de Sisemas Realimenados Conrol e Insrumenación de Procesos Químicos. . INTRODUCCIÓN Esa prácica se

Más detalles

Fundamentos del Análisis de Fourier

Fundamentos del Análisis de Fourier Fundamenos del Análisis de Fourier Camilo José Carrillo González Deparameno de Enxeñería Elécrica Escola écnica Superior de Enxeñeiros Indusriáis Universidade de Vigo Vigo, 3 Índice Índice PRÓLOGO v I.

Más detalles

Análisis de inversiones y proyectos de inversión

Análisis de inversiones y proyectos de inversión Análisis de inversiones y proyecos de inversión Auora: Dra. Maie Seco Benedico Índice 5. Análisis de Inversiones 1. Inroducción. 2. Crierios para la valoración de un proyeco. 3. Técnicas de valoración

Más detalles

Foundations of Financial Management Page 1

Foundations of Financial Management Page 1 Foundaions of Financial Managemen Page 1 Combinaciones empresarias: decisiones sobre absorciones y fusiones de empresas Adminisración financiera UNLPam Faculad de Ciencias Económicas y Jurídicas Profesor:

Más detalles

EQUIVALENCIA Y SIGNIFICADO DE LAS FORMULAS PARA VALORAR EMPRESAS POR DESCUENTO DE FLUJOS Pablo Fernández 1 INDICE

EQUIVALENCIA Y SIGNIFICADO DE LAS FORMULAS PARA VALORAR EMPRESAS POR DESCUENTO DE FLUJOS Pablo Fernández 1 INDICE EQUIVALENCIA Y SIGNIFICADO DE LAS FORMULAS PARA VALORAR EMPRESAS POR DESCUENTO DE FLUJOS Pablo Fernández INDICE. Fórmulas de valoración. Definiciones de cash flow disponible para las acciones y de free

Más detalles

1. Derivadas de funciones de una variable. Recta tangente.

1. Derivadas de funciones de una variable. Recta tangente. 1. Derivadas de funciones de una variable. Reca angene. Derivadas Vamos a ver en ese capíulo la generalización del concepo de derivada de funciones reales de una variable a funciones vecoriales con varias

Más detalles

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS)

ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) ÁREA DE FÍSICA DE LA TIERRA SISMOLOGÍA E INGENIERÍA SÍSMICA (PRÁCTICAS) Anexo VI Prácicas de Sismología e Ingeniería Sísmica PRACTICA 5. TRATAMIENTO DE ACELEROGRAMAS. 1. OBJETIVO Aprender a llevar a cabo

Más detalles

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández

Introducción a la Estadística Empresarial. Capítulo 4.- Series temporales Jesús Sánchez Fernández Inroducción a la Esadísica Empresarial. Capíulo 4.- Series emporales CAPITULO 4.- SERIES TEMPORALES 4. Inroducción. Hasa ahora odas las variables que se han esudiado enían en común que, por lo general,

Más detalles

6.1 Transformada de Fourier

6.1 Transformada de Fourier 6 Función de Green II. Dominios no acotados 23 a t e a PROBLEMAS DE AMPLIACIÓN DE MATEMÁTICAS t i c a s 2 o Ing. Telecomunicaciones CURSO 2009 2010 6 Función de Green II. Dominios no acotados 6.1 Transformada

Más detalles

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0,

TEMA: FUNCIONES: Cuadrantes 3 er cuadrante, x 0, 4º cuadrante, x 0, TEMA: FUNCIONES: ÍNDICE:. Inroducción.. Dominio y recorrido.. Gráficas de funciones elemenales. Funciones definidas a rozos. 4. Coninuidad.. Crecimieno y decrecimieno, máimos y mínimos. 6. Concavidad y

Más detalles

Análisis espectral Tareas

Análisis espectral Tareas Análisis especral Tareas T3.1: Implemenación y represenación del periodograma El objeivo de esa area es que los alumnos se familiaricen con la función más sencilla de análisis especral no paramérico. Programe

Más detalles

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD

USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD USO DE LAS TRANSFORMADAS DE LAPLACE Y Z EN EL ÁREA DE PROBABILIDAD Inroducción. En muchas áreas de ingeniería se uilizan procesos esocásicos o aleaorios para consruir modelos de sisemas ales como conmuadores

Más detalles

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA

6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 38 6 METODOLOGÍA PROPUESTA PARA VALORAR USOS IN SITU DEL AGUA 6.1 Méodo general Para valorar los usos recreacionales del agua, se propone una meodología por eapas que combina el uso de diferenes écnicas

Más detalles

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g

(3) Regla del cociente: Si g(z 0 ) 0, f/g es derivable en z 0 y. (z 0 ) = f (z 0 )g(z 0 ) f(z 0 )g (z 0 ) . g Funciones holomorfas 2.1. Funciones variable compleja En este capítulo vamos a tratar con funciones f : Ω C C, donde Ω C es el dominio de definición. La forma habitual de expresar estas funciones es como

Más detalles

Construcción de señales usando escalones y rampas

Construcción de señales usando escalones y rampas Consrucción de señales usando escalones y rampas J. I. Huircán Universidad de La Fronera March 3, 24 bsrac Se planean méodos para componer y descomponer señales basadas en escalones y rampas. Se de ne

Más detalles

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley

Modelos de Ajuste Nominal Incompleto. Por Agustín Casas, UdeSa. Diego Hofman, Princeton. Analía Olgiati, BID. Javier DiFiori, Morgan Stanley Modelos de Ajuse Nominal Incompleo Por Agusín Casas, UdeSa. Diego Hofman, Princeon. Analía Olgiai, BID. Javier DiFiori, Morgan Sanley JEL CLASS: E12 - Keynes; Keynesian; Pos-Keynesian E13 - Neoclassical

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

Solución de la ecuación de onda como un problema de valores iniciales usando diferencias finitas

Solución de la ecuación de onda como un problema de valores iniciales usando diferencias finitas Solución de la ecuación de onda como un problema de valores iniciales usando diferencias finias F. S. Guzmán Insiuo de Física y Maemáicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3,

Más detalles

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS

MATEMATICAS I FUNCIONES ELEMENTALES. PROBLEMAS 1º) La facura del gas se calcula a parir de una canidad fija y de un canidad variable que se calcula según los m 3 consumidos (el precio de cada m 3 es consane). El impore de la facura de una familia,

Más detalles

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396

ECONOMÍA. Teoría del control óptimo: Una guía para principiantes! David Bardey y Hélène Bonnet ISSN 0124 4396 ISSN 0124 4396 ECONOMÍA BORRADORES DE INVESTTI I IGACIÓN No. 87. Enero 2006 Teoría del conrol ópimo: Una guía para principianes! David Bardey y Hélène Bonne UNIVERSIDAD DEL ROSARIO Colegio Mayor de Nuesra

Más detalles

Física 2º Bach. Tema: Ondas 27/11/09

Física 2º Bach. Tema: Ondas 27/11/09 Física º Bach. Tema: Ondas 7/11/09 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 PUNTOS: 1 / APARTADO] 1. Una onda ransversal se propaga en el senido negaivo de las X con una velocidad de 5,00

Más detalles

UNIDAD IX. Técnicas de Suavización

UNIDAD IX. Técnicas de Suavización UNIDAD IX Técnicas de Suavización UNIDAD IX La esadísica demuesra que suele ser más fácil hacer algo bien que explicar por qué se hizo mal. Allen L. Webser, 1998 Cuál es el objeivo de la Técnica de suavización?

Más detalles

La transformada de Laplace

La transformada de Laplace Capítulo 1 La transformada de Laplace 1.1. Introducción La transformada de laplace es un operador LINEAL muy útil para la resolución de ecuaciones diferenciales. Laplace demostró cómo transformar las ecuaciones

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x).

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x). 2 Integrales Indefinidas y Métodos de Integración La integral Indefinida o antiderivada es el nombre que recibe la operación inversa a la derivada. Es decir, dada una función F aquella consiste en encontrar

Más detalles

Un algoritmo para la Planificación de Producción en un Sistema en Red de Fabricación basada en Sistemas Multiagente 1

Un algoritmo para la Planificación de Producción en un Sistema en Red de Fabricación basada en Sistemas Multiagente 1 X Congreso de Ingeniería de Organización Valencia, 7 y 8 de sepiembre de 2006 Un algorimo para la Planificación de Producción en un Sisema en Red de Fabricación basada en Sisemas Muliagene 1 Julio J. García-Sabaer

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

Aplicaciones del Ampli cador Operacional

Aplicaciones del Ampli cador Operacional Aplicaciones del Ampli cador Operacional J.I.Huircan Universidad de La Fronera January 6, 202 Absrac Exisen muchas aplicaciones con el Ampli cador Operacional (AO). El análisis en aplicaciones lineales

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

DERIVABILIDAD DE FUNCIONES

DERIVABILIDAD DE FUNCIONES CAPÍTULO V. DERIVABILIDAD DE FUNCIONES SECCIONES A. Definición de derivada. B. Reglas de derivación. C. Derivadas sucesivas. D. Funciones implícitas. Derivación logarítmica. E. Ecuaciones paramétricas.

Más detalles

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA

REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA Represenación de curvas planas dadas en forma paramérica REPRESENTACIÓN DE CURVAS PLANAS DADAS EN FORMA PARAMÉTRICA PLANTEAMIENTO DEL PROBLEMA Sean x e y dos funciones reales de variable real, de dominios

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama

Más detalles

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica

FÍSICA. PRUEBA ACCESO A UNIVERSIDAD +25 TEMA 8. Corriente eléctrica FÍSC. PUEB CCESO UNESDD +5 TEM 8. Corriene elécrica Una corriene elécrica es el desplazamieno de las cargas elécricas. La eoría aómica acual supone ue la carga elécrica posiiva esá asociada a los proones

Más detalles

6.- Señales digitales

6.- Señales digitales EAL - #3-6.- Señales digiales Dado un mensaje digial (p.ej. ) exisen diversos méodos para ransmiirlo como una señal elécrica (señal digial), algunos de los mas comunes, suponiendo ransmisión sincrónica,

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

AMPLIFICADORES OPERACIONALES CON DIODOS. Al terminar la lectura de este capítulo sobre amplificadores operacionales con diodos, será capaz de:

AMPLIFICADORES OPERACIONALES CON DIODOS. Al terminar la lectura de este capítulo sobre amplificadores operacionales con diodos, será capaz de: 1 MPLIFICDOES OPECIONLES CON DIODOS OJEIVOS DE PENDIZJE l erminar la lecura de ese capíulo sobre amplificadores operacionales con diodos, será capaz de: Dibujar el circuio de un recificador de media onda

Más detalles

Resolución Prueba Oficial

Resolución Prueba Oficial JUEVES 6 DE sepiembre DE 01 en n 1 on el maerial de esa edición podrás revisar ocho pregunas del Área emáica de Funciones siee de Geomería. El jueves 1 de sepiembre publicaremos la ercera pare de la resolución

Más detalles

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS.

SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. SOLUCION NUMERICA DE ECUACIONES DIFERENCIALES ORDINARIAS. El objeivo de esas noas complemenarias al ema de solución numérica de ecuaciones diferenciales ordinarias es dar una inroducción simple al ema,

Más detalles

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA

APUNTE: ELECTRICIDAD-1 INDUCCIÓN ELECTROMAGNÉTICA APUNTE: EECTRICIDAD- INDUCCIÓN EECTROMAGNÉTICA Área de EET Página de 3 Derechos Reservados Tiular del Derecho: INACAP N de inscripción en el Regisro de Propiedad Inelecual #. de fecha - -. INACAP 00. Página

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles