INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO
|
|
- Felisa Ponce Escobar
- hace 3 años
- Vistas:
Transcripción
1 INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales. Por ejemplo el intervalo [-5,3] describe el conjunto de números reales que se encuentran entre -5 y 3. {-5, -4,99,, -4,9,, 2,9, 2,99, 3} TIPOS DE INTERVALOS 1. Intervalo abierto: este tipo de intervalo como es abierto por ambos lados no se incluye a y b en el conjunto de números que delimita., Notación de intervalo / Notación de conjunto Ejemplo: 3,7 Notación de intervalo / 3 7 Notación de conjunto. En este caso, el conjunto que se delimita no incluye los números -3 y 7 porque se trata de un intervalo abierto por ambos lados
2 2. Intervalo Cerrado: este tipo de intervalo como es cerrado por ambos lados incluye a y b en el conjunto de números que delimita., Notación de intervalo / Notación de conjunto Ejemplo: 4,8 Notación de intervalo / 4 8 Notación de conjunto. En este caso, el conjunto que se delimita incluye los números -4 y 8 porque se trata de un intervalo cerrado por ambos lados 3. Intervalo Abierto por la derecha: este tipo de intervalo como es cerrado por el lado izquierdo incluye a y como es abierto por el lado derecho no incluye b en el conjunto que delimita., Notación de intervalo
3 / Notación de conjunto Ejemplo 3,6 Notación de intervalo / 3 6 Notación de conjunto. En este caso, el conjunto que se delimita incluye el número 3 por ser cerrado por la izquierda pero no incluye el número 6 por ser abierto por la derecha. 4. Intervalo abierto por la izquierda: este tipo de intervalo como es abierto por el lado izquierdo no incluye a y como es cerrado por el lado derecho incluye b en el conjunto que delimita., Notación de intervalo / Notación de conjunto
4 Ejemplo 1,12 Notación de intervalo / 1 12 Notación de conjunto En este caso, el conjunto que se delimita no incluye el número -1 por ser abierto por la izquierda pero incluye el número 12 por ser cerrado por la derecha. 5. Intervalo cerrado por la izquierda hacia + : este tipo de intervalo como es cerrado por el lado izquierdo incluye a y es abierto por el lado derecho hacia infinito positivo., Notación de intervalo / Notación de conjunto Ejemplo 5, Notación de intervalo / 5 Notación de conjunto En este caso, el conjunto que se delimita incluye el número -5 por ser cerrado por la izquierda hasta infinito positivo.
5 6. Intervalo abierto por la izquierda hacia + : este tipo de intervalo como es abierto por el lado izquierdo no incluye a y es abierto por el lado derecho hacia infinito positivo., Notación de intervalo / Notación de conjunto Ejemplo 9, Notación de intervalo / 9 Notación de conjunto En este caso, el conjunto que se delimita no incluye el número 9 por ser abierto por la izquierda hasta infinito positivo. 7. Intervalo cerrado por la derecha hacia - : este tipo de intervalo es abierto por el lado izquierdo hacia infinito negativo y como es cerrado por el lado derecho incluye b., Notación de intervalo
6 / Notación de conjunto Ejemplo, 2 Notación de intervalo / 2 Notación de conjunto En este caso, el conjunto que se delimita incluye el número -2 por ser cerrado por la derecha hasta infinito negativo. 8. Intervalo abierto por la derecha hacia - : este tipo de intervalo es abierto por el lado izquierdo hacia infinito negativo y como es abieto por el lado derecho no incluye b., Notación de intervalo / Notación de conjunto
7 Ejemplo Notación de intervalo Notación de conjunto En este caso, el conjunto que se delimita no incluye el número 20 por ser abierto por la derecha hasta infinito negativo. DESIGUALDADES Una desigualdad es una expresión matemática que contiene un signo de desigualdad. Los signos de desigualdad son: no es igual < menor que > mayor que menor o igual que mayor o igual que Ejemplos de desigualdades: a) b) c) d) e)
8 Una desigualdad que tiene variable se llama inecuación. INECUACIONES Una inecuación es una desigualdad en la que hay una o más cantidades desconocidas (incógnitas) y que sólo se verifica (o demuestra) para determinados valores de las incógnitas. Las inecuaciones también se conocen como desigualdades de condición. Ejemplos de inecuaciones a) b) 20 2 c) 13 6 d) 4 Para resolver una inecuación deben encontrarse los valores de las incógnitas que satisfagan la inecuación. Ejemplo 1: hallar el intervalo solución de la inecuación Organizar términos, variables en la izquierda y números a la derecha Intervalo solución en forma de conjunto Por lo tanto el intervalo solución es 3, Ejemplo 2: hallar el intervalo solución de la inecuación Organizar términos, variables en la izquierda y números a la derecha.
9 3 16 Reducción de términos semejantes en ambos lados y despejar x, como el 3 está multiplicando pasa a dividir. Intervalo solución en forma de conjunto Por lo tanto el intervalo solución es, Ejemplo 3: Caso especial variable con signo negativo. Hallar el intervalo solución de Organizar términos, variables en la izquierda y números a la derecha. Reducción de términos semejantes en ambos lados Como el término de la variable es negativo -13x multiplicamos en ambos lados por (-1) y le damos la vuelta a la desigualdad Despejar x, como el 13 está multiplicando pasa a dividir Intervalo solución en forma de conjunto Por lo tanto el intervalo solución es, Ejemplo 4: Caso especial variable con signo negativo. Hallar el intervalo solución de Organizar términos, variables en la izquierda y números a la derecha. Reducción de términos semejantes en ambos lados 2 7 Despejar x, como el 7 está dividiendo pasa a multiplicar Como el dos está multiplicando pasa a dividir
10 1 1 Como el término de la variable es negativo -x multiplicamos en ambos lados por (-1) y le damos la vuelta a la desigualdad. Intervalo solución en forma de conjunto Por lo tanto el intervalo solución es, Ejemplo 5: hallar el intervalo solución de Organizar términos, variables en la izquierda y números a la derecha. Operaciones con fracciones en ambos lados de la inecuación Reducción de términos semejantes en ambos lados Simplificando la fracción 5 6 Despejar x, como el 6 está dividiendo pasa a multiplicar Como el 4 está dividiendo pasa a multiplicar Como el 20 está multiplicando pasa a dividir Simplificando la fracción Intervalo solución en forma de conjunto Por lo tanto el intervalo solución es, VALOR ABSOLUTO Definición: Si a es un número real, el valor absoluto de a que se expresa como se define como:
11 0 0 PROPIEDADES A continuación se describen algunas propiedades de valor absoluto que se utilizan para resolver ecuaciones e inecuaciones de las formas: Ecuaciones de la forma Inecuaciones de la forma 1. Propiedad Ejemplo 1: Ejemplo 2: Ejemplo 3: Esta propiedad la utilizamos para resolver ecuaciones de la forma siendo 0. Ejemplo 1: hallar los valores de x si Aplicando la primera propiedad planteamos que significa que: Esto o Resolviendo la primera ecuación con
12 Resolviendo la segunda ecuación con Por lo tanto la solución es: 6 o 1 Ejemplo 2: hallar los valores de x si Aplicando la primera propiedad planteamos que significa que: Esto o Resolviendo la primera ecuación con Resolviendo la segunda ecuación con Por lo tanto la solución es o 3
13 2. Propiedad 0 sí y solo sí Como 0, entonces Ejemplo1: resolver la inecuación Aplicando: como 0, entonces. En este caso, como 2 0 2, entonces Despejar x, el -3 pasa a sumar a ambos lados aplicando 1 5 Intervalo solución en forma de conjunto Por lo tanto el intervalo solución es: 1,5 Ejemplo 2: resolver la inecuación Aplicando: como 0, entonces. En este caso, como 9 0 9, entonces Despejar x, el +7 pasa a restar a ambos lados aplicando Despejar x, el 2 pasa a dividir a ambos lados Simplificar fracciones en ambos lados cuando sea posible Intervalo solución en forma de conjunto Por lo tanto el intervalo solución es: 8,1
14 3. Propiedad 0 sí y solo sí Ejemplo 1: resolver la inecuación Aplicando se obtiene: Solución de primera inecuación Despejar x, pasamos el 3 a dividir 5 Primera solución Solución de la segunda inecuación Despejar x, pasamos el 3 a dividir Segunda solución Por lo tanto la solución completa es: 5,, Ejemplo 2: resolver la inecuación Aplicando se obtiene:
15 Solución de primera inecuación Despejar x, pasamos el 2 a dividir Primera solución Solución de la segunda inecuación Despejar x, pasamos el 2 a dividir Segunda solución Por lo tanto la solución completa es:,,
Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg
PreUnAB Inecuaciones y Sistemas de Inecuaciones Lineales con una Incógnita Clase # 11 Agosto 2014 Intervalos Reales Orden en R Dados dos números reales a y b, se dice que a es menor que b, a < b, si b
SOLUCIÓN DE INECUACIONES DE UNA VARIABLE
SOLUCIÓN DE INECUACIONES DE UNA VARIABLE Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que satisfacen la inecuación. Terminología: ax + b > cx + d Primer miembro Segundo
Números Reales DESIGUALDADES DESIGUALDADES. Solución de desigualdades. 2x + 4 < 6x +1 6x + 3 8x 7 x 2 > 3x 2 5x + 8. INECUACIONES o DESIGUALDADES
Números Reales INECUACIONES o DESIGUALDADES DESIGUALDADES Una desigualdad en una variable es una expresión donde se establece una relación entre dos cantidades. Las relaciones de orden son: ,, Ejemplos:
Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos
MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que
INECUACIONES: DESIGUALDADES. 3. Usa métodos para solucionar desigualdades lineales y cuadráticas.
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Matemáticas Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICIADORES DE LOGRO INECUACIONES: DESIGUALDADES
Propiedades de les desigualdades.
Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,
Teoría Tema 1 Inecuaciones
página 1/7 Teoría Tema 1 Inecuaciones Índice de contenido Qué es una inecuación?...2 Inecuaciones de primer grado...3 Sistemas de inecuaciones con una incógnita...4 Inecuaciones de segundo grado...5 Inecuaciones
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
Fundación Uno. ) 2n, el resultado es: D) b a E)1. entonces el valor de "y" es: II) x y = 3 A)16 B)9 C)4 D)1 E)2. Desarrollo
ENCUENTRO # 27 TEMA: Inecuaciones. CONTENIDOS: 1. Desigualdades.Propiedades. 2. Inecuación lineal o de primer grado. 3. Inecuación cuadrática o de segundo grado. Ejercicio Reto 1. Al simplificar ( a 2
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene
8 UNIDAD I. A modo de repaso. Preliminares Inecuaciones Una inecuación es una desigualdad en la que el criterio de comparación es la relación de orden inherente al conjunto de los números reales. Hay que
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
Capítulo VI DESIGUALDADES E INECUACIONES
Capítulo VI DESIGUALDADES E INECUACIONES 6.1 DEFINICIONES: a. Desigualdad: Se denomina desigualdad a toda expresión que describe la relación entre al menos elementos escritos en términos matemáticos, y
+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.
ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
DESIGUALDADES E INTERVALOS
DESIGUALDADES E INTERVALOS 1. INTERVALOS: Son regiones comprendidas entre dos números reales. En general, si los etremos pertenecen al intervalo, se dice que cerrado, si por el contrario no pertenecen
Saint Louis School Educación Matemática NB2. Miss Rocío Morales Vásquez
Saint Louis School Educación Matemática NB2 Miss Rocío Morales Vásquez Objetivo s de aprendizajes Resolver adiciones y sustracciones de fracciones con igual denominador (denominadores 100, 12, 10, 8, 6,
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones
SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA
SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
Problemas Resueltos de Desigualdades y Programación Lineal
Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones
6 Ecuaciones de 1. er y 2. o grado
8985 _ 009-08.qd /9/07 5:7 Página 09 Ecuaciones de. er y. o grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la eposición de los conceptos asociados
ECUACIONES DE PRIMER GRADO
ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo
DESIGUALDADES página 1
DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación
Ecuaciones e Inecuaciones
5 Ecuaciones e Inecuaciones Objetivos En esta quincena aprenderás a: Resolver ecuaciones de primer y segundo grado. Resolver ecuaciones bicuadradas y factorizadas. Identificar y resolver inecuaciones de
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
Ecuaciones Lineales y Desigualdades con Valor Absoluto
www.matebrunca.com Prof. Waldo Márquez González desigualdades y ecuaciones con valor absoluto 1 Ecuaciones Lineales y Desigualdades con Valor Absoluto La resolución de ecuaciones y de desigualdades de
Números Reales. MathCon c 2007-2009
Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Tema 1: Preliminares
Métodos Numéricos: Resumen y ejemplos Tema 1: Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, versión 1.7 1. Desigualdades
APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES
APLICACIONES DE LA MATEMATICA INTRODUCCION AL CALCULO AXIOMATICA DE LOS NUMEROS REALES PROFESOR: CHRISTIAN CORTES D. I) LOS NUMEROS REALES. Designaremos por R, al conjunto de los números reales. En R existen
A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:
ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,
Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos:
Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. Si un paréntesis tiene el signo menos delante,
Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones. Profesor(a):Mtra. Judith Ramírez Hernández.
Área Académica: Matemáticas (Cálculo Diferencial) Tema: Números reales y clasificación de funciones Profesor(a):Mtra. Judith Ramírez Hernández. Periodo: Enero Junio 2012 Topic: Real Numbers and classification
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
3. x+y x + y. 4. x k k x k,k 0. 5. x k x k x k,k 0. x 1 3
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 4 Inecuaciones con Valor Absoluto J. Labrin - G.Riquelme Propiedades de Valor Absoluto: 1. x y = x y 2. x y = x
ACTIVIDADES DEL TEMA 4
ACTIVIDADES DEL TEMA. Resuelve las siguientes ecuaciones: a. 0 0 c. 0 b. 9 0 d. 0. Resuelve las siguientes ecuaciones bicuadradas: a. 0 b. 0. Resuelve las siguientes ecuaciones de primer grado: a. ( -
Ya sabes resolver (x+3) 2 =4?
Ya sabes resolver (+) =? Copyright 01, MatematicaTuya Derechos reservados 1 Tomar raíz a ambos miembros de la ecuación 1 Se despeja Sabiendo que la raíz negativa aporta otra solución Se tiene dos soluciones
-12-10 -8-6 -4-2 0 2 4 6 8 10 12. x [ 64, ] se tiene:
Concepto de valor absoluto: El Valor Absoluto se define como la distancia entre dos números reales en la recta numérica. Con el objeto de afianzar el concepto de valor absoluto, es necesario ligarlo a
Aplicaciones de las derivadas
I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Aplicaciones de las derivadas (estudio de funciones) Por Javier Carroquino CaZas Catedrático de matemáticas del
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
ÁLGEBRA LINEAL - Año 2012
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS ÁLGEBRA LINEAL - Año 0 Notas de Cátedra correspondientes a la UNIDAD SIETE PROGRAMACIÓN LINEAL * INECUACIONES Se denomina inecuación a
[a, b) = { X E R la::; x < b } (a, b) = { X E R I a < x < b } Comprobemos, a manera de ejemplo, que (a - bxa 2 + ab + b 2 ) = a) - b) :
MATEMÁTCAS BÁSCAS Comprobemos, a manera de ejemplo, que (a - bxa 2 + ab + b 2 ) = a) - b) : Otra manera de comprobarlo es: NTERVALOS Sean a, b E R con a < b. Entonces (a, b) = { X E R a < x < b } se llama
Álgebra y Trigonometría CNM-108
Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
martilloatomico@gmail.com
Titulo: INECUACIONES CON VALOR ABSOLUTO Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:
Iniciación a las Matemáticas para la ingenieria
Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?
1. Números Reales 1.1 Clasificación y propiedades
1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,
Tema 7. Límites y continuidad de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está
PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables
Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver
Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.
Nivelación de Matemática MTHA UNLP 1 1. Desigualdades 1.1. Introducción. Intervalos Los números reales se pueden representar mediante puntos en una recta. 1 0 1 5 3 Sean a y b números y supongamos que
Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul
Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Curso Propedéutico de Matemáticas Unidad IV Secciones 6 y 8) 0.6 Operaciones con epresiones algebraicas. 0.8 fracciones
LÍMITES DE FUNCIONES Y DE SUCESIONES
LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------
Consume mucha energía?
Nivel: 3.º Medio Sector: Matemática Unidad temática: Álgebra y funciones Consume mucha energía? Cada año las personas utilizan más aparatos que funcionan con electricidad, los cuales dan comodidad, ahorran
SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS
SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas es de la forma: a b c ' ' ' con a b c a b c números reales
Valor absoluto: Ecuaciones e Inecuaciones en una Variable Real
Valor absoluto: Ecuaciones e Inecuaciones en una Variable Real Carlos A. Rivera-Morales Precáculo I Tabla de : Discutiremos: la definición de valor absoluto. : Discutiremos: la definición de valor absoluto.
EXPRESIONES ALGEBRAICAS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o
Ejemplos y problemas resueltos de análisis complejo (2014-15)
Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.
3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen
1. Pasos en la resolución de ecuaciones de primer grado
RESOLUCIÓN DE ECUACIONES DE PRIMER GRADO 1. Pasos en la resolución de ecuaciones de primer grado En este curso vamos resolver ecuaciones de primer grado un poco más complicadas que las del curso pasado.
PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9
5 INECUACIONES PARA EMPEZAR 1 Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 7 Si sumas a cada fracción, se mantiene el orden? 0 5 6, 7 9, 1 15 El denominador común
MATEMÀTIQUES 4ESO 14/15 NOM I COGNOMS. AUTOEVALUACIÓN INECUACIONES Y P.L tutor: SEK-CATALUNYA SISTEMA EDUCATIU SEK.
MATEMÀTIQUES 4ESO 14/1 NOM I COGNOMS SEK-CATALUNYA COL LEGI INTERNACIONAL SISTEMA EDUCATIU SEK Aula INTEL LIGENT AUTOEVALUACIÓN INECUACIONES Y PROGRAMACIÓN LINEAL. Ámbito Científico Técnico Curso: 4ESO
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
Biblioteca Virtual Ejercicios Resueltos
EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar
Raíces cuadradas y radicales
Raíces cuadradas y radicales Raíz cuadrada - la raíz cuadrada de x, donde x, es igual a c (donde c si c 2 = x. Se usa la notación para representar la raíz cuadrada principal de x. Al símbolo se le llama
1.3 Números racionales
1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples
Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)
CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su
Matemática. Iniciación al Álgebra NIVEL SECUNDARIO PARA ADULTOS. Módulos de Enseñanza Semipresencial. + - b - b 2-4ac x 1, 2 = 2a ... ...
............................................. Matemática............ Iniciación al Álgebra.......................................... + - b - b 2-4ac x 1, 2 = 2a NIVEL SECUNDARIO PARA ADULTOS Módulos de
Deseamos, pues, al alumno el mayor de los éxitos en su intento.
INTRODUCCIÓN Todo debería hacerse tan sencillo como sea posible, pero no más Albert Einstein, físico Cuanto más trabajo y practico, más suerte parezco tener Gary Player, jugador profesional de golf E studiar
UNIDAD I NÚMEROS REALES
UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
Reduce expresiones algebraicas (páginas 469 473)
A NOMRE FECHA PERÍODO Reduce expresiones algebraicas (páginas 469 473) Reduce expresiones algebraicas Los expresiones 3(x 4) 3x 2 son expresiones equivalentes, porque tienen el mismo valor sin importar
NÚMEROS NATURALES Y NÚMEROS ENTEROS
NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de
b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados.
Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) (
Sistemas de dos ecuaciones lineales con dos incógnitas
Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente
FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.
FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
EJERCICIOS SOBRE : ECUACIONES DE PRIMER GRADO
1.- Igualdades. Las expresiones en donde aparecen el signo =, se llaman igualdades. Ejemplo: 5 = 7-2 ; x + 2 = 9 Toda igualdad consta de dos miembros, el primer miembro ( lo escrito antes del signo igual
4. Se considera la función f(x) =. Se pide:
Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones
Halla dominio e imagen de las funciones
Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los
APUNTES DE CÁLCULO DIFERENCIAL.
APUNTES DE CÁLCULO DIFERENCIAL. Prof. Jaime A Pinto. Departamento De Ciencias Básicas, Unidades Tecnológicas de Santander. Textos Universitarios 2013 Contenido Introducción... 1 1 Capítulo 1 "Desigualdades".......................................................
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
TRANSFORMADA DE LAPLACE
TRANSFORMADA DE LAPLACE DEFINICION La transformada de Laplace es una ecuación integral que involucra para el caso específico del desarrollo de circuitos, las señales en el dominio del tiempo y de la frecuencia,
Ejercicios Resueltos del Tema 4
70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
NIVEL SECUNDARIO PARA ADULTOS MÓDULO DE EDUCACIÓN SEMIPRESENCIAL. Matemática Iniciación al Álgebra
NIVEL SECUNDARIO PARA ADULTOS MÓDULO DE EDUCACIÓN SEMIPRESENCIAL Matemática Iniciación al Álgebra 1 GOBERNADOR DE LA PROVINCIA DE BUENOS AIRES ING. FELIPE SOLÁ DIRECTORA GENERAL DE CULTURA Y EDUCACIÓN
Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O.
Texto de Cálculo I Intervalos de la recta real R Versión preliminar L. F. Reséndis O. 2 Contents 1 Números reales L.F. Reséndis O. 5 1.1 Números racionales e irracionales.l.f. Reséndis O............ 5
MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1
IES Fco Ayala de Granada Sobrantes 010 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 a 1 1 1 3 Sean las matrices
Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y
IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado
MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas
MANEJO DE EXPRESIONES ALGEBRAICAS Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas 34 Reforma académica 003 MAPA CURRICULAR Matemáticas I Aritmética y Álgebra
INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA
INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA CARACAS, MARZO DE 2013 ESTUDIO DEL SISTEMA DECIMAL CONTENIDO Base del sistema decimal Nomenclatura Ordenes Subordenes
Capítulo 2 Números Reales
Introducción Capítulo Números Reales La idea de número aparece en la historia del hombre ligada a la necesidad de contar objetos, animales, etc. Para lograr este objetivo, usaron los dedos, guijarros,
Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)
Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb