Hiperheurística para un problema de equilibrado de líneas de montaje usando Scatter Search

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Hiperheurística para un problema de equilibrado de líneas de montaje usando Scatter Search"

Transcripción

1 Hperheurístca para un problema de equlbrado de líneas de montaje usando Scatter Search Joaquín Bautsta 1, Elena Fernández 1, José Lus González Velarde 2, Manuel Laguna 3 1 Unverstat Poltècnca de Catalunya, Avda. Dagonal 647, 7ª Planta Barcelona 2 Insttuto Tecnológco de Monterrey, Garza Sada Sur 2501, 64849, Monterrey, N.L:, Mx. 3 Leeds School of Busness, Unversty of Colorado, Boulder, CO {joaqun.bautsta, Resumen El presente trabajo se centra en la aplcacón de un procedmento basado en Scatter Search (SS) para resolver un problema de equlbrado de líneas de montaje. Tras una ntroduccón a los denomnados Assembly Lne Balancng Problems (ALBPs) se propone un modelo básco para su varante smple (SALBP). Tras ello, se presentan las heurístcas greedy (basadas en reglas de prordad) empleadas para resolver SALBP, se plantea su hbrdacón y se propone un procedmento de combnacón de solucones, representadas por secuencas de reglas heurístcas de prordad en la asgnacón de tareas, bajo un esquema SS. Fnalmente, se realza una experenca computaconal, con nstancas de referenca, para probar el procedmento, y se establecen las conclusones del trabajo. 1. Introduccón Las líneas de produccón y de montaje se caracterzan por estar consttudas por un conjunto de puestos de trabajo denomnados estacones. Las estacones (m, ndexadas en un conjunto K) se dsponen en sere y en paralelo y a través de ellas fluye la obra en curso de un producto (motores, carrocerías, bastdores, etc.) gracas a un sstema de transporte encargado, por una parte, de aportar, los materales requerdos al flujo prncpal y, por otra, mover las undades del producto de una estacón a la sguente. Las undades del producto pueden ser déntcas o, más usual actualmente, presentar dstntas varantes. La fabrcacón de una undad de producto se suele dvdr en un conjunto V de tareas n ndexadas, a su vez, en un conjunto J (el cual depende de la lsta de materales y de las especfcacones de montaje sumnstradas por ngenería de produccón). Al subconjuntos de tareas asgnadas a una estacón concreta k (1 k m) se denomna carga de la estacón k y la representaremos medante S k (S k V) y se mpone como condcón que cada tarea debe asgnarse a una únca estacón. Una tarea concreta j (1 j n) requere para su ejecucón un tempo de operacón t j >0 que depende de las tecnologías de fabrcacón y de los recursos empleados. Adconalmente, la naturaleza del producto y, de nuevo, las tecnologías de fabrcacón mplcan que para cada tarea j exsta un conjunto de tareas precedentes nmedatas, P j, que deben conclurse antes de ncarse la tarea j. Normalmente, estas restrccones suelen representarse medante un grafo acíclco cuyos vértces se asocan a las tareas y cada arco drgdo (, representa que la tarea debe fnalzarse antes de que se nce la tarea j, por tanto, s S h y j S k, entonces debe cumplrse h k. El tempo de carga de una estacón k, t(s k ), es la suma de los tempos de operacón de las tareas asgnadas a dcha estacón. El tempo de cclo, c, es el tempo conceddo a cada estacón para llevar a cabo las tareas que tenen asgnadas. Nótese, por tanto, que el tempo de cclo no puede ser menor que el mayor tempo de carga entre todas las estacones, n es lógco que sea mayor que la suma de los tempos de operacón de todas las tareas, esto es: max k {t(s k )} c Σ k t(s k )=t sum. Por otra parte, cada estacón k presenta un tempo muerto I k = c- t(s k ), mayor o gual a 0, y la suma de dchos tempos parcales da lugar al tempo muerto total, I sum = Σ k I k = m c-t sum, que está vnculado a la nefcenca de la línea. En general, los problemas de equlbrado de líneas de montaje (ALBPs) se centran en agrupar Actas del IV Congreso Español sobre Metaheurístcas, Algortmos Evolutvos y Bonsprados, MAEB2005, pp ISBN: Vol I: Vol II: Los autores, Thomson

2 840 Scatter Search II por estacones de trabajo las tareas del conjunto V. Resumendo, el objetvo es consegur una agrupacón de tareas que mnmce la nefcenca de la línea o su tempo muerto total y que respete todas las restrccones mpuestas a las tareas y a las estacones. La prmera famla de problemas, denomnada SALBP (Smple Assembly Lne Balancng), [3], puede enuncarse como sgue: dados un conjunto de tareas, con sus tempos de operacón y un grafo de precedencas asocado, cada tarea se debe asgnar a una únca estacón de manera que se satsfagan todas las restrccones de precedenca y que no haya nnguna estacón cuyo tempo de carga, t(s k ), exceda el tempo de cclo c. La famla SALBP presenta cuatro varantes: SALBP-1: mnmzar el número de estacones m dado un valor del tempo de cclo c; SALBP-2 mnmzar el tempo de cclo c dado un número de estacones m; SALBP-E: mnmzar, a la vez, c y m consderando su relacón con el tempo muerto total o la nefcenca de la línea; SALBP-F: dados m y c determnar la factbldad del problema, y en caso afrmatvo hallar una solucón del msmo. Cuando se añaden consderacones adconales a las de la famla SALBP, los problemas se conocen en la lteratura como GALBPs (General Assembly Lne Balancng Problems). Esta famla ncluye, entre otros, problemas que consderan estacones de trabajo en paralelo, [5], grupos forzados de tareas, [6], e ncompatbldades entre tareas, [1]. En [16] puede encontrarse un análss y bblografía actualzados, así como el estado del arte de dferentes procedmentos para SALBP s. En cuanto a procedmentos de resolucón, se dspone de un prmer grupo de algortmos greedy que emplean reglas de prordad para asgnar las tareas a las estacones [8] [17]; un segundo grupo compuesto por procedmentos bajo un esquema branch and bound, [9] [10] [13] [15], que son los más efcaces actualmente; y un tercer grupo compuesto por metaheurístcas dversas [14] [2]. Cas todos ellos están orentados a resolver problemas SALBP-1 o SALBP-2. El presente trabajo se ha organzado así: en la seccón 2 se presenta un modelo matemátco para SALBP; la seccón 3 se centra en las heurístcas báscas para el problema y en la 4 lustramos, a través de un ejemplo, algunas de sus defcencas; en la seccón 5 se propone una representacón de las solucones medante cadenas de reglas y en la 6 se propone un método para combnarlas usando Scatter Search; tras ello, la seccón 7 se dedca a probar el procedmento propuesto con nstancas de referenca SALBP; fnalmente, la seccón 8 recoge las conclusones del trabajo. 2. Un modelo matemátco para el SALBP Para modelar SALBP, se emplea la notacón adconal sguente: E j,l j Índces de la prmera y últma estacón, respectvamente, a la que puede asgnarse la tarea j. UB Cota superor del número de estacones. x jk Varable de decsón bnara que toma el valor 1 s la tarea j J se asgna a la estacón k K, y (0 en otro caso). Con la notacón anteror las sguentes restrccones defnen solucones factbles para SALBP-F. L j = x = 1 j J (1) k E jk UB k = j 1 1 max j n { x } m jk (2) n t x c k K j =1 j jk (3) L L j kx kx jk (, j J ) ( j ) = = (4) k E k P k E j x k { 0,1} J, k K (5) Las gualdades (1) aseguran que cada tarea se asgna a una únca estacón, mentras que las desgualdades (2) y (3) aseguran que se utlzan como máxmo m estacones de trabajo y que el tempo de carga en cada estacón no excede el tempo de cclo, respectvamente; por su parte, las desgualdades (4) srven para garantzar el cumplmento de las relacones de precedenca entre tareas; fnalmente, las expresones (5) srven para defnr las varables de decsón como bnaras. Como hemos menconado anterormente, en SALBP-F, los elementos m y c son valores fjos, mentras que, en el resto de problemas, uno o más de esos elementos actúan como funcón objetvo. En partcular cuando se consderan SALBP-1 y SALBP-2, las expresones (6) y (7) corresponden a sus respectvas funcones objetvo: { x } UB k = 1 jk 1 j n n j = t j 1 k UB 1 mn mze Z1( x) = m = max (6) { x jk } mn mze Z 2 ( x) = c = max (7) La funcón objetvo de SALBP-E es mnmzar m c, sendo la solucón óptma del problema obva

3 IV Congreso Español sobre Metaheurístcas, Algortmos Evolutvos y Bonsprados, MAEB (m=1, c=t sum.) s sólo se consdera (1) a (5) como restrccones del problema; por ello, se mpone al problema un rango de valores posbles para m, esto es: m mn m m max. 3. Heurístcas báscas greedy y GRASP En la fgura 1 se presenta el esquema de un procedmento heurístco para generar una solucón del problema SALBP. 0. Incalzacón k = 1, NA =V, WTP = TP, r = c 1. Verfcar factbldad {precedenca} ΝΑ, f WTP = 0, B = B {} {tempo} B, f t r, F = F {} 2. Asgnacón f F =, {abrr nueva estacón} I = I+r, r = c Paso 1 else {selecconar tarea de F} * = índce tarea selecconada NA, B, F = NA, B, F {*} r = r t * TS *, WTP = WTP 1 f NA, Paso 1 3. I = I+r, Alto Fgura 1: Esquema del procedmento de obtencón de una solucón para el problema SALBP. El esquema es váldo tanto para las heurístcas greedy determnstas como para GRASP. Las heurístcas greedy orentadas a estacones efectúan la asgnacón de las tareas, una a una, en funcón de una regla de prordad que dstngue al algortmo. El proceso de seleccón se realza entre un conjunto de tareas compatbles con la parte de la solucón ya construda (denomnado conjunto de canddatas), las cuales satsfacen todas las restrccones de precedenca y tenen un tempo de operacón menor o gual que el tempo dsponble en la estacón aberta. Cuando se obtene una solucón se puede aplcar o no un procedmento de optmzacón local. En los algortmos GRASP, se puede lmtar el número de canddatas en cada teracón y además en el proceso de asgnacón se sortean las tareas canddatas en funcón de una probabldad de seleccón que puede depender del valor del índce de aquéllas; en cualquer caso a la solucón hallada en la prmera fase se aplca un procedmento de optmzacón local [12]. Como es lógco, para defnr una heurístca es necesaro fjar al menos una regla de prordad en el proceso de seleccón. En el Anexo I se presenta una muestra compuesta por 15 reglas de prordad elementales. 4. Un ejemplo lustratvo En la fgura 2 se muestra un conjunto formado por 12 componentes que deben ser montados en una línea a la que se concede un tempo de cclo de 1 mnuto. En la tabla 1 se resume las duracones (en segundos) y lgaduras de precedenca nmedata entre tareas. Fgura 2: Ensamblado de conjunto en línea. El ejemplo propuesto se ha resuelto medante el procedmento greedy presentado en la seccón 3 empleando, en el paso correspondente a la asgnacón de tarea en la estacón aberta, las reglas de prordad 1 a 14 que se relaconan en el anexo 1. j t j P j j t j P j A1 6 - C A2 7 A1 C2 10 C1 A3 6 A2 C3 10 C2 B1 8 - D B2 8 B1 D2 17 D1 B3 8 B2 D3 14 D2 Tabla 1. Datos del ejemplo lustratvo: tarea, tempo de proceso (en segundos) y tareas precedentes nmedatas.

4 842 Scatter Search II Cualquera de las 14 solucones obtendas, empleando ndvdualmente las 14 reglas (1 a 14) determnstas menconadas y sn recurrr a una optmzacón local posteror, requere 3 estacones de trabajo. No obstante, es fácl hallar a smple vsta solucones óptmas para este ejemplar que requeren sólo dos estacones de trabajo; por ejemplo: una prmera estacón E1={D1, D2, D3, A1, B1} y una segunda estacón E2={C1, C2, C3, A2, A3, B2, B3}. Dcha solucón se puede obtener empleando la regla de prordad 1 (Mayor tempo de operacón) en las tres prmeras decsones de asgnacón de tarea, la regla 14 (Menor tempo de operacón) en la cuarta decsón, de nuevo la regla 1 en la qunta decsón y cualquera de las 15 reglas en las decsones restantes hasta completar el proceso de asgnacón de las 12 tareas. Esta cadena de 12 decsones se puede representar medante el vector de reglas (1,1,1,14,1,*,*,*,*,*,*,*). Con este sencllo ejemplar no se pretende cuestonar la caldad de las reglas, sno la forma de aplcarlas y poner en evdenca la rgdez de las heurístcas greedy puras ncluso cuando la regla de prordad empleada sea muy refnada. 5. Representacón de solucones medante reglas de prordad. Los procedmentos constructvos basados en reglas de prordad calculan para las dstntas tareas valores asocados a la regla de prordad elegda, que están basados en los tempos de ejecucón de las tareas y en las relacones de precedenca dadas. En cada teracón se asgna a la prmera estacón de trabajo dsponble aquella tarea todavía no asgnada con el mejor valor respecto a la regla de prordad elegda. Los procedmentos constructvos cláscos para SALPB utlzan la msma regla a lo largo de todo el proceso de asgnacón. En este trabajo proponemos un procedmento constructvo que combna dstntas reglas y que supone una generalzacón de los procedmentos cláscos. En partcular, en las dferentes teracones, pueden utlzarse dstntas reglas. Denotemos por R ={R 1, R 2,, R k } el conjunto de reglas de prordad. Un esquema de un Procedmento Constructvo de Combnacón de Reglas (PCCR) es el sguente: Intalzacón: NA=J (conjunto de tareas no asgnadas). Para ( =1,,n ) hacer: Selecconar r() K. Sea j r() NA el resultado de aplcar la regla de prordad R r() R al conjunto de tareas no asgnadas NA. Actualzar NA:= NA \ {j r() }. Fnpara Nótese que el índce de tarea asgnado en la teracón, j r(), depende de la regla de prordad R r() así como de los índces que tareas que ya han sdo asgnadas. En el contexto del esquema anteror, el (PCCR) que aplca la regla de prordad R r() en la teracón J se representa medante el vector de índces de reglas r = (r(1), r(2),,r(n)). La solucón obtenda puede determnarse a partr del vector r, y se denotará por s = (j r(1), j r(2),, j r(n) ). Su valor se denota por m(s). Nótese que cuando para algún J la regla de prordad R r() es no determnsta, el resultado j r() puede no ser únco. El conjunto de todas las posbles solucones obtendas medante el procedmento constructvo r = (r(1), r(2),, r(n)) se llama Conjunto Solucón de r, y se denota Sol(r). 6. Usando Scatter Search El esquema anteror puede ntegrarse en una meta-estratega en la que nuevas PCCRs se generan medante combnacones de reglas exstentes. El hecho de que una regla, dgamos R, aparezca varas veces en PCCR se puede nterpretar como asgnar una mayor ponderacón a la regla R. Por tanto, esta metodología sgue la msma flosofía que la de generar combnacones numércamente ponderadas de reglas ya exstentes como en Scatter Search (SS) (ver [7] [11]). Las estrategas antecesoras para combnar reglas de decsón fueron ya propuestan hace más de 40 años en el contexto de secuencacón de tareas job shop schedulng, [4]. Como señaló Glover, [7], el enfoque está motvado por la suposcón de que la nformacón sobre el relatvo nterés de las posbles alternatvas se captura de manera dstnta por las dferentes reglas, y de que esa nformacón puede aprovecharse de manera más efectva cuando se ntegra medante un mecansmo de combnacón que cuando se trata medante una estratega estándar selecconando las

5 IV Congreso Español sobre Metaheurístcas, Algortmos Evolutvos y Bonsprados, MAEB dstntas reglas de una en una, de manera aslada unas de otras. Más recentemente, esta flosofía se ha generalzado y formalzado en SS, (ver, p.ej. [11]). A dferenca de otros métodos evolutvos, SS se basa en la premsa de que métodos y dseños sstemátcos para crear nuevas solucones mplcan benefcos sgnfcatvos sobre los dervados del recurso a la aleatoredad. A contnuacón proponemos un algortmo de SS para generar las combnacones ponderadas que defnen las dstntas PCCP s. Las componentes de nuestro algortmo son: Conjunto de Referenca que consste en un conjunto de elementos, cada uno de los cuales está asocado a un PCCR dferente. Los r del Conjunto de Referenca se evalúan a través de sus conjuntos solucones. Es decr, para un PCCR dado r del Conjunto de Referenca, selecconamos un elemento de su Conjunto Solucón s Sol\{r} y le asgnamos un valor val(r)=m(s). Incalmente, el Conjunto de Referenca está formado por todos los PCCR s que utlzan la msma regla en cada teracón. Es decr, s r = (,,, ) denota el PCCR que utlza la regla R en cada teracón, el Conjunto de Referenca ncal es RS = {r : K}. Método de Combnacón de Solucones. Utlzamos una matrz de frecuencas cuyos elementos Fr(, son el número de PCCR s del conjunto de referenca (contados desde el prncpo del proceso) que utlzan la regla R en el paso j. Sean p=(p(1), p(2),, p(n)) y q=(q(1), q(2),, q(n)) dos PCCR s del Conjunto de Referenca que deseamos combnar. Las componentes de la solucón combnada son las sguentes: p( r( = p( q( s s en otro caso. p( = q( ; Fr ( p(, Fr( q(, ; Método de actualzacón del Conjunto de Referenca. Método de generacón de subconjunto del conjunto de referenca sobre el cual operar, para producr un subconjunto de sus solucones como base para crear solucones combnadas. 7. Experenca computaconal Se elgeron tres famlas de problemas SALBP (dsponbles en Entschedung/alb/ albdata.htm) Barthold Scholl, Barthol2, aun cuando en este lugar se albergan muchas más famlas, se selecconaron éstas por consderar que son las que presentan el mayor reto. Barthold consta de 8 problemas, con 148 tareas, cuyos tempos de procesamento se encuentran en un rango entre 1 y 83 undades de tempo. Los tempos de cclo consderados varían entre 403 y 805. Nnguno de estos problemas admte una solucón óptma que sea producda usando una sola de las reglas enuncadas, al combnar las dferentes reglas medante el método de SS descrto, se encontró el óptmo para sete de los ocho casos, los resultados se encuentran en la Tabla 2. Donde TC sgnfca Tempo de Cclo. TC Puras SS OPT TC Puras SS OPT Tabla 2 La famla Scholl consta de 26 problemas, de 297 tareas, con tempos de procesamento entre 5 y 1386, con tempos de cclo varando desde 1394 hasta 2787 undades de tempo. De estos ejemplares 2 de ellos pueden ser resueltos óptmamente medante alguna regla pura, a los restantes, se les aplcó el método de combnacones SS, y se logró reducr el número de estacones usadas en dos casos, alcanzando el óptmo en uno de ellos. Los resultados se muestran en la Tabla 3. Por últmo la famla Barthol2 formada por 27 problemas de 148 tareas, tempos de procesamento entre 1 y 83 y tempos de cclo desde 84 hasta 170. Nnguno de ellos es resuelto usando sólo una regla, en 5 ejemplares fue posble reducr el número de estacones usadas, pero en nngún caso se consguó alcanzar el óptmo, esta famla resultó ser la más dfícl en térmnos del método propuesto, la Tabla 4 contene estos resultados.

6 844 Scatter Search II TC Puras SS OPT TC Puras SS OPT [41,42] Tabla 3 TC Puras SS OPT TC Puras SS OPT Tabla 4 8. Conclusones Para el problema SALBP se han propuesto dferentes reglas heurístcas, desafortunadamente para una gran cantdad de ejemplares de este problema, emplear una sola de estas reglas no conduce a la solucón óptma, por lo cual se propone usar una mezcla de estas reglas. Al aplcar el método propuesto a un conjunto de ejemplares se puderon clasfcar en tres posbles subconjuntos: aquellos problemas que pueden ser resueltos con una sola regla, éstos fueron los menos. Problemas que no pueden ser resueltos con una sola regla, pero que al aplcar el método SS para combnar estas reglas, se consguen mejores solucones, algunas de ellas óptmas. Y un tercer grupo que son aquellos problemas para los cuales, el método de combnacones de reglas no mejora los resultados obtendos usando una sola regla. A partr de esta conclusón es plausble pensar que en vez de aplcar dferentes reglas, nvarantes, en dferentes puntos de decsón, usar las combnacones para cambar las reglas. La lógca detrás de esto es que cada regla puede basarse en una característca útl del problema, y s esto es certo, entonces, alguna combnacón que pondere el crtero de evaluacón de las reglas, de alguna manera puede contener mplíctamente más crtero que una sola regla por separado, y puede dar mejores resultados. Agradecmentos Este trabajo ha sdo parcalmente fnancado por la red española de procedmentos metaheurístcos HEUR, TIN E. El prmer autor ha sdo parcalmente fnancado por el proyecto DPI del MEC del Goberno Español, la empresa Nssan y por la Cátedra Nssan de la Unverstat Poltècnca de Catalunya. El tercer autor ha sdo parcalmente fnancado por la Cátedra de Investgacón en Ingenería Industral del Tecnológco de Monterrey. Agradecemos tambén a Fred Glover sus nestmables comentaros acerca de la combnacón ponderada de reglas. Referencas [1] Agnets, A., Cancmno, A., Lucertn, M. y Pzzchella, M. Balancng Flexble Lnes for Car Components Assembly. Internatonal Journal of Producton Research (1995) 33, [2] Bautsta, J. y Perera, J. Ant Algorthms for Assembly Lne Balancng. Lecture Notes n Computer Scence (2002) 2463, Sprnger, Berlín [3] Baybars, I. A survey of exact algorthms for the smple assembly lne balancng problem. Management Scence (1986) 32 (8) [4] Crowston, W.B., Glover, F., Thompson, G.L. y Trawck. J.D. (1963). "Probablstc and

7 IV Congreso Español sobre Metaheurístcas, Algortmos Evolutvos y Bonsprados, MAEB Parametrc Learnng Combnatons of Local Job Shop Schedulng Rules", ONR Research Memorandum No. 117, GSIA, Carnege Mellon Unversty, Pttsburgh, PA. [5] Daganzo, C.F y Blumfeld, D.E. Assembly System Desgn Prncples and Tradeoffs, Internatonal Journal of Producton Research (1994) 32, [6] Deckro, R.F. Balancng Cycle Tme and Workstatons. IIE Transactons (1989) 21, [7] Glover, F., "A Template for Scatter Search and Path Relnkng" en Artfcal Evoluton, Lecture Notes n Computer Scence, 1363, J.- K. Hao, E. Lutton, E. Ronald, M. Schoenauer and D. Snyers, Eds. Sprnger, 1998, pp [8] Hackman, S.T., Magazne, M.J. y Wee, T.S. Fast, Effectve Algorthms for Smple Assembly Lne Balancng Problems. Operatons Research (1989) 37, [9] Hoffmann, T.R. Eureka. A hybrd system for assembly lne Balancng. Management Scence, (1992) 38 (1), [10] Johnson R.V. Optmally balancng assembly lnes wth FABLE. Management Scence (1988) 34, [11] Martí, R., Laguna, M. y Glover, F. (2003), Prncples of Scatter Search, European Journal of Operatonal Research, por aparecer (dsponble en [12] Rachamadugu R. y Talbot, B. Improvng the equalty of workload assgnments n assembly lnes. Internatonal Journal of Producton Research (1991) 29, [13] Scholl, A. y Klen, R. Balancng Assembly lnes effectvely A computatonal comparson, European Journal of Operatonal Research (1999) 114,50-58 [14] Scholl A. y Voss, S. Smple assembly lne balancng Heurstc approaches, Journal of Heurstcs (1996) 2, [15] Scholl, A. Balancng and Sequencng of Assembly Lnes, Physca-Verlag, Hedelberg (1999) [16] Scholl A. y Becker, C. State-of-the-art exact and heurstc soluton procedures for smple assembly lne balancng. Jenaer Schrften zur Wrtschaftswssenschaft 20/03, FSU Jena (2003). Por aparecer en: EJOR, specal ssue on Balancng of Automated Assembly and Transfer Lnes. [17] Talbot, F.B., Patterson, J.H. y Gehrlen, W.V. A comparatve evaluaton of Heurstc Lne Balancng Technques, Management Scence (1986) 32, Anexo I Nomenclatura:, j Índces de tarea n Número de tareas c Tempo de cclo t Tempo de operacón de. IS Conjunto de tareas sguentes nmedatas a. TS Conjunto de tareas sguentes a. TP Conjunto de tareas precedentes a. L Nvel de la tarea en el grafo de precedencas. Z Conjunto de tareas canddatas en curso Asgnar la tarea z * : z * )=max Z [)] Nombre Regla 1. Mayor tempo de ) = t operacón 2. Mayor número de sucesoras ) = IS nmedatas 3. Mayor número ) = TS de sucesoras. 4. Mayor peso ) = t j TS j posconal t 5. Mayor peso t j TS t j ) = medo posconal TS Menor cota t j TS t j ) = UB = n 1+ superor: UB c 7. Menor UB / sucesoras ) = UB / ( TS + 1 ) 8.Mayor tempo de operacón / UB ) = t / UB 9.Menor cota t j TP t j ) = LB = Inferor: LB c 10. Menor holgura. ) = (UB LB ) 11. Sucesoras / Holgura ) = TS / ( UB - LB ) 12.Bhattcharjee & Sahu ) = t + TS 13. Klbrdge & Wester ) = L 14. Menor tempo de operacón ) =- t 15. Aleatoro. *

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Análisis de Sistemas Multiniveles de Inventario con demanda determinística

Análisis de Sistemas Multiniveles de Inventario con demanda determinística 7 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 00 Análss de Sstemas Multnveles de Inventaro con demanda determnístca B. Abdul-Jalbar, J. Gutérrez, J. Scla Departamento de

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Un algoritmo GRASP para resolver el problema de la programación de tareas dependientes en máquinas diferentes (task scheduling)

Un algoritmo GRASP para resolver el problema de la programación de tareas dependientes en máquinas diferentes (task scheduling) Un algortmo GRASP para resolver el problema de la programacón de tareas dependentes en máqunas dferentes (tas schedulng) Manuel Tupa Pontfca Unversdad Católca del Perú, Departamento de Ingenería Av. Unverstara

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI

Unidad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI Undad 3 PLANIFICACIÓN DE TIEMPOS, PROGRAMACIÓN DE RECURSOS Y ESTIMACIÓN DE COSTOS DE LA EJECUCIÓN Y MANTENIMIENTO DE LOS STI 3.1. DINÁMICA DE LA GESTIÓN DE PROYECTOS. 3.1.1. GESTIÓN DE PROYECTOS. La gestón

Más detalles

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR

INSTRUCTIVO No. SP 04 / 2002 INSTRUCTIVO PARA LA DETERMINACIÓN Y CÁLCULO DEL SALARIO BÁSICO REGULADOR El Superntendente de Pensones, en el ejercco de las facultades legales contempladas en el artículo 13, lteral b) de la Ley Orgánca de la Superntendenca de Pensones, EMITE el : INSTRUCTIVO No. SP 04 / 2002

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

Un algoritmo de satisfactibilidad para el problema de Job Shop scheduling

Un algoritmo de satisfactibilidad para el problema de Job Shop scheduling Un algortmo de satsfactbldad para el problema de Job Shop schedulng Marco Antono Cruz Chávez 1, Juan Frausto Solís 2, Davd Juárez 3 1 UAEM Av. Unversdad 1001 Col. Chamlpa C.P. 62210 Cuernavaca Morelos,

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte III CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 CÁLCULO DE LOS FLUJOS NETOS DE CAJA Y TOMA DE DECISIONES DE INVERSIÓN PRODUCTIVA Peculardades

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

ASIGNACIÓN DE LOCALIZACIONES DE ALMACENAMIENTO CONSIDERANDO DISTANCIAS Y TIEMPOS DE ESTADÍA ENTRE PEDIDOS

ASIGNACIÓN DE LOCALIZACIONES DE ALMACENAMIENTO CONSIDERANDO DISTANCIAS Y TIEMPOS DE ESTADÍA ENTRE PEDIDOS ASIGNACIÓN DE LOCALIZACIONES DE ALMACENAMIENTO CONSIDERANDO DISTANCIAS Y TIEMPOS DE ESTADÍA ENTRE PEDIDOS Marcela C. González-Araya Departamento de Modelacón y Gestón Industral, Facultad de Ingenería,

Más detalles

UN ALGORITMO VORAZ PARA RESOLVER EL PROBLEMA DE LA PROGRAMACIÓN DE TAREAS DEPENDIENTES EN MÁQUINAS DIFERENTES

UN ALGORITMO VORAZ PARA RESOLVER EL PROBLEMA DE LA PROGRAMACIÓN DE TAREAS DEPENDIENTES EN MÁQUINAS DIFERENTES RISI 1(1), 9-18 (2004) Rev nvestg sst nform Facultad de Ingenería de Sstemas e Informátca Unversdad Naconal Mayor de San Marcos ISSN: 1815-0268 (mpreso) MANUEL TUPIA et al ARTÍCULOS UN ALGORITMO VORAZ

Más detalles

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales

CAPÍTULO 3 METODOLOGÍA. En el siguiente capítulo se presenta al inicio, definiciones de algunos conceptos actuariales CAPÍTULO 3 METODOLOGÍA En el sguente capítulo se presenta al nco, defncones de algunos conceptos actuarales que se utlzan para la elaboracón de las bases técncas del Producto de Salud al gual que la metodología

Más detalles

Modelo de programación jerárquica de la producción en un Job shop flexible con interrupciones y tiempos de alistamiento dependientes de la secuencia

Modelo de programación jerárquica de la producción en un Job shop flexible con interrupciones y tiempos de alistamiento dependientes de la secuencia REVISTA INGENIERÍA E INVESTIGACIÓN VOL. 28 No. 2, AGOSTO DE 2008 (72-79) Modelo de programacón jerárquca de la produccón en un Job shop flexble con nterrupcones y tempos de alstamento dependentes de la

Más detalles

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL

YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL 27 Congreso Naconal de Estadístca e Investgacón Operatva Lleda, 8- de abrl de 2003 YIELD MANAGEMENT APLICADO A LA GESTIÓN DE UN HOTEL J. Guad, J. Larrañeta, L. Oneva Departamento de Organzacón Industral

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA TERMODINÁMICA AVANZADA Undad III: Termodnámca del Equlbro Ecuacones para el coefcente de actvdad Funcones de eceso para mezclas multcomponentes 9/7/0 Rafael Gamero Funcones de eceso en mezclas bnaras Epansón

Más detalles

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS

METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS SUBDIRECCIÓN TÉCNICA DEPARTAMENTO DE INVESTIGACIÓN Y DESARROLLO ÁREA DE ANÁLISIS ESTADÍSTICAS ECONÓMICAS METODOLOGÍA MUESTRAL ENCUESTA A LAS PEQUEÑAS Y MEDIANAS EMPRESAS Santago, Enero de 2008. Departamento

Más detalles

Título: Dos métodos de diagnóstico de circuitos digitales de alta y muy alta escala de integración.

Título: Dos métodos de diagnóstico de circuitos digitales de alta y muy alta escala de integración. Título: Dos métodos de dagnóstco de crcutos dgtales de alta y muy alta escala de ntegracón. Autor: Dr. Ing. René J. Díaz Martnez. Profesor Ttular. Dpto. de Automátca y Computacón. Fac. de Ingenería Eléctrca.

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

Un Sistema de Recuperación de Información Estructurada

Un Sistema de Recuperación de Información Estructurada Un Sstema de Recuperacón de Informacón Estructurada Jesús Vegas Pablo de la Fuente Dpto. de Informátca, Unversdad de Valladold Campus Mguel Delbes, 47011 Valladold, España {jvegas,pfuente}@nfor.uva.es

Más detalles

Tutorial sobre Máquinas de Vectores Soporte (SVM)

Tutorial sobre Máquinas de Vectores Soporte (SVM) Tutoral sobre Máqunas de Vectores Soporte SVM) Enrque J. Carmona Suárez ecarmona@da.uned.es Versón ncal: 2013 Últma versón: 11 Julo 2014 Dpto. de Intelgenca Artcal, ETS de Ingenería Informátca, Unversdad

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Control de Inventarios y su Aplicación en una Compañía de Telecomunicaciones

Control de Inventarios y su Aplicación en una Compañía de Telecomunicaciones Control de Inventaros y su Aplcacón en una Compañía de Telecomuncacones Carlos Alberto Álvarez Herrera, Maurco Cabrera-Ríos * Dvsón de Posgrado en Ingenería de Sstemas, FIME-UANL {carlos@yalma.fme.uanl.mx,

Más detalles

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization)

Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multiobjective Optimization) Módulo 3. OPTIMIZACION MULTIOBJETIVO DIFUSA (Fuzzy Multobjectve Optmzaton) Patrca Jaramllo A. y Rcardo Smth Q. Insttuto de Sstemas y Cencas de la Decsón Facultad de Mnas Unversdad Naconal de Colomba, Medellín,

Más detalles

Trabajo Especial 2: Cadenas de Markov y modelo PageRank

Trabajo Especial 2: Cadenas de Markov y modelo PageRank Trabajo Especal 2: Cadenas de Markov y modelo PageRank FaMAF, UNC Mayo 2015 1. Conceptos prelmnares Sea G = (V, E, A) un grafo drgdo, con V = {1, 2,..., n} un conjunto (contable) de vértces o nodos y E

Más detalles

Instrucciones para el alumnado

Instrucciones para el alumnado La escolarzacón en Formacón Profesonal Incal, se lleva a cabo medante un proceso de adjudcacón de vacantes centralzado, donde las plazas ofertadas por la Consejería de Educacón, Cultura y Deporte, a través

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

Programación entera, el método del árbol de cubos, su algoritmo paralelo y sus aplicaciones

Programación entera, el método del árbol de cubos, su algoritmo paralelo y sus aplicaciones Programacón entera, el método del árbol de cubos, su algortmo paralelo y sus aplcacones Dr. José Crspín Zavala Díaz, Dr. Vladmr Khachaturov 2 Facultad de Contabldad, Admnstracón e Informátca, jc_zavala2002@yahoo.com

Más detalles

Instrucciones para el alumnado

Instrucciones para el alumnado La escolarzacón en formacón profesonal ncal, se lleva a cabo medante un proceso de adjudcacón de vacantes centralzado, donde las plazas ofertadas por la Consejería de Educacón, Cultura y Deporte, a través

Más detalles

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS En los capítulos anterores se han analzado varos modelos usados en la evaluacón de stocks, defnéndose los respectvos parámetros. En las correspondentes fchas de ejerccos

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

Breve Estudio sobre la Aplicación de los Algoritmos Genéticos a la Recuperación de Información

Breve Estudio sobre la Aplicación de los Algoritmos Genéticos a la Recuperación de Información Breve Estudo sobre la Aplcacón de los Algortmos Genétcos a la Recuperacón de Informacón O. Cordón, F. oya 2,.C. Zarco 3 Dpto. Cencas de la Computacón e I.A. Unv. de Granada. Ocordon@decsa.ugr.es 2 Dpto.

Más detalles

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA.

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (España)

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

DISTRIBUCION DE COSTOS EN EL PLANEAMIENTO DE LA TRANSMISION USANDO EL VALOR BILATERAL DE SHAPLEY.

DISTRIBUCION DE COSTOS EN EL PLANEAMIENTO DE LA TRANSMISION USANDO EL VALOR BILATERAL DE SHAPLEY. Ing EDGAR M. CARREÑO * M.Sc ANTONIO ESCOBAR ** Ph.D. HERMAN J. SERRANO ** Ph.D. RAMON A. GALLEGO ** Unversdad Tecnológca de Perera Grupo de Investgacón en Planeamento de Sstemas Eléctrcos Perera Colomba.

Más detalles

Planificando sistemas territoriales comerciales en gran escala mediante modelos y métodos de programación entera

Planificando sistemas territoriales comerciales en gran escala mediante modelos y métodos de programación entera Planfcando sstemas terrtorales comercales en gran escala medante modelos y métodos de programacón entera Roger Z. Ríos Mercado, J. Fabán López Pérez FIME UANL, FACPYA - UANL roger@yalma.fme.uanl.mx RESUMEN

Más detalles

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 -

1.- Elegibilidad de estudiantes. 2.- Selección de estudiantes - 2 - Unversdad Euskal Herrko del País Vasco Unbertstatea NORMATIVA PARA SOCRATES/ERASMUS Y DEMÁS PROGRAMAS DE MOVILIDAD AL EXTRANJERO DE ALUMNOS (Aprobada en Junta de Facultad del día 12 de marzo de 2002) La

Más detalles

Teléfono: (52)-55-5329-7200 Ext. 2432

Teléfono: (52)-55-5329-7200 Ext. 2432 Sstema de Montoreo Autónomo Basado en el Robot Móvl Khepera Jorge S. Benítez Read 1, Erck Rojas Ramírez 2 y Tonatuh Rvero Gutérrez Insttuto Naconal de Investgacones Nucleares Carretera Méxco-Toluca s/n,

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Nuevos Modelos Probabilísticos. de Localización de Servicios de Emergencias 1

Nuevos Modelos Probabilísticos. de Localización de Servicios de Emergencias 1 Departamento de Estadístca y Matemátca Aplcada Nuevos Modelos Probablístcos de Localzacón de Servcos de Emergencas Fernando Borrás Rocher Memora para optar al grado de Doctor por la Unversdad Mguel Hernández,

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

Planificación de la Operación de Corto Plazo de Sistemas de Energía Hidroeléctrica

Planificación de la Operación de Corto Plazo de Sistemas de Energía Hidroeléctrica Planfcacón de la Operacón de Corto Plao de Sstemas de Energía Hdroeléctrca João P. Catalão 1, Sílvo J. Marano 1, Vctor M. Mendes 2 y Luís A. Ferrera 3 (1) Unversdad Bera Interor. Dpto. de Ingenaría Electromecánca.

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Undad Central del Valle del Cauca Facultad de Cencas Admnstratvas, Económcas y Contables Programa de Contaduría Públca Curso de Matemátcas Fnanceras Profesor: Javer Hernando Ossa Ossa Ejerccos resueltos

Más detalles

ADENDA 008 LICITACIÓN L-CEEC-001-12

ADENDA 008 LICITACIÓN L-CEEC-001-12 ADENDA 008 LICITACIÓN L-CEEC-001-12 OBJETO: CONTRATACIÓN DE LA CONSTRUCCIÓN DE LA FASE I DEL RECINTO FERIAL, DEL CENTRO DE EVENTOS Y EXPOSICIONES DEL CARIBE PUERTA DE ORO POR EL SISTEMA DE ECIOS UNITARIOS

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

DESPACHO DE CARGA ORIENTADO A EVENTUAL SEPARACIÓN EN ISLAS

DESPACHO DE CARGA ORIENTADO A EVENTUAL SEPARACIÓN EN ISLAS UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEARTAMENTO DE INGENIERÍA ELÉCTRICA DESACHO DE CARGA ORIENTADO A EVENTUAL SEARACIÓN EN ISLAS MEMORIA ARA OTAR AL TÍTULO DE INGENIERO CIVIL

Más detalles

Índice de Precios de las Materias Primas

Índice de Precios de las Materias Primas May-15 Resumen Ejecutvo El objetvo del (IPMP) es sntetzar la dnámca de los precos de las exportacones de Argentna, consderando la relatva establdad en el corto plazo de los precos de las ventas externas

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

La planificación financiera

La planificación financiera Tema 5 La planfcacón fnancera 5.1 El paso de prevsones económcas a prevsones fnanceras Entre el plan fnancero de una empresa y su plan económco hay dferencas de la msma naturaleza que las estentes conceptualmente

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

9. Mantenimiento de sistemas de dirección y suspensión

9. Mantenimiento de sistemas de dirección y suspensión 9. Mantenmento de sstemas de dreccón y suspensón INTRODUCCIÓN Este módulo de 190 horas pedagógcas tene como propósto que los y las estudantes de cuarto medo desarrollen competencas relatvas a los sstemas

Más detalles

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE Resolucón de 3 de juno de 2016, por la que se establece el proyecto educatvo nsttuconal denomnado JOSCAN, joven orquesta snfónca para Cantabra. Ley de Cantabra

Más detalles

Valoración de Instrumentos del Vector de Precios

Valoración de Instrumentos del Vector de Precios Valoracón de Instrumentos del Vector de Precos VERSIÓN SEPTIEMBRE 9 VERSIÓN SEPTIEMBRE 9 CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

sergion@fing.edu.uy Centro de Cálculo, Instituto de Computación Facultad de Ingeniería. Universidad de la República, Uruguay.

sergion@fing.edu.uy Centro de Cálculo, Instituto de Computación Facultad de Ingeniería. Universidad de la República, Uruguay. Una Versón Paralela del Algortmo Evolutvo para Optmzacón Multobjetvo NSGA-II y su Aplcacón al Dseño de Redes de Comuncacones Confables Sergo Nesmachnow sergon@fng.edu.uy Centro de Cálculo, Insttuto de

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

1.1 Ejercicios Resueltos Tema 1

1.1 Ejercicios Resueltos Tema 1 .. EJERCICIOS RESUELTOS TEMA. Ejerccos Resueltos Tema Ejemplo: Probarque ++3+ + n 3 + 3 +3 3 + + n 3 n (n +) Ã n (n +)! - Para n es certa, tambén lo comprobamos para n, 3,... ( + ) + 3 (+) supuesto certa

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

Valoración de Instrumentos del Vector de Precios

Valoración de Instrumentos del Vector de Precios Valoracón de Instrumentos del Vector de Precos VERSIÓN DICIEMBRE VERSIÓN DICIEMBRE CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón

Más detalles

Economía Computacional Equilibrio General Computado: Descripción de la Metodología. Martín Cicowiez y Luciano Di Gresia

Economía Computacional Equilibrio General Computado: Descripción de la Metodología. Martín Cicowiez y Luciano Di Gresia Economía Computaconal Equlbro General Computado: Descrpcón de la Metodología Martín Ccowez y Lucano D Gresa Trabajo Docente No. 7 Abrl 2004 EQUILIBRIO GENERAL COMPUTADO: DESCRIPCION DE LA METODOLOGIA *

Más detalles

Profesor: Rafael Caballero Roldán

Profesor: Rafael Caballero Roldán Contendo: 5 Restrccones de ntegrdad 5 Restrccones de los domnos 5 Integrdad referencal 5 Conceptos báscos 5 Integrdad referencal en el modelo E-R 53 Modfcacón de la base de datos 53 Dependencas funconales

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Benemérita Universidad Autónoma de Puebla. Facultad de Ciencias de la Computación. Maestría en Ciencias de la Computación

Benemérita Universidad Autónoma de Puebla. Facultad de Ciencias de la Computación. Maestría en Ciencias de la Computación Benemérta Unversdad Autónoma de Puebla Facultad de Cencas de la Computacón Maestría en Cencas de la Computacón Determnacón de Efcenca y Factor de Garantía de un Algortmo Basado en Búsqueda Local para el

Más detalles

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS PORTAFOLIO DE TRES ACTIVOS FINANCIEROS Contendo:. Introduccón.. Fondos Mutuos. Rendmento y Resgo.. Parámetros estadístcos de un Portafolo de Tres Actvos. a) El Retorno de un Portafolo. b) El Resgo de un

Más detalles

Un Modelo de Asignación de Recursos a Rutas en el Sistema de Transporte Masivo Transmilenio

Un Modelo de Asignación de Recursos a Rutas en el Sistema de Transporte Masivo Transmilenio Un Modelo de Asgnacón de Recursos a Rutas en el Sstema de Transporte Masvo Transmleno A Model for Resource Assgnment to Transt Routes n Bogota Transportaton System Transmleno Sergo Duarte, Ing., Davd Becerra,

Más detalles

Un enfoque de inventarios para planear capacidad en redes de telecomunicaciones

Un enfoque de inventarios para planear capacidad en redes de telecomunicaciones Un enfoque de nventaros para planear capacdad en redes de telecomuncacones arlos Alberto Álvarez Herrera, Maurco abrera Ríos Dvsón de Posgrado en Ingenería de Sstemas, FIME-UANL carlos@yalma.fme.uanl.mx,

Más detalles

Multiobjetivo para Optimizar un Ambiente Job Shop

Multiobjetivo para Optimizar un Ambiente Job Shop Informacón Tecnológca Una Vol. 23(1), Metodología 35-46 (2012) Multobetvo para Optmzar un Ambente Job Shop do: 10.4067/S0718-07642012000100005 Ruz Una Metodología Multobetvo para Optmzar un Ambente Job

Más detalles

2 Criterios generales aplicados a las estructuras de hormigón

2 Criterios generales aplicados a las estructuras de hormigón ANEJO 7 ÍNDICE DE CONTRIBUCIÓN DE LA ESTRUCTURA A LA SOSTENIBILIDAD Consderacones generales El proyecto, la ejecucón y el mantenmento de las estructuras de hormgón consttuyen actvdades, enmarcadas en el

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS Procedmento de Calbracón Metrología PROCEDIMIENTO DI-00 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede descargarse gratutamente

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS Explcacón de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS EMBARGO: 21 de agosto de 2012, 15:00 (CEST) Objetvo angular de 24 mm, con zoom óptco 30x (PowerShot SX500 IS) Desarrollado usando

Más detalles

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS.

TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. GESTIÓN FINANCIERA. TEMA 10. OPERACIONES PASIVAS Y OPERACIONES ACTIVAS. 1.- Funconamento de las cuentas bancaras. FUNCIONAMIENTO DE LAS CUENTAS BANCARIAS. Las cuentas bancaras se dvden en tres partes:

Más detalles

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE BOLETÍN OFICIAL DE CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE SECRETARÍA GENERAL Correccón errores al anunco publcado en el Boletín Ofcal Cantabra número 72 17 abrl 2015, aprobacón la Orn ECD/48/2015,

Más detalles

Algunos métodos de clasificación de puestos de trabajo en la empresa

Algunos métodos de clasificación de puestos de trabajo en la empresa lgunos métodos de clasfcacón de puestos de trabajo en la empresa. lgunos métodos de clasfcacón de puestos de trabajo en la empresa Canós Darós, Lourdes, loucada@omp.upv.es Pers Ortz, Marta, marpeor1@omp.upv.es

Más detalles

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx Tasas de Caducdad - Guía de Apoyo para la Construccón y Aplcacón - Por: Act. Pedro Agular Beltrán pagular@cnsf.gob.m 1. Introduccón La construccón y aplcacón de tasas de caducdad en el cálculo de utldades

Más detalles

Matemáticas Financieras

Matemáticas Financieras Matemátcas Fnanceras Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Profundzar en los fundamentos del cálculo fnancero, necesaros

Más detalles