Analizador de espectros

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Analizador de espectros"

Transcripción

1 Universidad Tecnológica Nacional Facultad Regional San Nicolás Técnicas Digitales III Proyecto Integrador Analizador de espectros Integrantes: Benitez Pablo A. Carranza Rodrigo Curaratti Nazareno J. Docentes: Ing. Poblete, Felipe. Sr. González, Mariano. Julio de 2006

2 Índice General Capítulo 1 Introducción general >Introducción... >Obtención de datos y análisis... >Etapas para el análisis... > Etapa de entrada... > Adaptador de nivel... > Adquisición... > Medición... >Memoria... >Presentación... >Diagrama en bloques... >Procesamiento de señales... >Aplicaciones comerciales... >Consultas... >Materias Integradas... Capítulo 2 Sonido >Introducción... >Características físicas... >Frecuencia... >Amplitud y volumen... >Decibelio db... >Medición del nivel sonoro... >El dba o la ponderación -A-... >Suma de niveles de sonido >Presión Acústica y el Nivel de Presión Acústica >Intensidad fisiológica de un sonido >Intensidad Acústica y el Nivel de Intensidad Acústica >Potencia Acústica y Nivel de Potencia Acústica >Tiempo de Reverberación >Coeficiente de Absorción de un material >Timbre >Velocidad del sonido >Refracción, reflexión e interferencia >Eco, Reverberación y Resonancia >Altura (tono) de un sonido >Sensación de tono >El efecto Doppler >Tres tipos de sonido importantes >Octava, media octava y tercio de octava >Filtro de ancho de banda constante >Filtro de ancho de banda proporcional >Disminución espacial del nivel sonoro >Micrófono >Bibliografía.... Capítulo 3 Ruido >Introducción >Ruido rosa I 1. I 1. I 1. I 1. I 1. I 1. I 1. I 1. I 1. I 2. I 2. I 3. I 3. I 3. II 1. II 2. II 2. II 2. II 3. II 3. II 4. II 4. II 4. II 4. II 5. II 5. II 5. II 5. II 6. II 6. II 6. II 7. II 7. II 8. II 8. II 8. II 9. II 9. II 10. II 11. II 11. II 12. III 1. III 1.

3 >Ruido blanco >Contaminación acústica >Clasificación >Bibliografía.... Capítulo 4 Muestreo de señales >Introducción >Representación de una señal de tiempo continuo mediante sus muestras >Muestreo con tren de impulsos >Muestreo con retenedor de orden cero >Bibliografía.... >Materia Integrada... Capítulo 5 Conversión de señales analógicas a digitales. >Introducción >Digitalización del sonido: Velocidad de Muestreo y Cuantización >Ventajas del audio digital >Pasaje de una señal eléctrica a una señal digital >Cantidad de sub intervalos en que se divide el rango útil de la señal >Resolución de un sistema de audio digital >Frecuencia de muestreo >Reconstrucción de la señal digitalizada >Relación entre el ruido de digitalización y la resolución >Dither >Dither digital >Reproducción >Procesamiento digital >Bibliografía.... >Materia Integrada... Capítulo6 Síntesis del sonido >Introducción >Sintetizadores >Osciladores >Filtros >Amplificadores >Procesamiento del sonido digitalizado >Aumento o disminución de volumen >Filtrado >Mezcla >Cortado y pegado >Procesamiento digital de señales >Filtro pasa altos >Filtro pasa bajos >Eco >Software de Edición y reproducción >Bibliografía.... Capítulo7 Tarjeta de sonido >Introducción >Componentes fundamentales de una placa de sonido III 1. III 1. III 2. III 2. IV 1. IV 1. IV 2. IV 4. IV 4. IV 4. V 1. V 1. V 2. V 2. V 2. V 2. V 3. V 3. V 3. V 4. V 4. V 4. V 4. V 5. V 5. VI 1. VI 1. VI 1. VI 1. VI 1. VI 1. VI 1. VI 1. VI 1. VI 2. VI 2. VI 2. VI 2. VI 2. VI 2. VI 2. VII 1. VII 1.

4 >El muestreo >El tamaño de la muestra >MIDI >Procesadores multi-propósito de señales digitales >Efectos de sonido 3D >Entrada y salida digital >Número de Bits >Número de voces >Calidad del sonido KHz >Tipo de síntesis MIDI >Los parlantes >Otras Utilidades >Entradas salidas. Tipos de conectores >Características técnicas e Información de la placa de sonido utilizada... >Bibliografía, Materia integrada... Capítulo8 DSP (Digital Signal Procesor) >Introducción >Procesador de sonido digital (DSP) >El Chip sintetizador de FM >Programación del puerto MIDI para I/O >El modo SB-MIDI >El modo MPU >Bibliografía, Materia Integrada... Capítulo9 Formatos digitales >Introducción.. >Almacenamiento... >Sonido Audio Digital.. >Formato de archivo: WAVE... >Introducción.. >Especificación RIFF.... >Ficheros de sonido WAVE.... >Tipo de compresión utilizado por WAVE. >Formato de los ficheros de Sonido WAV.. >Lectura y grabación de archivos WAVE bajo Windows... >Análisis de frecuencia.... Capítulo 10 MCI de Windows >Introducción.. >Comandos MCI Strings y Messages.. >Comandos Strings... >Comandos Messages... >Posibilidades de audio de las cadenas de comandos.. >Clasificación de los comandos MCI. >Comandos del sistema... >Los Comandos requeridos.. >Los Comandos básicos... >Los Comandos extendidos.. >Funciones MCI, Macros, y Mensajes... >Descripción de la macro >Espera, Notificación, y Banderas Prueba VII 1. VII 1. VII 1. VII 1. VII 2. VII 2. VII 2. VII 2. VII 2. VII 2. VII 2. VII 3. VII 4. VII 5. VII 5. VIII 1. VIII 1. VIII 2. VIII 4. VIII 4. VIII 4. VIII 5. IX 1. IX 1. IX 1. IX 3. IX 3. IX 3. IX 3. IX 3. IX 4. IX 4. IX 4. X 1. X 1. X 1. X 2. X 2. X 3. X 3. X 3. X 3. X 4. X 4. X 4. X 5.

5 >Bandera de la Espera.. >Bandera de información.... >Bandera de Prueba.. >Comandos de atajo y Variaciones.. >Dispositivos MCI >Control del dispositivo.. >Reproducción y Posicionamiento.. >Tipos de dispositivos. >Nombres de los dispositivos.. >Driver de soporte para los Comandos de MCI.. >Trabajando con dispositivos MCI.. >Abriendo un dispositivo. >Usando un seudónimo.. >Especificando un tipo de dispositivo... >Los dispositivos simples y compuestos.... >Abriendo un dispositivo usando la extensión... >Archivo nuevo de dato. >Información recuperada de un Dispositivo. >Obtención de la información del sistema de MCI. >Ejecutando un Dispositivo. >Grabación... >Guardando un Archivo Grabado. >Detener, y hacer una pausa. >Cerrando un Dispositivo >La interfaz de mensajes de comandos desde el lenguaje C... >Resumen del manejo de un dispositivo MCI... >Limitaciones de los comandos MCI.. Capítulo 11 Programa de adquisición >Introducción >Programas bajo Windows >Independencia de la máquina >Recursos >Ventanas >Eventos >Proyectos >Controles >Descripción del Programa >Ficheros de cabecera >Declaración del prototipo de las funciones >Declaración de variables globales >Función Win main >Declaración >Inicialización >Bucle de mensajes >El procedimiento de ventana >Manipulador de mensajes >Menús >Funciones de grabación y reproducción >Función Grabar >Función Reproducir >Funciones de diálogo >Función diálogo Nombre de archivo >Función diálogo Tiempo de adquisición >Fichero cabecera ids.h X 5. X 5. X 5. X 5. X 6. X 6. X 6. X 7. X 7. X 8. X 8. X 8. X 8. X 8. X 8. X 9. X 9. X 9. X 9. X 9. X 10. X 10. X 10. X 10. X 11. X 11. X 12. XI 1. XI 1. XI 1. XI 1. XI 1. XI 1. XI 2. XI 2. XI 2. XI 2. XI 3. XI 3. XI 4. XI 4. XI 4. XI 5. XI 5. XI 5. XI 6. XI 7. XI 7. XI 10. XI 11. XI 11. XI 12. XI 13.

6 >Ficheros de recursos >Menú >Diálogos >Estructura del proyecto >Cabecera ids.h >winmenu.c >Recurso win003.rc >Manejo de la aplicación XI 13. XI 14. XI 14. XI 14. XI 15. XI 15. XI 15. XI 17. Capítulo 12 Transformadas de Fourier y la DFT. >Introducción... >Clases CT y DT de métodos de Fourier... >Transformada clásica de Fourier para señales de tiempo continuo... >Definición (CTFT)... >El espectro de Fourier del modelo de muestreo de tiempo continúo.... >La transformada de Fourier de tiempo discreto... >Relación entre el espectro de tiempo continuo y discreto... >La transformada discreta de Fourier (DFT)... XII 1. XII 1. XII 2. XII 2. XII 2. XII 2. XII 3. XII 3. Capítulo 13 Análisis de espectro con MATLAB. >Introducción >Procesamiento.m >En tiempo continuo >En tiempo Discreto >Espectro continuo >Espectro discreto... >Bibliografía XIII 1. XIII 2. XIII 3. XIII 3. XIII 4. XIII 5. XIII 5. Apéndice A Código fuente del programa. >winmenu.c >Recurso win003.rc A 1. A 15.

7 Capítulo 1 Introducción general Introducción. En este apartado se presentaran los componentes fundamentales del proyecto los cuales serán tratados con profundidad en los siguientes capítulos. El analizador de espectros aquí tratado consiste en tomar una señal cualquiera y obtener su contenido frecuencial. Dicho de otro modo se representaran gráficamente las amplitudes de cada una de las armónicas que componen la señal, utilizando para ello una PC. Obtención de datos y análisis. Existen varias formas de realizar el análisis de espectro, una de las mas sencillas es adquiriendo los datos de forma digital y luego procesarlos. Para ello utilizaremos la placa de sonido como adquisidor, una vez que obtenemos los datos los almacenamos en disco con un formato de tipo de onda o sea lo almacenamos como un archivo cuya extensión es.wav. para el análisis de espectro se toma este archivo se elimina la cabecera y se lo procesa en el programa MATLAB. Etapas para el análisis Para poder realizar el análisis frecuencial se tienen las siguientes etapas: Etapa de entrada. Adaptador de nivel. Adquisición. Medición. Memoria. Presentación. Etapa de entrada: Es la encargada de impedir el paso de señales indeseables y proteger al dispositivo en caso de sobre tensión o algún otra anomalía. Adaptador de nivel: Consiste en variar la ganancia de un amplificador con el objetivo de obtener una señal con un nivel constante de amplitud para que los datos obtenidos en la adquisición no se modifiquen constantemente con cualquier variación de la amplitud de la señal de entrada. Adquisición: Consiste en tomar los datos que luego serán procesados. Medición: Para realizar la medición o sea interpretar los datos obtenidos es importante conocer el rango de frecuencias en el cual se está realizando la adquisición de estos datos, es decir la frecuencia mínima y máxima de muestreo, que en este caso se encuentra en 50Hz y 50kHz, rango que comprende el espectro de audición humana. Memoria: Es la encargada de almacenar los datos obtenidos de la adquisición, para ello se usa la memoria RAM de la PC. Presentación: Por medio de un programa poder visualizar los datos obtenidos y procesados. I - 1

8 Diagrama en bloques. La etapa de adquisición y filtrado es realizada por medio de una placa de sonido la cual posee un DSP y un filtro pasa bajos. La adquisición se realiza después de que la señal fue filtrada por el filtro pasa bajos, el cual evita el paso de señales de alta frecuencia que no están en el rango de medición. La señal debe ser muestreada a una razón de muestreo determinada. Estas acciones la ejecuta la placa de sonido ya que posee el filtro pasa bajos y realiza el muestreo de la señal a una frecuencia de muestreo de hasta 44,1 Khz a 16 bits. Los datos obtenidos del muestreo se almacenan en la memoria RAM de la PC, luego, estos datos, son usados por el software para realizar el procesamiento de dichos datos. El procesamiento consiste en obtener las componentes frecuenciales de la señal muestreada. Procesamiento de señales El procesamiento de la señal se puede realizar de dos formas: Análisis mediante Transformada Rápida de Fourier. Es un análisis de banda angosta que se aplica sobre cada señal muestreada. Para ello se debe segmentar los datos muestreados en varias ventanas, luego ponderar cada ventana definida, una ves realizado este proceso se aplica el algoritmo de la Transformada Rápida de Fourier a cada ventana previamente ponderada y se obtienen los espectros de todas las ventanas y finalmente la promediación del los espectros hallado con uno anteriormente calculado. Análisis mediante Filtros Digitales. Para hacer el análisis de banda ancha por octavas ó tercio de octavas la cual es mayormente usado en Audio y Acústica. Consiste en pasar el segmento de datos muestreados a través de un banco de filtros pasabanda con frecuencia centrales y ancho de banda estandarizados ( 37.5 Hz, 63 Hz, 125 Hz, 250 Hz,... frecuencias centrales de los filtros por octava ). A la salida de cada filtro se obtendrá una señal filtrada, a la cual se le halla su potencia eléctrica, agrupando todas las potencias de las señales obtenidas a la salida de cada filtro, se consigue un espectro de potencia que refleja la distribución espectral de la señal muestreada. Para hacer el análisis de una señal en la banda de audio se requiere 10 filtros pasabanda analógicos por octavas ó 30 filtros pasa banda analógicos por 1/3 de octava, pero usando técnicas de procesamiento se consigue realizar el análisis por octava con sólo un filtro digital pasabanda ó sólo 3 filtros por 1/3 de octava. I - 2

9 Aplicaciones comerciales: El analizador de espectros puede ser usado para variadas aplicaciones tanto en ambientes industriales como también aplicaciones didácticas, algunas de estas aplicaciones son las siguientes: Encontrar las respuestas de los filtros. Medición de equipos de Audio. Medición de parámetros acústicos. Ecualización de salas acústicas. Análisis modal de estructuras. Análisis de ruidos. Consultas Al comienzo de nuestro proyecto fue de mucha importancia obtener información de los distintos métodos para el análisis de espectros, para ello se realizaron consultas al Ing. Franzini Hugo profesor de la cátedra Comunicaciones I, ya que dicha materia trata el tema de transformada de Fourier; y al Ing. Culasso Víctor profesor de la cátedra Medidas electrónica II, en dicha materia se trata el tema análisis de espectros. La consulta a los profesores antes mencionados nos llevo a realizar el proyecto tomando como fundamento un análisis de espectro digital. En los capítulos posteriores se nombran las consultas realizadas y la bibliografía utilizada para cada tema. Materias Integradas. Informática II, Análisis de señales y sistemas, Comunicaciones I, Técnicas digitales III, Medidas electrónicas II. I - 3

10 Capítulo 2 Sonido Introducción El Sonido es un fenómeno físico que percibimos al producirse una perturbación en el medio en el cual estamos, son ondas que en este caso, se propagan por aire, sólidos o líquidos. El cuerpo humano percibe el sonido como un cambio en la presión del aire en el tímpano. De este modo, por ejemplo: si alguien aplaude, ese aplauso desplaza aire que hace vibrar a las sensibles membranas de nuestros oídos, esa vibración es decodificada por el cerebro como sonido. Es una forma de energía mecánica que se representa por una onda sinusoidal que muestra vibraciones a lo largo del tiempo. En los seres humanos, esto ocurre siempre que una vibración con frecuencia comprendida entre unos 15 y hercios llega al oído interno. El hercio (Hz) es una unidad de frecuencia que corresponde a un ciclo por segundo. Estas vibraciones llegan al oído interno transmitidas a través del aire, y a veces se restringe el término sonido a la transmisión en este medio. Sin embargo, en la física moderna se suele extender el término a vibraciones similares en medios líquidos o sólidos. Los sonidos con frecuencias superiores a unos Hz se denominan ultrasonidos. En general, las ondas pueden propagarse de forma transversal o longitudinal. En ambos casos, sólo la energía y la cantidad de movimiento del movimiento ondulatorio se propagan en el medio; ninguna parte del propio medio se mueve físicamente a una gran distancia. Por ejemplo, imaginemos que atamos firmemente una cuerda a un poste por un extremo, la estiramos sin tensarla del todo y sacudimos el otro extremo. Una onda se desplazará por la cuerda hacia el poste, donde se reflejará y volverá hacia la mano. En realidad, ninguna parte de la cuerda se mueve longitudinalmente hacia el poste, pero todas las partes de la cuerda se mueven transversalmente. Este tipo de movimiento ondulatorio se denomina onda transversal. Del mismo modo, si tiramos una piedra a un estanque, una serie de ondas transversales se propaga desde el punto de impacto. Un corcho que flote cerca de dicho punto se moverá hacia arriba y hacia abajo, es decir, de forma transversal a la dirección del movimiento ondulatorio, pero apenas mostrará movimiento longitudinal. En cambio, una onda de sonido es una onda longitudinal. A medida que la energía del movimiento ondulatorio se propaga alejándose del centro de la perturbación, las moléculas de aire individuales que transmiten el sonido se mueven hacia delante y hacia atrás, de forma paralela a la dirección del movimiento ondulatorio. Por tanto, una onda de sonido es una serie de compresiones y enrarecimientos sucesivos del aire. Cada molécula individual transmite la energía a las moléculas vecinas, pero una vez que pasa la onda de sonido, las moléculas permanecen más o menos en la misma posición. Características físicas Cualquier sonido sencillo, como una nota musical, puede describirse en su totalidad especificando tres características de su percepción: el tono, la intensidad y el timbre. Estas características corresponden exactamente a tres características físicas: la frecuencia, la amplitud y la composición armónica o forma de onda. El ruido es un sonido complejo, una mezcla de diferentes frecuencias o notas sin relación armónica. II - 1

11 Frecuencia Percibimos la frecuencia de los sonidos como tonos más graves o más agudos. La frecuencia es el número de ciclos (oscilaciones) que una onda sonora efectúa en un tiempo dado; se mide en hercios (ciclos por segundo). Existen distintos métodos para producir sonido de una frecuencia deseada. Por ejemplo, un sonido de 440 Hz puede crearse alimentando un altavoz con un oscilador sintonizado a esa frecuencia. También puede interrumpirse un chorro de aire mediante una rueda dentada con 44 dientes que gire a 10 revoluciones por segundo; este método se emplea en las sirenas. Los sonidos de un altavoz y una sirena de la misma frecuencia tendrán un timbre muy diferente, pero su tono será el mismo, equivalente al la situado sobre el do central en un piano. El siguiente la del piano, la nota situada una octava por encima, tiene una frecuencia de 880 Hz. Las notas situadas una y dos octavas por debajo tienen frecuencias de 220 y 110 Hz respectivamente. Por definición, una octava es el intervalo entre dos notas cuyas frecuencias tienen una relación de uno a dos. Una ley fundamental de la armonía afirma que dos notas separadas por una octava producen una combinación eufónica cuando suenan simultáneamente. Cuando el intervalo es de una quinta o de una tercera mayor, la combinación es progresivamente menos eufónica. En física, un intervalo de una quinta implica que la relación de las frecuencias de ambas notas es de tres a dos; en una tercera mayor, la relación es de cinco a cuatro. La ley de la armonía afirma que dos o más notas producen un sonido eufónico al sonar de forma simultánea si la relación entre sus frecuencias corresponde a números enteros pequeños; si las frecuencias no presentan dichas relaciones, se produce una disonancia. Amplitud y Volumen. La amplitud de una onda de sonido es el grado de movimiento de las moléculas de aire en la onda, que corresponde a la intensidad del enrarecimiento y compresión que la acompañan. Cuanto mayor es la amplitud de la onda, más intensamente golpean las moléculas el tímpano y más fuerte es el sonido percibido. La amplitud de una onda de sonido puede expresarse en unidades absolutas midiendo la distancia de desplazamiento de las moléculas del aire, o la diferencia de presiones entre la compresión y el enrarecimiento, o la energía transportada. Por ejemplo, la voz normal presenta una potencia de sonido de aproximadamente una cienmilésima de vatio. Sin embargo, todas esas medidas son muy difíciles de realizar, y la intensidad de los sonidos suele expresarse comparándolos con un sonido patrón; en ese caso, la intensidad se expresa en decibelios. II - 2

12 Decibelio db El decibelio es una unidad logarítmica de medida utilizada en diferentes disciplinas de la ciencia. En todos los casos se usa para comparar una cantidad con otra llamada de referencia. Normalmente el valor tomado como referencia es siempre el menor valor de la cantidad. En algunos casos puede ser un valor promediado aproximado. En Acústica la mayoría de las veces el decibelio se utiliza para comparar la presión sonora, en el aire, con una presión de referencia. Este nivel de referencia tomado en Acústica, es una aproximación al nivel de presión mínimo que hace que nuestro oído sea capaz de percibirlo. El nivel de referencia varia lógicamente según el tipo de medida que estemos realizando. No es el mismo nivel de referencia para la presión acústica, que para la intensidad acústica o para la potencia acústica. A continuación se dan los valores de referencia. Nivel de Referencia para la Presión Sonora (en el aire) = = 2E-5 Pa (rms) Nivel de Referencia para la Intensidad Sonora ( en el aire) = = 1E-12 w/m^2 Nivel de Referencia para la Potencia Sonora (en el aire) = = 1E-12 w Como su nombre indica el decibelio es la décima parte del Bel. El Bel es el logaritmo en base 10 de la relación de dos potencias o intensidades. No obstante esta unidad resulta demasiado grande por lo que se ha normalizado el uso de la décima parte del Bel, siendo el decibel o decibelio. La formula para su aplicación es la siguiente, partiendo que la intensidad acústica en el campo lejano es proporcional al cuadrado de la presión acústica, se define el nivel de presión sonora como: L P P = 10log P 2 R = 20log P P R Siendo Lp = Nivel de Presión sonora; p la presión medida; pr la presión de referencia (2E-5 Pa). Como es fácil ver el nivel de referencia siempre se corresponde con el nivel de 0 db: 0,00002 L P = 20 log = 20 log1= 0dB 0,00002 Por la tanto en 0 db tenemos el umbral de audición del oído humano, se supone que no es posible oír por debajo de este nivel, o sea variaciones de nivel en la presión del aire inferiores a 0,00002 pascal. La razón por la que se utiliza el decibelio es que si no, tendríamos que estar manejando números o muy pequeños o excesivamente grandes, con lo que la posibilidad de error seria muy grande al hacer cálculos. Además también hay que tener en cuenta que el comportamiento del oído humano esta más cerca de una función logarítmica que de una lineal, ya que no percibe la misma variación de nivel en las diferentes escalas de nivel, ni en las diferentes bandas de frecuencias. Medición del Nivel Sonoro Para medir el nivel sonoro disponemos de los Sonómetros. Estos aparatos nos permiten conocer el Nivel de Presión sonora o SPL (Sound Presure Level). Normalmente suelen ser sistemas digitales y presentan en una pantalla de cristal liquido los valores medidos. Estos siempre se dan como decibelios db y en referencia al valor antes señalado de (2E-5 Pa). Con el sonómetro es posible además del hallar el valor rms de la presión, también ver los picos máximos y niveles mínimos de la medida. Los sonómetros normalmente no dan la medida en db lineales si no que dan ya con la ponderación y son dba/dbc etc.. Una función muy utilizada a la hora de medir niveles de presión acústica y que ofrecen los sonómetros es la medición en modo Leq. Normalmente se utiliza el Leq 1' (leq a un minuto). El sonómetro mide las diferentes II - 3

13 presiones que se generan durante un tiempo determinado (Leq X) siendo X = 1 minuto en nuestro caso, el valor que nos da al finalizar el minuto de medida es un valor en db que equivaldría al de una señal de valor continuo durante todo el minuto y que utilizaría la misma energía que se ha medido durante el minuto. Hay que observar que en una medida de un minuto los valores varían y si se quiere determinar un valor medio de ruido hay que hacerlo con la función Leq, de otra forma se obtendrán valores erróneos puesto que podemos tener valores de pico durante un instante y no ser representativos del nivel de ruido normal que se esta intentando determinar. El dba o la ponderación -A- En el punto anterior hemos visto que el db es un valor lineal, quiere decir que los valores medidos son los valores tomados como validos sin que sufran ninguna alteración. Si los valores de presión acústica los medimos de esta forma, linealmente, aun siendo cierta dicha medida, tendrá poco valor en cuanto a la percepción del odio humano. El oído no se comporta igual para el mismo nivel de presión en diferentes frecuencias. Por ejemplo tomemos un sonido lineal en toda la banda de 20 Hz a 20 khz tenemos en todas las bandas un nivel de 30 db, si nuestro oído fuese lineal oiríamos los mismo o mejor con la misma intensidad auditiva las frecuencias mas bajas, que las medias y que las agudas. Sin embargo esto no es cierto el oído humano tiene una menor sensibilidad en las frecuencias mas graves, y en las mas agudas frente a las medias. Lo que mas oímos por tanto son las frecuencias medias, y las que menos las mas graves seguidas de las más agudas. Como vemos es necesario encontrar una forma de ajustar los niveles de db que hemos medido con la percepción que el oído tiene de los mismos según cada frecuencia. Esta corrección se realiza ponderando los db medidos mediante una tabla de ponderación ya especificada y que se llama tabla "A". Los decibelios ya ponderados en "A" se representan como dba y los no ponderados, llamados lineales, como db. Por ejemplo si en una frecuencia de 100 Hz hemos medido 80 db, al ponderarlo pasaran a ser 60,9 dba, esto quiere decir que un nivel de presión sonora de 80 db en una frecuencia de 100 Hz es oída por nuestro sistema de audición como si realmente tuviese 60,9 dba y no 80 db. Suma de niveles de sonido Hemos visto que el decibelio es una función logarítmica y por tanto cuando hablamos de db de presión sonora no es posible sumarlos sin mas. Por ejemplo 30 db + 30 db no es igual a 60 db si no a 33 db como vamos a ver a continuación. Para poder sumar dos decibelios podemos emplear la siguiente ecuación: db + db = 10log( ) 1 2 db 1 db 2 La suma de dos db nunca puede ser más de 3 db más que el mayor de los dos. Si la diferencia que hay entre los dos valores a sumar es mayor de 10 db la suma no tiene valor practico y se toma el valor del mayor de los dos. Por ejemplo si sumamos 20 db + 10 db el resultado será igual a 20 db (aproximado). Solamente son significativos para la suma los valores que tienen una diferencia menor a 10 db. Presión Acústica y el Nivel de Presión Acústica La presión sonora como hemos visto antes, es la presión que se genera en un punto determinado por una fuente sonora. El nivel de presión sonora SPL se mide en db(a) SPL y determina el nivel de presión que realiza la onda sonora en relación a un nivel de referencia que es 2E-5 Pascal en el aire. Es el parámetro más fácil de medir, se puede medir con un sonómetro. Su valor depende del punto donde midamos, del local etc. Realmente no da mucha información sobre las características acústicas de la fuente, a no ser que se haga un análisis frecuencia de los nivel de presión, dado que el SPL siempre esta influenciado por la distancia a la fuente, el local etc. Intensidad fisiológica de un sonido. La intensidad fisiológica o sensación sonora de un sonido se mide en decibelios (db). Por ejemplo, el umbral de la audición está en 0 db, la intensidad fisiológica de un susurro corresponde a unos 10 db y II - 4

14 el ruido de las olas en la costa a unos 40 db. La escala de sensación sonora es logarítmica, lo que significa que un aumento de 10 db corresponde a una intensidad 10 veces mayor: por ejemplo, el ruido de las olas en la costa es veces más intenso que un susurro, lo que equivale a un aumento de 30 db. La distancia a la que se puede oír un sonido depende de su intensidad, que es el flujo medio de energía por unidad de área perpendicular a la dirección de propagación. En el caso de ondas esféricas que se propagan desde una fuente puntual, la intensidad es inversamente proporcional al cuadrado de la distancia, suponiendo que no se produzca ninguna pérdida de energía debido a la viscosidad, la conducción térmica u otros efectos de absorción. Por ejemplo, en un medio perfectamente homogéneo, un sonido será nueve veces más intenso a una distancia de 100 metros que a una distancia de 300 metros. En la propagación real del sonido en la atmósfera, los cambios de propiedades físicas del aire como la temperatura, presión o humedad producen la amortiguación y dispersión de las ondas sonoras, por lo que generalmente la ley del inverso del cuadrado no se puede aplicar a las medidas directas de la intensidad del sonido. Intensidad Acústica y el Nivel de Intensidad Acústica Se puede definir como la cantidad de energía sonora transmitida en una dirección determinada por unidad de área. Con buen oído se puede citar dentro de un rango de entre 1x10-12 w por metro cuadrado, hasta 1 w. Para realizar la medida de intensidades se utiliza actualmente analizadores de doble canal con posibilidad de espectro cruzado y una sonda que consiste en dos micrófonos separados a corta distancia. Permite determinar la cantidad de energía sonora que radia una fuente dentro de un ambiente ruidoso. No es posible medirlo con un sonómetro. El nivel de intensidad sonora se mide en w/m2. Potencia Acústica y Nivel de Potencia Acústica La potencia acústica es la cantidad de energía radiada por una fuente determinada. El nivel de potencia Acústica es la cantidad de energía total radiada en un segundo y se mide en w. La referencia es 1pw = 1E-12 w. Para determinar la potencia acústica que radia una fuente se utiliza un sistema de medición alrededor de la fuente sonora a fin de poder determinar la energía total irradiada. La potencia acústica es un valor intrínseco de la fuente y no depende del local donde se halle. La potencia acústica el valor no varia por estar en un local reverberante o en uno seco. Al contrario de la Presión Acústica que si que varia según varié las características del local donde se halle la fuente, la distancia etc. Tiempo de Reverberación El Tiempo de Reverberación RT, es el tiempo que tarda una señal, desde que esta deja de sonar, en atenuarse un nivel de 60 db. Para realizar la medida se genera un ruido y se mide a partir de que este deja de sonar, entonces se determina el tiempo que tarda en atenuarse 60 db. El Tiempo de Reverberación se mide de forma frecuencial, esto es, un local no tiene el mismo RT en 200 Hz que en 4 khz. Ello es debido a que el RT viene determinado por el Volumen de la sala, y por los coeficientes de absorción de sus superficies, o si se prefiere por las superficies con un coeficiente de absorción determinado. Como los coeficientes de absorción de los diferentes materiales que componen cualquier local no son iguales para todas las frecuencias, las reflexiones generadas en el interior del local serán diferentes para cada frecuencia y por lo tanto el RT del local es diferente según las frecuencias. Para calcular la RT de un local sin realizar mediciones se puede utilizar la formula de Sabine: V RT60 = 0, 163 A V = Volumen de la sala en m3 y A = Superficie de Absorción en m2 Como norma cuanto mayor es el local mayor es el RT. Si los materiales que lo componen internamente son poco absorbentes el RT también aumentara. II - 5

15 El valor de RT es muy importante si se quiere conseguir buenos niveles de inteligibilidad dentro de los locales. Coeficiente de Absorción de un material El coeficiente de absorción de un material es la relación entre la energía absorbida por el material y la energía reflejada por el mismo. Dada esta formulación su valor siempre esta comprendido entre 0 y 1. El máximo coeficiente de absorción esta determinado por un valor de 1 donde toda la energía que incide en el material es absorbida por el mismo, y el mínimo es 0 donde toda la energía es reflejada. El coeficiente de absorción varia con la frecuencia y por tanto los fabricantes de materiales acústicos dan los coeficientes de absorción por lo menos en resolución de una octava. Sabiendo los materiales de una sala y sabiendo sus coeficientes de absorción podemos saber como sonora esa sala en cada frecuencia y podremos también saber, mediante la formula de Sabine, Eyring etc, el tiempo de reverberación también por frecuencias. Timbre. El timbre es la característica del sonido que nos permite distinguir los tonos producidos por instrumentos distintos aunque las ondas sonoras tengan la misma amplitud y frecuencia. Los armónicos son componentes adicionales de la onda que vibran con múltiplos enteros de la frecuencia principal y dan lugar a diferencias de timbre. El oído distingue por su timbre la misma nota producida por un diapasón, un violín o un piano. Si se toca el la situado sobre el do central en un violín, un piano y un diapasón, con la misma intensidad en los tres casos, los sonidos son idénticos en frecuencia y amplitud, pero muy diferentes en timbre. De las tres fuentes, el diapasón es el que produce el tono más sencillo, que en este caso está formado casi exclusivamente por vibraciones con frecuencias de 440 Hz. Debido a las propiedades acústicas del oído y las propiedades de resonancia de su membrana vibrante, es dudoso que un tono puro llegue al mecanismo interno del oído sin sufrir cambios. La componente principal de la nota producida por el piano o el violín también tiene una frecuencia de 440 Hz. Sin embargo, esas notas también contienen componentes con frecuencias que son múltiplos exactos de 440 Hz, los llamados tonos secundarios, como 880, o Hz. Las intensidades concretas de esas otras componentes, los llamados armónicos, determinan el timbre de la nota. Velocidad del sonido. La frecuencia de una onda de sonido es una medida del número de vibraciones por segundo de un punto determinado. La distancia entre dos compresiones o dos enrarecimientos sucesivos de la onda se denomina longitud de onda. El producto de la longitud de onda y la frecuencia es igual a la velocidad de propagación de la onda, que es la misma para sonidos de cualquier frecuencia (cuando el sonido se propaga por el mismo medio a la misma temperatura). Por ejemplo, la longitud de onda del la situado sobre el do central es de unos 78,2 cm, y la del la situado por debajo del do central es de unos 156,4 centímetros. La velocidad de propagación del sonido en aire seco a una temperatura de 0 C es de 331,6 m/s. Al aumentar la temperatura aumenta la velocidad del sonido; por ejemplo, a 20 C, la velocidad es de 344 m/s. Los cambios de presión a densidad constante no tienen prácticamente ningún efecto sobre la velocidad del sonido. En muchos otros gases, la velocidad sólo depende de su densidad. Si las moléculas son pesadas, se mueven con más dificultad, y el sonido avanza más despacio por el medio. Por ejemplo, el sonido avanza ligeramente más deprisa en aire húmedo que en aire seco, porque el primero contiene un número mayor de moléculas más ligeras. En la mayoría de los gases, la velocidad del sonido también depende de otro factor, el calor específico, que afecta a la propagación de las ondas de sonido. Generalmente, el sonido se mueve a mayor velocidad en líquidos y sólidos que en gases. Tanto en los líquidos como en los sólidos, la densidad tiene el mismo efecto que en los gases; la velocidad del sonido varía de forma inversamente proporcional a la raíz cuadrada de la densidad. La velocidad también varía de forma proporcional a la raíz cuadrada de la elasticidad. Por ejemplo, la velocidad del sonido en agua es de unos m/s a temperaturas ordinarias, pero aumenta mucho cuando sube la temperatura. La velocidad del sonido en el cobre es de unos m/s a temperaturas normales y II - 6

16 decrece a medida que aumenta la temperatura (debido a la disminución de la elasticidad). En el acero, más elástico, el sonido se desplaza a unos m/s; su propagación es muy eficiente. Refracción, reflexión e interferencias. Un eco es una onda sonora reflejada. El intervalo entre la emisión y la repetición del sonido corresponde al tiempo que tardan las ondas en llegar al obstáculo y volver. Con frecuencia, el eco es más débil que el sonido original porque no todas las ondas se reflejan. Generalmente, los ecos escuchados en las montañas se producen cuando las ondas sonoras rebotan en grandes superficies alejadas más de 30 m de la fuente. Dando golpecitos en un tubo metálico pegado al oído también pueden escucharse ecos. El sonido avanza en línea recta cuando se desplaza en un medio de densidad uniforme. Sin embargo, igual que la luz, el sonido está sometido a la refracción, es decir, la desviación de las ondas de sonido de su trayectoria original. En las regiones polares, por ejemplo, donde el aire situado cerca del suelo es más frío que el de las capas más altas, una onda de sonido ascendente que entra en la región más caliente, donde el sonido avanza a más velocidad, se desvía hacia abajo por la refracción. La excelente recepción del sonido a favor del viento y la mala recepción en contra del viento también se deben a la refracción. La velocidad del aire suele ser mayor en las alturas que cerca del suelo; una onda de sonido ascendente que avanza a favor del viento se desvía hacia el suelo, mientras que una onda similar que se mueve en contra del viento se desvía hacia arriba, por encima de la persona que escucha. El sonido también se ve afectado por la reflexión, y cumple la ley fundamental de que el ángulo de incidencia es igual al ángulo de reflexión. Un eco es el resultado de la reflexión del sonido. El sonar se basa en la reflexión de los sonidos propagados en agua. Una bocina es un tubo cónico que forma un haz de ondas de sonido reflejando algunos de los rayos divergentes en los lados del tubo. Un tubo similar puede recoger ondas de sonido si se dirige el extremo ancho hacia la fuente de sonido. El sonido también experimenta difracción e interferencia. Si el sonido de una única fuente llega a un oyente por dos trayectorias diferentes por ejemplo, una directa y otra reflejada, los dos sonidos pueden reforzarse; sin embargo, si no están en fase pueden interferir de forma que el sonido resultante sea menos intenso que el sonido directo sin reflexión. Las trayectorias de interferencia son distintas para sonidos de diferentes frecuencias, con lo que la interferencia produce distorsión en sonidos complejos. Dos sonidos de distintas frecuencias pueden combinarse para producir un tercer sonido cuya frecuencia es igual a la suma o diferencia de las dos frecuencias originales. Eco, Reverberación y Resonancia Cuando se genera un sonido en el interior de un local las superficies que componen el mismo ocasionan una serie de diferentes efectos dependiendo del las características de dichas superficies. Esto ocurre porque las ondas sonoras inciden en las diferentes superficies y estas las reflejan de diferente forma según su coeficiente de reflexión acústica. Como es lógico, primero siempre se percibe el sonido directo, esto es, el sonido que nos llega a nuestro oído sin que se aún se halla reflejado en ninguna superficie. Una vez recibido el sonido directo, llegará a nuestros oídos, con un retraso de tiempo con respecto al sonido directo, el sonido reflejado por las superficies del local. Tanto el retraso como el nivel sonoro del sonido reflejado dependen de las características físicas del local y sus superficies. Si el retraso entre el sonido directo y el reflejado es mayor de 1/10 de segundo, nuestro sistema de audición será capaz de separar las dos señales y percibirlas como tales, primero una y después la otra, esto es lo que se entiende por eco. Por ejemplo: supongamos que estamos dentro de un local de grandes dimensiones y una persona que esta separada de nosotros a cierta distancia nos dice "HOLA"; primero llegara a nuestros oídos el "HOLA" del sonido directo, y en el caso de un Eco este nos llegara como mínimo 1/10 segundo después, por lo tanto oiremos "HOLA...(1/10 segundo mínimo)...hola", y lo interpretaremos efectivamente como dos mensajes diferentes separados por un intervalo de tiempo determinado. Sin embargo nuestro interlocutor únicamente ha articulado un "HOLA". Cuando en la misma situación que en el caso anterior, el sonido reflejado nos llega con un tiempo inferior a 1/10 de segundo, nuestro sistema de audición no es capaz de separar ambas señales y las toma como una misma pero con una duración superior de esta. Normalmente esto se entiende como reverberación. La reverberación de un local se mide según su tiempo de reverberación (rt) en segundos y varia según la frecuencia de análisis que se utilice. Esto es debido a que los diferentes materiales que componen las II - 7

17 superficies del local no se comportan por igual en todo el espectro sonoro, y por tanto los coeficientes de absorción de cada superficie de un mismo material varia según la frecuencia. Conociendo el tiempo de reverberación de un local podemos saber como se comportara el mismo en diferentes aplicaciones. Cuando el tiempo de reverberación alcanza valores muy altos con respecto al sonido directo, puede ocurrir un enmascaramiento de este y se puede perder la capacidad de entender la información contenida en el mensaje que se percibe. La resonancia se ocasiona cuando un cuerpo entra en vibración por simpatía con una onda sonora que incide sobre el y coincide su frecuencia con la frecuencia de oscilación del cuerpo o esta es múltiplo entero de la frecuencia de la onda que le incide. Altura (tono) de un sonido Como ya sabemos la frecuencia es una entidad física y por tanto puede ser medida de forma objetiva por diferentes medios. Por contra la altura o tono de un sonido es un fenómeno totalmente subjetivo y por tanto no es posible medirlo de forma objetiva. Normalmente cuando se aumenta la frecuencia de un sonido, su altura también sube, sin embargo esto no se da de forma lineal, o sea no se corresponde la subida del valor de la frecuencia con la percepción de la subida de tono. La valoración subjetiva del tono se ve condicionada no solo por el aumento de la frecuencia si no también por la intensidad, y por el valor de dicha frecuencia. Para frecuencias inferiores a Hz (incluida esta), si se aumenta la intensidad el tono disminuye, entre Hz y Hz el tono es prácticamente independiente de la intensidad que tenga, por encima de Hz el tono aumenta si aumenta la intensidad. La unidad de altura es el "Mel". (en ocasiones se utiliza el "Bark" equivalente a 100"Mels"). Sensación de tono Si se practica una audiometría a una persona joven normal, se comprueba que su oído es sensible a todos los sonidos entre hercios y hercios. El oído de las personas mayores es menos agudo, sobre todo en las frecuencias más elevadas. El oído es especialmente sensible en la gama que va desde el la situado por encima del do central hasta el la que está cuatro octavas por encima; en esa zona, una persona puede percibir un sonido cientos de veces más débil que una octava por encima o dos octavas por debajo. El grado en que un oído sensible puede distinguir entre dos notas puras que difieran ligeramente en intensidad o frecuencia varía en los diferentes rangos de intensidad y frecuencia de los tonos. En sonidos de intensidad moderada situados en el rango de frecuencia para el que el oído es más sensible (entre y Hz aproximadamente), es posible distinguir una diferencia de intensidad de un 20% (1 decibelio, o db) y una diferencia en frecuencia de un 0,33% (alrededor de una vigésima de nota). En este mismo rango, la diferencia entre el sonido más tenue que puede oírse y el sonido más fuerte que puede distinguirse como tal sonido (los sonidos más fuertes se sienten, o perciben, como estímulos dolorosos) es de unos 120 decibelios: una diferencia de intensidad de aproximadamente un billón de veces. Todas estas pruebas de sensibilidad se refieren a tonos puros, como los producidos por un oscilador electrónico. Incluso para esos tonos puros, el oído es imperfecto. Dos notas con frecuencia idéntica pero una gran diferencia de intensidad pueden aparentar una ligera diferencia de tono. Más importante resulta la diferencia en las intensidades relativas aparentes en las distintas frecuencias. A intensidades altas, el oído es aproximadamente igual de sensible a la mayoría de las frecuencias, pero a bajas intensidades el oído es mucho más sensible a las frecuencias medias que a las extremas. Por tanto, un equipo de reproducción de sonido que funciona perfectamente parecerá no reproducir las notas más graves y agudas si se reduce mucho la intensidad. El efecto Doppler El efecto Doppler se origina cuando hay un movimiento relativo entre la fuente sonora y el oyente cuando cualquiera de los dos se mueven con respecto al medio en el que las ondas se propagan. El resultado es la aparente variación de la altura del sonido. Existe una variación en la frecuencia que percibimos con la frecuencia que la fuente origina. II - 8

18 Para entenderlo mejor supongamos que estamos parados en el anden de una estación, a lo lejos un tren viene a gran velocidad con la sirena accionada, mientras el tren este lejos de nosotros oiremos el silbido de la sirena como una frecuencia determinada, cuando el tren pase delante nuestro y siga su camino, el sonido de la sirena cambia con respecto al estábamos oyendo y con respecto al que vamos a oír una vez que el tren nos rebasa y sigue su camino. La frecuencia que aparente se puede determinar según las siguientes fórmulas: Fuente móvil fx = (c/(c-u))fs Receptor en movimiento: fx = ((c-v)/c)fs Ambos en movimiento: fx = ((c-v)/(c-u))fs fx = Frecuencia aparente c = Velocidad del sonido v = Velocidad del observador u = Velocidad de la fuente fs = Frecuencia de la fuente Tres tipos de sonido importantes En la voz, la música y el ruido, es raro escuchar un tono puro. Una nota musical contiene, además de la frecuencia fundamental, tonos más agudos que son armónicos de la misma. La voz contiene una mezcla compleja de sonidos, de los que algunos (pero no todos) guardan una relación armónica entre sí. El ruido está formado por una mezcla de muchas frecuencias diferentes dentro de un determinado rango; por tanto, puede compararse con la luz blanca, que se compone de una mezcla de luces de los distintos colores. Los distintos ruidos se distinguen por sus diferentes distribuciones de energía en los distintos rangos de frecuencias. Cuando se transmite al oído un tono musical que contiene determinados armónicos del tono fundamental, pero carece de otros armónicos o del propio tono fundamental, el oído forma diferentes batidos o pulsaciones cuya frecuencia es la suma o la diferencia de los sonidos originales, con lo que producen los armónicos que faltan o el tono fundamental que no figura en el sonido original. Estas notas también son armónicos de la nota fundamental original. Esta respuesta incorrecta del oído puede resultar útil. Por ejemplo, un equipo reproductor de sonido sin un altavoz grande no puede producir sonidos de tono más grave que el do situado dos octavas por debajo del do central; sin embargo, el oído de una persona que escuche ese equipo puede proporcionar la nota fundamental a partir de las frecuencias de batido de sus armónicos. Otra imperfección del oído ante los sonidos ordinarios es la incapacidad de oír notas de alta frecuencia cuando existen sonidos de baja frecuencia de intensidad considerable. Este fenómeno se denomina enmascaramiento. En general, para que se entienda el habla y se comprenda satisfactoriamente un tema musical basta reproducir las frecuencias entre 250 y Hz (el rango de frecuencias de un teléfono normal), aunque algunos sonidos como la zeta requieren frecuencias de hasta Hz. Sin embargo, para que el efecto sea natural hay que reproducir el rango que va aproximadamente de 100 a Hz. Los sonidos generados por unos pocos instrumentos musicales sólo pueden reproducirse con naturalidad con frecuencias algo más bajas, y algunos ruidos necesitan frecuencias más altas. Octava, media octava y tercio de octava El termino de octava se toma de una escala musical, se considera el intervalo entre dos sonidos que tienen una relación de frecuencias igual a 2 y que corresponde a ocho notas de dicha escala musical. Por ejemplo: si comenzamos con una nota como DO, la octava completa será: DO-RE-MI-FA-SOL-LA-SI-DO. Si el primer DO estaba afinado en 440 Hz el segundo estará en 880 Hz, ya que hemos indicado que en la octava hay una relación de frecuencias igual a 2. En el caso de un ecualizador gráfico de una octava, las frecuencias centrales de los filtros podían ser las siguientes: 16 Hz - 31,5 Hz - 63 Hz Hz Hz Hz - 1kHz - 2 khz - 4 khz - 8 khz - 16 khz. En algunos casos la relación de 2:1 de la octava no se cumple exactamente. II - 9

19 Cuando se necesitan filtros de mayor precisión, de un ancho de banda mas estrecho, se puede dividir la octava en valores mas pequeños, por ejemplo: la media octava divide cada octava en dos, y por tanto tendremos el doble de puntos que en una octava, siguiendo con el ejemplo empleado en una octava tendríamos: 16 Hz - 22,4 Hz - 31,5 Hz - 45 Hz - 63 Hz - 90 Hz Hz Hz Hz Hz Hz Hz - 1kHz - 1,4 khz - 2 khz - 2,8 khz - 4 khz - 5,6 khz - 8 khz - 11,2 khz - 16 khz. En el caso de un tercio de octava, cada intervalo de la octava se divide en tres partes con lo que tendremos tres veces mas de filtros para poder ajustar, quedando los cortes como siguen : 16 Hz - 20 Hz - 25 Hz - 31,5 Hz - 40 Hz - 50 Hz - 63 Hz - 80 Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz - 1 khz - 1,25 khz - 1,6 khz - 2 khz - 2,5 khz - 3,15 khz - 4 khz - 5 khz - 6,3 khz - 8 khz - 10 khz - 12,5 khz - 16 khz Filtro de ancho de banda constante Un filtro de ancho de banda constante consiste básicamente en un filtro de banda estrecha sintonizable y constante. Esto nos permite seleccionar la frecuencia central que deseamos y también el ancho de banda del filtro. El ancho de banda del filtro viene dado por el siguiente valor: w = f2 - f1 Siendo w = ancho de banda del filtro, f2 = frecuencia superior y f1 = frecuencia inferior. Y la frecuencia central del filtro se obtiene normalmente de: fc = Raíz Cuadrada(f1*f2) La frecuencia central se puede ajustar a cualquier punto del espectro y mantienen siempre el mismo ancho de banda. Por ejemplo: supongamos que tenemos un filtro de ancho de banda constante con un ancho de banda de 20 Hz, si lo colocamos de forma que la frecuencia inferior sea 100 Hz (f1) la superior será igual a 120 Hz y su frecuencia central será 109,54 Hz aproximadamente. Si ahora nos desplazamos a un margen de frecuencias superior, f1 = Hz, f2 será igual a 4020 Hz y la frecuencia central será 4010 Hz. Como se ve el ancho de banda siempre es constante y no varia al variar el punto de trabajo del filtro. Filtro de ancho de banda proporcional Los filtros de ancho de banda proporcional son filtros que cumplen la remisa de f2/f1 =constante, o sea que si dividimos la frecuencia superior por la inferior siempre nos tiene que dar un valor que sea constante, por lo que el ancho de banda es proporcional a la frecuencia central. En el caso de un filtro de octava y de tercio de octava la relación de proporción es: Octava f2/f1 = 2 Tercio de Octava f2/f1 = 2^(1/3) Como es fácil deducir el ancho de banda de este tipo de filtros varia al variar la frecuencia, cuanto mas subimos mayor es el ancho de banda, siempre manteniendo la proporción expresada según el filtro sea de octava, tercio etc. Cada vez que subimos una octava doblamos el ancho de banda del filtro. Por ejemplo supongamos que estamos trabajando con un filtro de 1/3 de octava y nos situamos en la frecuencia de 100 Hz tenemos que la frecuencia inmediatamente inferior es 80 Hz y la superior 125, podemos obtener la relación de proporcionalidad del filtro según: f2/f1 = constante 125/80 = 1,56 Podemos ver que tenemos un valor de 1,56 y que corresponde a un ancho de banda de f2-f1 = = 45 Hz. II - 10

20 Si ahora con el mismo valor de la proporción (1,56) colocamos el filtro en la frecuencia central de 200 Hz en lugar de los 100 Hz de antes, veremos que la proporción se mantiene pero el ancho de banda aumenta justo al doble: f2/f1 = 250/160 = 1,56 f2-f1 = = 90 Hz Cada vez que subamos la frecuencia central aumentara el ancho de banda del filtro en la proporción expresada (1 octava =2 y 1/3 octava = 2^(1/3)). Cada vez que doblamos la frecuencia se dobla el ancho de banda del filtro. Por lo tanto este tipo de filtros resultan mas precisos en las frecuencias bajas que en las altas, ya que en frecuencias como 8 khz el ancho de banda aumenta hasta Hz mientras que como hemos visto para el mismo filtro en la frecuencia de 100 Hz tiene un ancho de banda de 45 Hz. Los filtros proporcionales con resoluciones de octava, tercio etc son los mas utilizados tanto en analizadores como en ecualizadores para fines musicales y acústicos. Disminución espacial del nivel sonoro Si tenemos una fuente sonora determinada, y estamos situados a una distancia de ella, al alejarnos o acercarnos el nivel de presión sonora varia según las características de la fuente, el lugar donde se encuentre y la distancia entre otros factores. Podemos calcular el nivel de presión acústica dentro de un local en cualquier punto con la siguiente formula: Lp = Lw + 10 log ((Q/4*Pi*r*2)+(4/R)) Lp = Nivel de presión sonora. Lw = Nivel de potencia de la fuente sonora en db. Q = Directividad de la fuente sonora. r = distancia entre la fuente y el punto de medida en metros. R = constante acústica del local (m2). En espacios al aire libre se considera que cada vez que se dobla la distancia entre la fuente sonora y el oyente, se disminuye el nivel sonoro en 6 db. Por ejemplo supongamos que estamos escuchando un altavoz a una distancia de 10 metros, si utilizamos un sonómetro y medimos el nivel de presión acústica obtenemos un valor supuesto de 80 db, si ahora nos distanciamos 10 metros mas, o sea doblamos la distancia del punto inicial, obtendremos una lectura de 74 db, 6 db menos que en el primer punto, si por ultimo nos alejamos 20 metros de este ultimo punto, doblando así su distancia, estamos a 40 metros de la fuente, obtendremos también un descenso de 6 db, tendremos por tanto, 68 db. Micrófono El micrófono es dispositivo que se utiliza para transformar la energía del sonido en energía eléctrica, durante el proceso de grabación y reproducción de sonido. Los micrófonos constituyen un elemento esencial en muchos tipos de sistemas de comunicaciones y de instrumentos de medida de sonido y ruido. El inventor Alexander Graham Bell creó en 1876 el primer micrófono durante la construcción del teléfono. La variante más sencilla de los teléfonos modernos es el micrófono de carbón, utilizado en los teléfonos. Está compuesto por un disco metálico relleno de gránulos de carbón, recubierto por un diafragma metálico móvil. El disco y el diafragma disponen de unos cables que van conectados a un circuito eléctrico, de forma que a través de los gránulos de carbón pasa una corriente eléctrica. Las ondas sonoras hacen vibrar el diafragma, alterando la presión sobre los gránulos de carbón. La resistencia eléctrica de los gránulos varía con la presión, haciendo que la corriente se modifique en el circuito con las vibraciones del diafragma. La corriente puede activar un teléfono cercano o se puede amplificar y transmitir hasta un receptor remoto. La amplificación de las variaciones de la corriente se puede utilizar también para modular un transmisor de radio. Otra variante muy corriente, el micrófono de cristal, emplea cristales piezoeléctricos, en los que se origina un voltaje entre las dos caras del cristal cuando se le aplica una presión. En este tipo de II - 11

UD1. EL SONIDO. La velocidad del sonido depende del medio y de la temperatura. Para el aire y a temperatura ambiente es de 344 m/s.

UD1. EL SONIDO. La velocidad del sonido depende del medio y de la temperatura. Para el aire y a temperatura ambiente es de 344 m/s. UD1. EL SONIDO 1. El Sonido El Sonido es una vibración mecánica que se propaga por un medio material elástico y que es producido por el aporte de una energía mecánica al medio. Es una perturbación del

Más detalles

Capítulo 14. El sonido

Capítulo 14. El sonido Capítulo 14 El sonido 1 Ondas sonoras Las ondas sonoras consisten en el movimiento oscilatorio longitudinal de las partículas de un medio. Su velocidad de transmisión es: v = B ρ en donde ρ es la densidad

Más detalles

Av. Albarellos 2662 1º piso CABA - Argentina (C1419FSQ)

Av. Albarellos 2662 1º piso CABA - Argentina (C1419FSQ) ELECTROACUSTICA Electroacústica básica y refuerzo sonoro. Qué es el sonido? El sonido es una variación de la presión de aire con el tiempo, que se propaga en un medio elástico como el aire. Comparado a

Más detalles

2. TERMINOS BÁSICOS DE ACÚSTICA.

2. TERMINOS BÁSICOS DE ACÚSTICA. 2. TERMINOS BÁSICOS DE ACÚSTICA. Definición de términos y sistemas de medición del ruido. Qué es el sonido? Cuando nos referimos al sonido audible por el oído humano, lo definimos como ondas sonoras que

Más detalles

Unidad III Sonido. Como las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal.

Unidad III Sonido. Como las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal. Unidad III Sonido Unidad III - Sonido 3 Sonido Te haz preguntado qué es el sonido? Sonido: (en física) es cualquier fenómeno que involucre la propagación en forma de ondas elásticas (sean audibles o no),

Más detalles

EL SONIDO: EXPERIENCIAS MEDIANTE OSCILOSCOPIO

EL SONIDO: EXPERIENCIAS MEDIANTE OSCILOSCOPIO EL SONIDO: EXPERIENCIAS MEDIANTE OSCILOSCOPIO AUTORÍA MARÍA DEL CARMEN HERRERA GÓMEZ TEMÁTICA EL SONIDO ETAPA BACHILLERATO Resumen Llevaremos a cabo una serie de experiencias, encaminadas a poner en práctica

Más detalles

La Física del Sonido

La Física del Sonido La Física del Sonido Qué produce el sonido? El sonido se produce cuando algo vibra. La vibración perturba el aire a su alrededor Esto causa cambios en la presión. Estos cambios de presión se propagan constituyendo

Más detalles

12/06/2011 ONDAS SONORAS DEFINICION DE SONIDO. Para que existan las ondas sonoras deben existir perturbaciones o vibraciones en algún medio.

12/06/2011 ONDAS SONORAS DEFINICION DE SONIDO. Para que existan las ondas sonoras deben existir perturbaciones o vibraciones en algún medio. ONDAS SONORAS DEFINICION DE SONIDO Para que existan las ondas sonoras deben existir perturbaciones o vibraciones en algún medio. 1 En los fluidos (líquidos y gases) las ondas generadas son longitudinales

Más detalles

Guía de Materia Características del sonido y fenómenos ondulatorios aplicados al sonido

Guía de Materia Características del sonido y fenómenos ondulatorios aplicados al sonido REFLEXIÓN Y REFRACCIÓN DEL SONIDO Imagen 1:Muestra lo que sucede con la energía cuando una onda incide sobre una superficie. Se comprueba que las ondas sonoras se reflejan en el mismo ángulo con el que

Más detalles

Mira el Sonido. Mira el Sonido

Mira el Sonido. Mira el Sonido O N D A S Mira el Sonido Mira el Sonido O N D A S Llamamos sonido a la sensación producida en nuestro oído cuando llegan las ondas emitidas por un cuerpo que vibra en un intervalo de frecuencias determinado,

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO TRABAJO PRACTICO No 7 MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO INTRODUCCION TEORICA: La distorsión es un efecto por el cual una señal pura (de una única frecuencia)

Más detalles

SONIDO Y SILENCIO: PARÁMETROS DEL SONIDO.-

SONIDO Y SILENCIO: PARÁMETROS DEL SONIDO.- SONIDO Y SILENCIO: PARÁMETROS DEL SONIDO.- En esta unidad vamos a estudiar tanto la dualidad del silencio como las cuatro cualidades o parámetros del sonido, tanto en el resultado audible como en las causas

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com Contenido DOMINIOS DEL TIEMPO Y DE LA FRECUENCIA 1.- Señales analógicas y digitales. 2.- Señales analógicas periódicas. 3.- Representación en los dominios del tiempo y de la frecuencia. 4.- Análisis de

Más detalles

MEDICIÓN Y AJUSTE DE LOS SISTEMAS DE REFUERZO SONORO

MEDICIÓN Y AJUSTE DE LOS SISTEMAS DE REFUERZO SONORO MEDICIÓN Y AJUSTE DE LOS SISTEMAS DE REFUERZO SONORO POR QUÉ ES NECESARIO MEDIR? QUÉ CONOCEMOS AL MEDIR UN SISTEMA DE AUDIO? QUÉ PARÁMETROS PODEMOS AJUSTAR? TIPOS DE MEDICIONES DE UN SOLO CANAL DE DOBLE

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

Teoría y Cálculo de Antenas (parte 1)

Teoría y Cálculo de Antenas (parte 1) Teoría y Cálculo de Antenas (parte 1) Por Martín A. Moretón Gerente para el territorio latinoamericano AirLive-Ovislink Corp. Enero 2010 Contenido Introducción....1 Qué son las antenas?....1 Qué es el

Más detalles

Modulo I El Sonido y sus cualidades

Modulo I El Sonido y sus cualidades Modulo I El Sonido y sus cualidades El Sonido y sus cualidades -Concepto - Sonido principal y accesorio o "armónico". - Altura (o tono) - Duración. - Timbre. Cualidades del sonido. - Intensidad. Concepto.

Más detalles

Artes musicales Primer año medio 2008 Música y sonido: el medio ambiente sonoro

Artes musicales Primer año medio 2008 Música y sonido: el medio ambiente sonoro 1 Definición de música Qué es la música? La música es un arte que, al igual que otras artes, es un medio de expresión, y por lo tanto de comunicación entre los hombres. Utiliza elementos físicos como son

Más detalles

INTRODUCCIÓN A AUDACITY

INTRODUCCIÓN A AUDACITY INTRODUCCIÓN A 1. Introducción... 1 2. Instalación... 1 3. Los archivos de sonido... 2 4. La pantalla de Audacity... 2 5. Grabar sonidos... 5 6. Cambiar el formato de un archivo de sonido... 5 7. Grabar

Más detalles

BASES FÍSICAS DE LA ULTRASONOGRAFÍA DEL Dr. CABRERO

BASES FÍSICAS DE LA ULTRASONOGRAFÍA DEL Dr. CABRERO BASES FÍSICAS DE LA ULTRASONOGRAFÍA DEL Dr. CABRERO Con el título fundamentos de la ultrasonografía pretendemos resumir brevemente las bases físicas y fundamentos técnicos de la ecografía. Los ultrasonidos

Más detalles

ENSAYO DE PRUEBA SONIDO 4º MEDIO 2009 PROF.: EUGENIO CONTRERAS Z.

ENSAYO DE PRUEBA SONIDO 4º MEDIO 2009 PROF.: EUGENIO CONTRERAS Z. VITTORIO MONTIGLIO Fondata nel 1891 DEPTO. DE MATEMATICA Y FISICA 1.) Además de sonidos, se habla de infrasonidos y ultrasonidos. En comparación con los sonidos que habitualmente percibimos, los ultrasonidos

Más detalles

MEDIDA DE LA VELOCIDAD DEL SONIDO. TUBO DE RESONANCIA

MEDIDA DE LA VELOCIDAD DEL SONIDO. TUBO DE RESONANCIA eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000

Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática. 6.002 Circuitos electrónicos Otoño 2000 Instituto Tecnológico de Massachussets Departamento de Ingeniería Eléctrica e Informática 6.002 Circuitos electrónicos Otoño 2000 Tarea para casa 11 Boletín F00-057 Fecha de entrega: 6/12/00 Introducción

Más detalles

MICRÓFONOS. Conceptos básicos

MICRÓFONOS. Conceptos básicos MICRÓFONOS Conceptos básicos Un micrófono es un dispositivo capaz de convertir la energía acústica en energía eléctrica. El valor de la tensión de la energía eléctrica es proporcional a la presión ejercida

Más detalles

Ilustración: Wikipedia

Ilustración: Wikipedia Ondas sonoras Sonido ES La Magdalena. Avilés. Asturias Cuando algo vibra en el aire esta vibración se transmite al aire originando una onda sonora. Una onda sonora es una onda de presión motivada por el

Más detalles

Nombre: curso: TEMA 4: EL SONIDO

Nombre: curso: TEMA 4: EL SONIDO Nombre: curso: TEMA 4: EL SONIDO 1.- CÓMO SE PRODUCE EL SONIDO En estas dos imágenes observamos cómo se produce el sonido. Cuando hacemos vibrar u oscilar la regla o la goma producimos sonido. El sonido

Más detalles

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3

Más detalles

TRANSMISION DIGITAL. PCM, Modulación por Codificación de Pulsos

TRANSMISION DIGITAL. PCM, Modulación por Codificación de Pulsos MODULACIÓN TRANSMISION DIGITAL La amplia naturaleza de las señales analógicas es evidente, cualquier forma de onda está disponible con toda seguridad en el ámbito analógico, nos encontramos con una onda

Más detalles

ONDAS SONORAS, SONIDO. Capitulo 17 Serway

ONDAS SONORAS, SONIDO. Capitulo 17 Serway ONDAS SONORAS, SONIDO Capitulo 17 Serway ONDAS SONORAS Las ondas sonoras viajan a través de cualquier medio material con una rapidez que depende de las propiedades del medio. A medida que las ondas sonoras

Más detalles

UNIDAD I FUNDAMENTOS DEL SONIDO

UNIDAD I FUNDAMENTOS DEL SONIDO SONIDO Y ELECTROACÚSTICA Prof. IGNACIO ARRIAGADA v.2012 UNIDAD I FUNDAMENTOS DEL SONIDO SONIDO: Sensación producida en el sistema auditivo por el cambio de presión generado por el movimiento vibratorio

Más detalles

Conceptos y Terminologías en la Transmisión de Datos. Representaciones de Señales.

Conceptos y Terminologías en la Transmisión de Datos. Representaciones de Señales. Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Conceptos y Terminologías en la Transmisión de Datos y Sistemas de Comunicaciones Electrónicos. Representaciones de Señales.

Más detalles

Intensidad y sonoridad

Intensidad y sonoridad LECTURA II.22 Intensidad y sonoridad a diversidad de sonidos que escuchamos nos muestra diferentes variables que debemos considerar para entender cómo se producen. LExisten sonidos de muy baja intensidad,

Más detalles

No hay resorte que oscile cien años...

No hay resorte que oscile cien años... No hay resorte que oscile cien años... María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA - 1999 Resumen: En el presente trabajo nos proponemos

Más detalles

PROTECCION DE LOS OIDOS

PROTECCION DE LOS OIDOS PROTECCION DE LOS OIDOS Características, Uso y Mantenimiento 1 El Ruido y el Oído No todos los sonidos son ruido -ruido es un sonido desagradable o irritante-. El ruido, además de ser molesto, puede interferir

Más detalles

Capítulo 3.- Generación de sonidos 3D

Capítulo 3.- Generación de sonidos 3D Capítulo 3 Generación de sonidos 3D La generación de sonidos 3D se refiere al proceso en el cual las señales de audio son modificadas con el fin de producir sensaciones de realismo al espectador. En esta

Más detalles

1.3. Intensidad: Escala de decibelios. Impedancia acústica. Las ondas sonoras son el ejemplo más importante de ondas longitudinales.

1.3. Intensidad: Escala de decibelios. Impedancia acústica. Las ondas sonoras son el ejemplo más importante de ondas longitudinales. 1.3. Intensidad: Escala de decibelios. Impedancia acústica. Ondas sonoras Las ondas sonoras son el ejemplo más importante de ondas longitudinales. Pueden viajar a través de cualquier medio material con

Más detalles

TELECOMUNICACIONES ANALÓGICAS Y DIGITALES

TELECOMUNICACIONES ANALÓGICAS Y DIGITALES CARACTERÍSTICAS DE LAS SEÑALES EN TELECOMUNICACIONES ANALÓGICAS Y DIGITALES ANALÓGICO Y DIGITAL Son el principio fundamental para determinar los aspectos técnicos para la construcción de las redes de telecomunicaciones.

Más detalles

Capítulo V Resultados y conclusiones

Capítulo V Resultados y conclusiones Capítulo V Resultados y conclusiones Nadav Levanon, autor del libro Radar Principles dijo: el estudio de los radares no solo una aplicación práctica, pero también una disciplina científica madura con fundamentos

Más detalles

Rec. UIT-R SM.1268-1 1 RECOMENDACIÓN UIT-R SM.1268-1 *

Rec. UIT-R SM.1268-1 1 RECOMENDACIÓN UIT-R SM.1268-1 * Rec. UIT-R SM.1268-1 1 RECOMENDACIÓN UIT-R SM.1268-1 * MÉTODO DE MEDICIÓN DE LA MÁXIMA DESVIACIÓN DE FRECUENCIA DE LAS EMISIONES DE RADIODIFUSIÓN A UTILIZAR EN LAS ESTACIONES DE COMPROBACIÓN TÉCNICA (Cuestión

Más detalles

Sistema de tres vías activas compuesto por tres recintos:

Sistema de tres vías activas compuesto por tres recintos: SISTEMA DP-3 INTRODUCCION La nueva gama de productos DP desarrollados y producidos por Musicson suponen un avance importante en la tecnología de refuerzo acústico de cualquier naturaleza ( directo, música

Más detalles

FS-12 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Ondas

FS-12 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Ondas FS-12 Ciencias Plan Común Física 2009 Ondas Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza. Como cualquier

Más detalles

Preguntas teóricas de la Clase N 5

Preguntas teóricas de la Clase N 5 Preguntas teóricas de la Clase N 5 1) Respecto a la cadena de amplificación del sistema vertical (eje Y) de un osciloscopio de rayos catódicos (ORC) Qué entiende por: 1. Impedancia de entrada? Componentes

Más detalles

EL VIDRIO Y LA ACÚSTICA. Copyright 2009 Guardian Industries. All rights reserved

EL VIDRIO Y LA ACÚSTICA. Copyright 2009 Guardian Industries. All rights reserved EL VIDRIO Y LA ACÚSTICA TRANSMISIÓN DEL SONIDO El sonido se transmite por el aire, pero también por la estructura del edificio CONCEPTOS Sonido Sensación producida en el oído por una onda a través de un

Más detalles

SINTESIS INFORMATICA MUSICAL DISTINGUIR: "sonido real" de uno digital o análogo sonidos, naturales humanos tecnologícos.

SINTESIS INFORMATICA MUSICAL DISTINGUIR: sonido real de uno digital o análogo sonidos, naturales humanos tecnologícos. SINTESIS INFORMATICA MUSICAL DISTINGUIR: "sonido real" de uno digital o análogo sonidos, naturales humanos tecnologícos. Hay una gran energía desplegada en un sonido fuerte;tensión en un sonido agudo y

Más detalles

Medir la velocidad del sonido en el aire a temperatura ambiente

Medir la velocidad del sonido en el aire a temperatura ambiente Experimento 10 VELOCIDAD DEL SONIDO EN EL AIRE- TUBO DE RESONANCIA Objetivo Medir la velocidad del sonido en el aire a temperatura ambiente Teoría Los sistemas mecánicos tienen frecuencias naturales de

Más detalles

2. Propiedades de una onda. Información importante. 1. Ondas. Preuniversitario Solidario

2. Propiedades de una onda. Información importante. 1. Ondas. Preuniversitario Solidario 2. Propiedades de una onda 1. Ondas Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos de: Clasificación de ondas

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier punto de la trayectoria de propagación

Más detalles

NORMA CHILENA OFICIAL NCh 1619-1979 ACÚSTICA - EVALUACIÓN DEL RUIDO EN RELACIÓN CON LA REACCIÓN DE LA COMUNIDAD

NORMA CHILENA OFICIAL NCh 1619-1979 ACÚSTICA - EVALUACIÓN DEL RUIDO EN RELACIÓN CON LA REACCIÓN DE LA COMUNIDAD NORMA CHILENA OFICIAL NCh 1619-1979 ACÚSTICA - EVALUACIÓN DEL RUIDO EN RELACIÓN CON LA REACCIÓN DE LA COMUNIDAD 0 INTRODUCCIÓN La reducción o limitación de ruidos que causan molestias es de una importancia

Más detalles

Capítulo 15. Ultrasonidos

Capítulo 15. Ultrasonidos Capítulo 15 Ultrasonidos 1 Efecto Doppler El efecto Doppler consiste en el cambio de frecuencia que experimenta una onda cuando el emisor o el receptor se mueven con respecto al medio de propagación. La

Más detalles

SONIDO, ACUSTICA, CONTROL DE SONIDO, REDUCCION DEL RUIDO

SONIDO, ACUSTICA, CONTROL DE SONIDO, REDUCCION DEL RUIDO SONIDO, ACUSTICA, CONTROL DE SONIDO, REDUCCION DEL RUIDO Que es la Acústica? Es el estudio del sonido; su generación, propagación percepción e interacción con materiales y otras formas de radiación. Comúnmente

Más detalles

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT.

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT. EL ABC DE LA AUTOMATIZACION ALGORITMO DE CONTROL PID; por Aldo Amadori Introducción El Control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales,

Más detalles

Aire acondicionado y refrigeración

Aire acondicionado y refrigeración Aire acondicionado y refrigeración CONCEPTO: El acondicionamiento del aire es el proceso que enfría, limpia y circula el aire, controlando, además, su contenido de humedad. En condiciones ideales logra

Más detalles

TEMA I.7. Ondas en Tres Dimensiones. Dr. Juan Pablo Torres-Papaqui

TEMA I.7. Ondas en Tres Dimensiones. Dr. Juan Pablo Torres-Papaqui TEMA I.7 Ondas en Tres Dimensiones Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus

Más detalles

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1

SEÑALES Y ESPECTROS SEÑALES Y ESPECTROS 1 SEÑALES Y ESPECTROS INTRODUCCIÓN. TERMINOLOGÍA USADA EN TRANSMISIÓN DE DATOS. FRECUENCIA, ESPECTRO Y ANCHO DE BANDA. DESARROLLO EN SERIE DE FOURIER PARA SEÑALES PERIÓDICAS. TRANSFORMADA DE FOURIER PARA

Más detalles

TECNICA TOMATIS EL OIDO MUSICAL. Dra. Mº Lourdes QUEROL BRAVO Médico Psicoterapeuta Audio-Psico-Fonología

TECNICA TOMATIS EL OIDO MUSICAL. Dra. Mº Lourdes QUEROL BRAVO Médico Psicoterapeuta Audio-Psico-Fonología TECNICA TOMATIS EL OIDO MUSICAL Dra. Mº Lourdes QUEROL BRAVO Médico Psicoterapeuta Audio-Psico-Fonología EL OIDO MUSICAL Las investigaciones del Profesor Alfred Tomatis sobre Audio-Psico-Fonología pusieron

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

CAPÍTULO 5. PRUEBAS Y RESULTADOS

CAPÍTULO 5. PRUEBAS Y RESULTADOS CAPÍTULO 5. PRUEBAS Y RESULTADOS En esta parte se mostrarán las gráficas que se obtienen por medio del programa que se realizó en matlab, comenzaremos con el programa de polariz.m, el cual está hecho para

Más detalles

CONCEPTOS BASICOS DE IMAGEN DIGITAL

CONCEPTOS BASICOS DE IMAGEN DIGITAL CONCEPTOS BASICOS DE IMAGEN DIGITAL 1- Conceptos Básicos Una imagen analógica es una imagen natural captada con una cámara o cualquier otro instrumento óptico, presenta unas características de sombras

Más detalles

La energía de las ondas

La energía de las ondas 7 La energía de las ondas 1. Propagación y clasificación de las ondas 102 2. Magnitudes características de las ondas 104 3. Algunos fenómenos ondulatorios 106 4. El sonido 108 5. La luz. Reflexión de la

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

Procesamiento digital de señales y radios definidas en software

Procesamiento digital de señales y radios definidas en software 1 2 2 3 4 5 5 6 Procesamiento digital de señales y radios definidas en software Marcelo Franco, N2UO www.qsl.net/n2uo En los últimos tiempos se han popularizado dos siglas entre los radioaficionados: DSP

Más detalles

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ

ÍNDICE DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ ELECTRÓNICA DIGITAL DISEÑO DE CONTADORES SÍNCRONOS JESÚS PIZARRO PELÁEZ IES TRINIDAD ARROYO DPTO. DE ELECTRÓNICA ÍNDICE ÍNDICE... 1 1. LIMITACIONES DE LOS CONTADORES ASÍNCRONOS... 2 2. CONTADORES SÍNCRONOS...

Más detalles

Estructura de los sistemas de distribución de radiodifusión sonora y de TV Objetivos

Estructura de los sistemas de distribución de radiodifusión sonora y de TV Objetivos Estructura de los sistemas de distribución de radiodifusión sonora y de TV Objetivos Conocer los distintos elementos que constituyen una instalación colectiva para la distribución de señales de televisión

Más detalles

Nociones físicas acerca del sonido

Nociones físicas acerca del sonido CURSO 2003-04 Nº 1 TEMA I: Nociones físicas acerca del sonido - Descripción del sonido o Intensidad y nivel de intensidad o Cualidades del sonido - Fenómenos acústicos o Absorción o Reflexión y refracción.

Más detalles

MINI ENSAYO DE FÍSICA Nº 4

MINI ENSAYO DE FÍSICA Nº 4 MINI ENSAYO DE FÍSICA Nº 4 TEMA: ONDAS Y ÓPTICA 1. Con respecto a las ondas mecánicas, cuál de las siguientes afirmaciones es correcta? A) Las tres afirmaciones siguientes son verdaderas. B) Si se refractan

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Qué es el sonido? : Es una onda acústica capaz de producir una sensación auditiva

Qué es el sonido? : Es una onda acústica capaz de producir una sensación auditiva SONIDO Qué es el sonido? : Es una onda acústica capaz de producir una sensación auditiva Qué es una onda acústica? Es la propagación (onda) de una vibración en un determinado medio material Hay ondas acústicas

Más detalles

Tipos de instalaciones

Tipos de instalaciones Tipos de instalaciones Existen este infinidad de configuraciones, pero como técnicos debemos referirnos a las normalizadas por la NTE, la cual diferencia cinco tipos basados en número de circuitos y programas,

Más detalles

Guía de aprendizaje Audacity: guía de edición de sonido

Guía de aprendizaje Audacity: guía de edición de sonido Desarrollo del tutorial: paso 1 de 14 Grabar audio con Audacity es relativamente sencillo. Podemos dividir este proceso en tres tareas básicas: 1. Configurar los parámetros de calidad de grabación. Dependiendo

Más detalles

DISEÑO DE UNA CAJA BASS-REFLEX

DISEÑO DE UNA CAJA BASS-REFLEX DISEÑO DE UNA CAJA BASS-REFLEX Vamos a ver cómo calcular los parámetros de una caja bass-reflex o caja abierta. En cuanto a diseño la caja bass-reflex es mucho más complicado que la caja sellada y tendremos

Más detalles

Medición del nivel de intensidad de diferentes ruidos

Medición del nivel de intensidad de diferentes ruidos Universidad Nacional Autónoma de Honduras Facultad de ciencias Escuela de física Medición del nivel de intensidad de diferentes ruidos Objetivos. Conocer y manejar los conceptos básicos de ruido.. Aprender

Más detalles

TEMA 2: Representación de la Información en las computadoras

TEMA 2: Representación de la Información en las computadoras TEMA 2: Representación de la Información en las computadoras Introducción Una computadora es una máquina que procesa información y ejecuta programas. Para que la computadora ejecute un programa, es necesario

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Escuela Técnica Superior de Ingeniería Informática PRÁCTICA 5: DISEÑO DE MODULADORES (FSK), DEMODULADORES (ASK) Tecnología Básica de las Comunicaciones (Ingeniería Técnica Informática

Más detalles

Unidad 1. La información

Unidad 1. La información Unidad 1. La información En esta unidad aprenderás: Los conceptos básicos de la informática. Cómo se representa la información dentro del ordenador. Las unidades de información. 1.1 Conceptos básicos Informática.

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Sesión 8 Sensor de Ultrasonido

Sesión 8 Sensor de Ultrasonido Sesión 8 Sensor de Ultrasonido FIG. 16.1 - ANIMALES ULTRASÓNICOS. FUENTE: [1] Qué aprenderemos en esta sesión? Recordemos Para esta sesión, necesitaremos un aporte de la sesión pasada, ya que, así como

Más detalles

Bases Físicas del Ultrasonido. Dr. Arturo Contreras Cisneros

Bases Físicas del Ultrasonido. Dr. Arturo Contreras Cisneros Bases Físicas del Ultrasonido Dr. Arturo Contreras Cisneros Introducción El ultrasonido se introdujo en la medicina a principios de 1960, como método de diagnóstico por imagen Durante la década de los

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

2.2. Introducción al aislamiento acústico

2.2. Introducción al aislamiento acústico AISLAMIENTO Y ABSORCIÓN ACÚSTICA nes dimensionales que se muestran menos conflictivas (mejor cuanto más descorrelacionadas se encuentren las dimensiones), obteniéndose el peor resultado si todas las dimensiones

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

I.E.S. Sierra de Mijas Curso 2014-15 PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA

I.E.S. Sierra de Mijas Curso 2014-15 PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA PROBLEMAS DE SELECTIVIDAD DEL TEMA 4: ÓPTICA Selectividad Andalucía 2001: 1. a) Indique qué se entiende por foco y por distancia focal de un espejo. Qué es una imagen virtual? b) Con ayuda de un diagrama

Más detalles

Tema 4: Acústica física IV

Tema 4: Acústica física IV Tema 4: Acústica física IV Impedancia acústica. Intensidad acústica. Una única onda progresiva o regresiva. Intensidad acústica de ondas provenientes de varias fuentes. Ondas curvas 4.1 Impedancia acústica

Más detalles

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos.

Estos elementos mecánicos suelen ir montados sobre los ejes de transmisión, que son piezas cilíndricas sobre las cuales se colocan los mecanismos. MECANISMOS A. Introducción. Un mecanismo es un dispositivo que transforma el movimiento producido por un elemento motriz (fuerza de entrada) en un movimiento deseado de salida (fuerza de salida) llamado

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO 1 Apunte N o 1 Pág. 1 a 7 INTRODUCCION MOVIMIENTO ONDULATORIO Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier

Más detalles

Qué es WavePad y dónde obtenerlo

Qué es WavePad y dónde obtenerlo Edición de sonidos En este apartado vamos a tratar de explicar los pasos básicos para la grabación y edición de archivos de sonido que luego podamos incluir en otras aplicaciones y publicaciones propias.

Más detalles

SEWERIN. Pre Localización De Fugas de Agua

SEWERIN. Pre Localización De Fugas de Agua SEWERIN Pre Localización De Fugas de Agua Ventajas del sistema La Pre localización de fugas de agua consiste en la escucha de la red en varios puntos. Para ello se utilizan loggers que graban sus sonidos

Más detalles

Grabación de sonido. Realizado por: Alejandro Martín Daza Manuel Romero Aranda

Grabación de sonido. Realizado por: Alejandro Martín Daza Manuel Romero Aranda Grabación de sonido Realizado por: Alejandro Martín Daza Manuel Romero Aranda Desarrollo histórico Antes del siglo XIX Hermanos Banū Mūsā: mecanismos propulsados por agua (S. IX) Organillos (S XV) Cajas

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

ANÁLISIS DEL ESTADO DE POLARIACIÓN

ANÁLISIS DEL ESTADO DE POLARIACIÓN SESIÓN 5: ANÁLISIS DEL ESTADO DE POLARIACIÓN TRABAJO PREVIO CONCEPTOS FUNDAMENTALES Luz natural Luz con el vector eléctrico vibrando en todas las direcciones del plano perpendicular a la dirección de propagación.

Más detalles

Introducción al calor y la luz

Introducción al calor y la luz Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas

Más detalles

INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES

INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES INSTITUTO TECNOLOGICO DE COSTA RICA INGENIRIA ELECTRONICA ELECTRONICA DE POTENCIA PROF. ING. JUAN CARLOS JIMENEZ TEMA: CIRCUITOS INVERSORES Son sistemas que funcionan automáticamente, sin necesidad de

Más detalles

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas

Más detalles

física física conceptual aplicada MétodoIDEA Ondas Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz

física física conceptual aplicada MétodoIDEA Ondas Entre la y la 4º de eso Félix A. Gutiérrez Múzquiz Entre la la física física conceptual aplicada MétodoIDEA Ondas 4º de eso Féli A. Gutiérrez Múzquiz Contenidos 1. CARACTERÍSTICAS DE LAS O DAS 2. I TERFERE CIAS...... 3 6 3. O DAS ESTACIO ARIAS.. 2 1. CARACTERÍSTICAS

Más detalles

Representación de señales de audio

Representación de señales de audio Representación de señales de audio Emilia Gómez Gutiérrez Síntesi i Processament del So I Departament de Sonologia Escola Superior de Musica de Catalunya Curso 2009-2010 emilia.gomez@esmuc.cat 28 de septiembre

Más detalles

Cómo funciona un control proporcional derivativo (PD)?

Cómo funciona un control proporcional derivativo (PD)? Cómo funciona un control proporcional derivativo (PD)? Adaptación del artículo: http://iesseveroochoa.edu.gva.es/severobot/2011/01/29/como-funciona-un-controlador-pd/ para el El tren de tracción diferencial

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Audio digital. 1) Captura y codificación. 2) Formatos de sonido digital. 3) Grabador de sonido. 4) Extractor de música.

Audio digital. 1) Captura y codificación. 2) Formatos de sonido digital. 3) Grabador de sonido. 4) Extractor de música. Audio digital 1) Captura y codificación 2) Formatos de sonido digital 3) Grabador de sonido 4) Extractor de música. Sound Juicer 5) Edición de sonido digital. Audacity Captura y codificación del sonido

Más detalles