Análisis Estadístico de Datos Climáticos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis Estadístico de Datos Climáticos"

Transcripción

1 Análisis Estadístico de Datos Climáticos Análisis de agrupamiento (o clusters) (Wilks, Cap. 14) Facultad de Ciencias Facultad de Ingeniería 2013

2 Objetivo Idear una clasificación o esquema de agrupación que permita dividir datos en grupos o clases, llamados agrupamientos o clusters, de modo que los datos que estén dentro de una clase o grupo sean semejantes entre sí, u homogéneos, en tanto que los que pertenezcan a grupos diferentes no sean semejantes a los de los otros grupos. ( cohesión interna y aislamiento externo ) Nota: no debe confundirse este método con el análisis discriminante, en el cual, desde un principio se sabe cuántos grupos existen, y se tienen datos que provienen de cada uno de estos grupos.

3 Este método se utiliza en muchas áreas (biología, sicología, estudios climáticos, etc). En principio, supondremos que hay N datos, cada uno dado por un vector de M atributos o características (vector de R M ). Por ejemplo, un conjunto de N personas se puede clasificar de acuerdo a tres atributos: edad, nivel educativo y nivel de ingreso. O sea, M = 3, y podemos imaginar que tenemos N datos, puntos u observaciones en el espacio de M = 3 dimensiones. Podremos organizar nuestros datos en una matriz de N x 3. Nuestro problema será agrupar los N puntos en G grupos (donde G no es conocido a priori).

4 Hablamos de semejanza entre los datos. También podríamos hablar de cercanía (o lejanía ) entre los datos, de acuerdo a algún criterio. Es deseable que, una vez formados los clusters, se cumpla que la distancia entre elementos dentro de un cluster sea menor que la distancia entre clusters. Entonces es necesario definir de alguna forma la distancia entre datos, y luego entre clusters.

5 Algunas definiciones usuales de distancia Sean dos datos: x = (x 1, x 2,, x M ) e y = (y 1, y 2,, y M ) Distancia euclidiana entre x e y : d ( x, y) = i = M i = 1 ( x 2 i - yi ) Es la distancia más usual, pero no necesariamente la mejor en todos los casos; en particular, si los elementos de x e y tienen unidades diferentes (como en el ejemplo anterior). Por eso se define también: Distancia euclidiana ponderada entre x e y : d i = M i = 1 2 ( x, y) = w i ( xi - yi ) donde w i son los coeficientes de ponderación o pesos

6 Los w i se pueden definir de varias formas. Un caso particular importante se da cuando los atributos tienen unidades diferentes, u órdenes de magnitudes diferentes. En ese caso es imprescindible usar ponderaciones. Una ponderación posible es: 1 w i = siendo si, i s i,i la varianza asociada al atributo i En este caso, tenemos la distancia de Karl-Pearson.

7 Ejemplo: se tienen 4 personas con tres atributos: edad, nivel de ingreso y nivel educativo. Es decir que hay 4 datos observados o puntos, con 3 atributos (N=4, M=3) Y se calcula la matriz de distancias: Si usamos la distancia euclidiana con los datos tal como vienen, la columna del ingreso tendría una influencia mucho mayor (no deseada). Para ponderar, calculamos el vector de varianzas: [ ] D =

8 Sea cual sea la definición de distancia, siempre será posible construir una matriz de distancias (NxN), que tendrá N*(N-1)/2 valores potencialmente diferentes entre sí y diferentes de 0. Existen varias otras definiciones de distancia (ver p. ej., en Matlab función pdist, y también zscore para la ponderación). En particular, a veces se usa la correlación entre x e y, pero esta es una medida de semejanza, de modo que cuanto más grande sea, menor es la distancia entre x e y. Entonces, una posible definición de distancia es: 1 corr(x,y) Importante: la definición de distancia que se elija condiciona considerablemente los agrupamientos que se van a obtener. Por eso, también es recomendable usar más de un método de agrupamiento.

9 Métodos jerárquicos de agrupamiento En estos métodos, en etapas sucesivas se va construyendo una jerarquía de conjuntos de grupos, donde cada nuevo grupo se obtiene uniendo un par de grupos de la etapa anterior. A) Métodos aglomerativos usando la matriz de distancias. 1) Se comienza con N grupos, cada uno formado por un punto o dato observado. Con la matriz de distancias, se encuentran los dos puntos más próximos entre sí, de acuerdo a la distancia elegida. Se unen estos dos puntos, formándose así un grupo con 2 puntos, quedando en total (N-1) grupos.

10 Métodos jerárquicos (cont.) 2) Se buscan los dos grupos más cercanos y se unen. Para ello, previamente hay que definir lo que se entiende por distancia entre grupos, cuando estos contienen más de un dato. Hay también varias formas de definir la distancia entre grupos. Algunas de ellas son: Enlace simple (la distancia más corta entre un punto de uno y otro grupo) Enlace completo (la distancia más grande entre un punto de uno y otro grupo) Enlace promedio (la distancia promedio de todas las posibles distancias entre puntos de uno y otro grupo)

11 Distancia entre centroides de ambos grupos (los centroides son los promedios de los vectores en cada grupo). En Matlab, la función linkage hace estas agrupaciones según distintos criterios. Una vez que un dato pasa a integrar un grupo, ya no sale más de él. Pasará a formar otro grupo nuevo cuando el grupo que integra se una con otro. 3) Se puede repetir el paso 2) sucesivamente hasta que todos los puntos estén en un solo grupo. Lo importante no es llegar a un solo grupo (lo cual es trivial), sino detectar en qué paso intermedio detener el proceso. Lo ideal es llegar a una división de los datos que al mismo tiempo minimice las diferencias entre miembros de un mismo grupo, y maximice las diferencias entre miembros de grupos diferentes.

12 Métodos jerárquicos (cont.) B) Método de Ward Se comienza con todos los puntos por separado. En cada paso, se elige la unión de grupos que minimice la suma de distancias al cuadrado entre cada punto del grupo y el centroide formado (o sea que minimiza la suma de varianzas) sobre todos los grupos: Y hay qué decidir cuando detener el proceso. (También el resultado de los agrupamientos depende de qué distancia se utilice.)

13 El diagrama de árbol jerárquico Muestra los pasos intermedios de formación de los grupos y puede proporcionar un criterio subjetivo para detener el proceso.. x5. x 1.. x 2 x 3. x4 Usando enlace simple, primero se unen x 3 y x 4 (son los más cercanos entre los 5), luego x 1 con x 2 y finalmente {x 3, x 4 } con x 5.

14 El diagrama de árbol jerárquico Primero se unen x 3 y x 4 (son los más cercanos entre los 5), luego x 1 con x 2 y finalmente {x 3, x 4 } con x 5. En Matlab, la función dendrogram construye el árbol.. x. 5 x 1. x. 4. x 2 x 3

15 Cuántos clusters retener? En general, en los métodos de agrupación jerárquica, no es obvio cuál es el número óptimo de clusters. A veces, la existencia de información previa o la propia naturaleza del problema pueden sugerir una determinada partición en grupos. Los objetivos que busca el análisis pueden indicar cuando detener (subjetivamente) el proceso. En ausencia de toda otra información, existen varios criterios, algunos basados en las matrices de covarianza intra-grupos o inter-grupos. Veremos un criterio parcialmente subjetivo que utiliza una gráfica de la distancia entre los grupos combinados en función de la etapa del análisis.

16 Si se puede detectar alguna etapa del proceso en la que la distancia entre los clusters que se unen presenta un salto más o menos notorio, parece razonable detener el proceso allí ya que seguir agrupando implicaría unir grupos que están relativamente lejanos. Es recomendable reiterar el proceso cambiando la definición de distancia entre puntos y/o entre grupos, y comparar los distintos resultados finales obtenidos. La función cluster de Matlab permite detectar agrupamientos naturales de datos o cortar el árbol en un punto arbitrario. La función clusterdata reúne a las funciones pdist, linkage y cluster.

17 Ejemplo: 28 estaciones caracterizadas por su temperatura y precipitación medias en Julio ( ) (Wilks, Cap. 14) (N = 28, M = 2) Los 2 atributos tienen unidades diferentes ==> se usa la distancia de Karl-Pearson entre puntos, y el criterio de enlace completo para la distancia entre grupos

18 Usando enlace completo

19 Usando enlace completo

20 Usando enlace simple

21 Métodos no jerárquicos Una desventaja potencial de los métodos jerárquicos es que los puntos que en alguna etapa quedan en un mismo cluster, permanecerán juntos en adelante, no permitiendo reubicar puntos que pudieran haber sido mal clasificados. Los métodos no jerárquicos permiten esa reubicación.

22 El método de K-medias (K-means) El método presupone conocido el número final K de clusters al que se quiere llegar (lo cual podría verse como una desventaja). 1) Se comienza eligiendo K puntos como semillas Esos K puntos se tomarán como centroides de clusters. Alternativamente, se puede comenzar con K clusters. Esta elección inicial condiciona el resultado final. 2) Cada uno de los datos es asignado al centroide más cercano. Se tienen así clasificados todos los datos en K clusters. 3) Dentro de cada cluster se recalculan los centroides y se repite el paso 2. 4) Se reiteran los pasos 2) y 3) hasta que no se producen más reasignaciones. En Matlab, esto lo hace la función kmeans

23 Agrupamientos aglomerativos nucleados Es una combinación de un método jerárquico aglomerativo y uno no jerárquico (el de K-medias). Por un procedimiento iterativo se obtienen secuencialmente agrupaciones en un rango de número de clusters. Dado G final (el número de clusters final deseado), se comienza con un número mayor (G inicial > G final ). Se realiza el procedimiento K-medias para ese G inicial y luego: 1) siguiendo alguno de los métodos jerárquicos vistos (p. ej. el de Ward), se unen los dos clusters más cercanos.

24 2) Con los clusters obtenidos en 1), se aplica el K-medias. Se repiten 1) y 2) hasta llegar a tener un número de clusters igual a G final. (En los pasos intermedios se obtienen agrupaciones con números de clusters decrecientes entre G inicial y G final.) Con este procedimiento, se disminuye en parte la influencia de la elección inicial arbitraria de semillas, permitiendo también reasignar puntos a los grupos.

25 Ejemplo: Regionalización del Uruguay según el ciclo anual de precipitaciones (R. Terra y G. Pisciottano, 1994) La idea es agrupar pluviómetros que tengan ciclos anuales de precipitación parecidos, en algún sentido, para utilizarlos en estudios de variabilidad climática regional. Ciclo anual Rivera Ciclo anual Melo

26 Se utilizaron datos mensuales de 100 estaciones pluviométricas en Uruguay en el período Cada estación se caracterizó por su ciclo anual promedio en ese período (un vector de 12 números para cada estación). Podemos considerar entonces que partimos de una matriz de 100 x 12. (100 puntos y 12 atributos o variables.) Se realizó una partición del Uruguay según el área de influencia de cada estación. Antes de aplicar técnicas de cluster analysis, se realizó un análisis de componentes principales para eliminar la variabilidad ruidosa y redundante de menor escala. Al mismo tiempo, se disminuye el volumen computacional.

27 Para ello, primero se obtuvo la matriz de anomalías, es decir que se calculó el ciclo anual promedio de las 100 estaciones y se restó al ciclo anual de cada una. Las series no fueron estandarizadas ya que era de interés tanto la forma del ciclo anual como su intensidad. Se obtuvieron los 12 EOFs, autovalores y PCs, (estos de longitud 100). Se retuvieron los dos primeros modos, que explican respectivamente el 54.7% y el 29.7% de la varianza total. Entonces, para el análisis de clusters se tienen 100 puntos o datos, con 2 atributos cada uno (en vez de 12). Se utilizó el método de agrupamientos aglomerativos nucleados.

28 Para elegir el número final de clusters, se tuvieron en cuenta: el hecho de que se explica más del 84% de la varianza con sólo dos modos lo pequeño de la superficie a regionalizar el objetivo del trabajo (obtener una regionalización adecuada para estudios de variabilidad climática regional, donde no son relevantes detalles locales) Se determinó a priori en 4 el número de clusters finales. Se comenzó con 50 semillas (eligiéndolas de 3 formas diferentes y llegando al mismo resultado final)

29 Se usaron 2 métodos jerárquicos distintos: enlace promedio y Ward, y también se usó el método no jerárquico hallando 5 y 6 clusters. Se observa que las regiones son bastante robustas respecto del método, excepto la región sur que no se unifica en ninguno de los procedimientos alternativos. Los ciclos anuales medios para cada una de las 4 regiones muestra tanto la diferencia de regímenes pluviométricos en distintas épocas del año, como las distintas intensidades de los mismos. Correlaciones entre los ciclos anuales medios de las 4 regiones

30 Regionalización de la precipitación en Uruguay según su ciclo anual Terra y Pisciottano 1994

Análisis Estadístico de Datos Climáticos. Análisis de agrupamiento (o clusters)

Análisis Estadístico de Datos Climáticos. Análisis de agrupamiento (o clusters) Análisis Estadístico de Datos Climáticos Análisis de agrupamiento (o clusters) A. Díaz - M. Bidegain M. Barreiro Facultad de Ciencias Facultad de Ingeniería 2011 Objetivo Idear una clasificación o esquema

Más detalles

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO I. INTRODUCCIÓN Beatriz Meneses A. de Sesma * En los estudios de mercado intervienen muchas variables que son importantes para el cliente, sin embargo,

Más detalles

ANALISIS MULTIVARIANTE

ANALISIS MULTIVARIANTE ANALISIS MULTIVARIANTE Es un conjunto de técnicas que se utilizan cuando se trabaja sobre colecciones de datos en las cuáles hay muchas variables implicadas. Los principales problemas, en este contexto,

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

DESCRIPCIÓN DE LA METODOLOGÍA UTILIZADA EN EL PROGRAMA DE CESTAS REDUCIDAS ÓPTIMAS

DESCRIPCIÓN DE LA METODOLOGÍA UTILIZADA EN EL PROGRAMA DE CESTAS REDUCIDAS ÓPTIMAS DESCRIPCIÓN DE LA METODOLOGÍA UTILIZADA EN EL PROGRAMA DE CESTAS REDUCIDAS ÓPTIMAS Replicar un índice Formar una cartera que replique un índice (o un futuro) como el IBEX 35, no es más que hacerse con

Más detalles

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007 Enunciado Se desea efectuar el testing funcional de un programa que ejecuta transferencias entre cuentas bancarias. El programa recibe como parámetros la cuenta de origen, la de cuenta de destino y el

Más detalles

Análisis de componentes principales

Análisis de componentes principales Capítulo 2 Análisis de componentes principales 2.1. INTRODUCCIÓN El Análisis de componentes principales trata de describir las características principales de un conjunto de datos multivariantes, en los

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 2, Febrero 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Construcción de una Base de Datos Autor:

Más detalles

Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas.

Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas. El primer paso en el diseño de una base de datos es la producción del esquema conceptual. Normalmente, se construyen varios esquemas conceptuales, cada uno para representar las distintas visiones que los

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Otras medidas descriptivas usuales

Otras medidas descriptivas usuales Tema 7 Otras medidas descriptivas usuales Contenido 7.1. Introducción............................. 1 7.2. Medidas robustas.......................... 2 7.2.1. Media recortada....................... 2 7.2.2.

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Materia: Estadística Aplicada a la Investigación Profesora: Dra. Hebe Goldenhersh Octubre del 2002 1 Determinación de

Más detalles

Metodología. del ajuste estacional. Tablero de Indicadores Económicos

Metodología. del ajuste estacional. Tablero de Indicadores Económicos Metodología del ajuste estacional Tablero de Indicadores Económicos Metodología del ajuste estacional Componentes de una serie de tiempo Las series de tiempo están constituidas por varios componentes que,

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/ Minería de Datos Web 1 er Cuatrimestre 2015 Página Web http://www.exa.unicen.edu.ar/catedras/ageinweb/ Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs. As., Argentina http://www.exa.unicen.edu.ar/~dgodoy

Más detalles

INFORMÁTICA APLICADA AL ANÁLISIS ECONÓMICO - FONDO SOCIAL EUROPEO ANÁLISIS CLUSTER IDEA CONCEPTUAL BÁSICA: DEFINICIÓN:

INFORMÁTICA APLICADA AL ANÁLISIS ECONÓMICO - FONDO SOCIAL EUROPEO ANÁLISIS CLUSTER IDEA CONCEPTUAL BÁSICA: DEFINICIÓN: IDEA CONCEPTUAL BÁSICA: La heterogeneidad de una población constituye la materia prima del análisis cuantitativo...... sin embargo, en ocasiones, el individuo u objeto particular, aislado, resulta un "recipiente"

Más detalles

Base de datos en Excel

Base de datos en Excel Base de datos en Excel Una base datos es un conjunto de información que ha sido organizado bajo un mismo contexto y se encuentra almacenada y lista para ser utilizada en cualquier momento. Las bases de

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

Redes de Kohonen y la Determinación Genética de las Clases

Redes de Kohonen y la Determinación Genética de las Clases Redes de Kohonen y la Determinación Genética de las Clases Angel Kuri Instituto Tecnológico Autónomo de México Octubre de 2001 Redes Neuronales de Kohonen Las Redes de Kohonen, también llamadas Mapas Auto-Organizados

Más detalles

Capítulo 12: Indexación y asociación

Capítulo 12: Indexación y asociación Capítulo 12: Indexación y asociación Conceptos básicos Índices ordenados Archivos de índice de árbol B+ Archivos de índice de árbol B Asociación estática Asociación dinámica Comparación entre indexación

Más detalles

SENA: CENTRO BIOTECNOLOGIA INDUSTRIAL PROGRAMA DE FORMACIÓN: TECNOLOGO GESTION LOGISTICA

SENA: CENTRO BIOTECNOLOGIA INDUSTRIAL PROGRAMA DE FORMACIÓN: TECNOLOGO GESTION LOGISTICA Por población o universo se entiende como un conjunto de medidas, cuando estas son aplicadas a una característica cuantitativa, o como el recuento de todas las unidades que presentan una característica

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función

Más detalles

4. MÉTODOS DE CLASIFICACIÓN

4. MÉTODOS DE CLASIFICACIÓN 4. MÉTODOS DE CLASIFICACIÓN Una forma de sintetizar la información contenida en una tabla multidimensional (por ejemplo una tabla léxica agregada), es mediante la conformación y caracterización de grupos.

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

Análisis de medidas conjuntas (conjoint analysis)

Análisis de medidas conjuntas (conjoint analysis) Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS

6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS 6 ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS Esquema del capítulo Objetivos 6.1. 6.. 6.3. 6.4. ANÁLISIS DE INDEPENDENCIA O ASOCIACIÓN ENTRE DOS ATRIBUTOS COEFICIENTES DE CONTINGENCIA LA

Más detalles

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama.

Decisión: Indican puntos en que se toman decisiones: sí o no, o se verifica una actividad del flujo grama. Diagrama de Flujo La presentación gráfica de un sistema es una forma ampliamente utilizada como herramienta de análisis, ya que permite identificar aspectos relevantes de una manera rápida y simple. El

Más detalles

Este documento enumera los diferentes tipos de Diagramas Matriciales y su proceso de construcción. www.fundibeq.org

Este documento enumera los diferentes tipos de Diagramas Matriciales y su proceso de construcción. www.fundibeq.org DIAGRAMA MATRICIAL 1.- INTRODUCCIÓN Este documento enumera los diferentes tipos de Diagramas Matriciales y su proceso de construcción. Muestra su potencial, como herramienta indispensable para la planificación

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL. REPASO COCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓ ORMAL. Éste es un breve repaso de conceptos básicos de estadística que se han visto en cursos anteriores y que son imprescindibles antes de acometer

Más detalles

ESTRUCTURA DE DATOS: ARREGLOS

ESTRUCTURA DE DATOS: ARREGLOS ESTRUCTURA DE DATOS: ARREGLOS 1. Introduccion 2. Arreglos - Concepto - Caracteristicas 3. Arreglos Unidimensionales 4. Arreglos Bidimensionales 5. Ventajas del uso de arreglos 6. Ejemplo 1. Introducción

Más detalles

ESTADÍSTICA SEMANA 4

ESTADÍSTICA SEMANA 4 ESTADÍSTICA SEMANA 4 ÍNDICE MEDIDAS DE DISPERSIÓN... 3 APRENDIZAJES ESPERADOS... 3 DEfinición de Medida de dispersión... 3 Rango o Recorrido... 3 Varianza Muestral (S 2 )... 3 CÁLCULO DE LA VARIANZA...

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

Procesos Críticos en el Desarrollo de Software

Procesos Críticos en el Desarrollo de Software Metodología Procesos Críticos en el Desarrollo de Software Pablo Straub AgileShift Imagine una organización de desarrollo de software que consistentemente cumple los compromisos con sus clientes. Imagine

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

La explicación la haré con un ejemplo de cobro por $100.00 más el I.V.A. $16.00

La explicación la haré con un ejemplo de cobro por $100.00 más el I.V.A. $16.00 La mayor parte de las dependencias no habían manejado el IVA en los recibos oficiales, que era el documento de facturación de nuestra Universidad, actualmente ya es formalmente un CFD pero para el fin

Más detalles

2.- Métodos para la medición de la pobreza

2.- Métodos para la medición de la pobreza 2.- Métodos para la medición de la pobreza Existen tres enfoques principales para la medición de la pobreza y cada uno contiene diversas metodologías para la identificación de los pobres (Boltvinik, 1999).

Más detalles

Medias Móviles: Señales para invertir en la Bolsa

Medias Móviles: Señales para invertir en la Bolsa www.gacetafinanciera.com Medias Móviles: Señales para invertir en la Bolsa Juan P López..www.futuros.com Las medias móviles continúan siendo una herramienta básica en lo que se refiere a determinar tendencias

Más detalles

El azar y la probabilidad. Un enfoque elemental

El azar y la probabilidad. Un enfoque elemental El azar y la probabilidad. Un enfoque elemental Experimentos al azar El azar puede percibirse fácilmente cuando se repite muchas veces una acción cuyo resultado no conocemos, como tirar dados, repartir

Más detalles

Tecnologías en la Educación Matemática. Expresiones. Datos. Expresiones Aritméticas. Expresiones Aritméticas 19/08/2014

Tecnologías en la Educación Matemática. Expresiones. Datos. Expresiones Aritméticas. Expresiones Aritméticas 19/08/2014 Tecnologías en la Educación Matemática jac@cs.uns.edu.ar Dpto. de Ciencias e Ingeniería de la Computación UNIVERSIDAD NACIONAL DEL SUR 1 Datos Los algoritmos combinan datos con acciones. Los datos de entrada

Más detalles

Capítulo 3. Estimación de elasticidades

Capítulo 3. Estimación de elasticidades 1 Capítulo 3. Estimación de elasticidades Lo que se busca comprobar en esta investigación a través la estimación econométrica es que, conforme a lo que predice la teoría y lo que ha sido observado en gran

Más detalles

4 Análisis de los principales factores AsociAdos A los resultados en ciencias

4 Análisis de los principales factores AsociAdos A los resultados en ciencias cuada en relación con las posibles futuras profesiones de los estudiantes vinculadas a las ciencias. En segundo lugar, los alumnos opinan que las dificultades en el aprendizaje del nuevo conocimiento científico

Más detalles

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS

Contenido: CARTAS DE CONTROL. Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS Contenido: CARTAS DE CONTROL Cartas de control C Cartas de control U Cartas de control P Cartas de control NP DIAGRAMA DE PARETTO HISTOGRAMAS TEST DE MEDIANAS CEL: 72488950 1 Antes de querer utilizar cualquier

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Métodos Iterativos para Resolver Sistemas Lineales

Métodos Iterativos para Resolver Sistemas Lineales Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas, CCIR/ITESM 17 de julio de 2009 Índice 3.1. Introducción............................................... 1 3.2. Objetivos................................................

Más detalles

Análisis de Datos. Práctica de métodos predicción de en WEKA

Análisis de Datos. Práctica de métodos predicción de en WEKA SOLUCION 1. Características de los datos y filtros Una vez cargados los datos, aparece un cuadro resumen, Current relation, con el nombre de la relación que se indica en el fichero (en la línea @relation

Más detalles

CORRELACIÓN Y PREDICIÓN

CORRELACIÓN Y PREDICIÓN CORRELACIÓN Y PREDICIÓN 1. Introducción 2. Curvas de regresión 3. Concepto de correlación 4. Regresión lineal 5. Regresión múltiple INTRODUCCIÓN: Muy a menudo se encuentra en la práctica que existe una

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE

MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE MÓDULO 2. LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO SIMPLE Índice de contenidos: 1. Ley Financiera de capitalización a interés vencido. 1.1. Equivalencia de capitales. 1.2. Tipos de interés equivalentes.

Más detalles

ESTADÍSTICA COMUNITARIA

ESTADÍSTICA COMUNITARIA ESTADÍSTICA COMUNITARIA MANUAL SENCILLO DE ESTADÍSTICA COMUNITARIA 1 La estadística es mucho más sencilla de lo que imaginas Es tan solo un conjunto de conocimientos de matemática y otras áreas que nos

Más detalles

Gráficas de caja. El borde derecho de la caja es el tercer cuartil, Q 3, que es la mediana de los valores que están por encima de la mediana.

Gráficas de caja. El borde derecho de la caja es el tercer cuartil, Q 3, que es la mediana de los valores que están por encima de la mediana. LECCIÓN CONDENSADA 2.1 Gráficas de caja En esta lección crearás e interpretarás las gráficas de caja para conjuntos de datos usarás el rango intercuartil (IQR) para identificar valores extremos potenciales

Más detalles

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Descargado desde www.medwave.cl el 13 Junio 2011 por iriabeth villanueva Medwave. Año XI, No. 3, Marzo 2011. ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión Autor:

Más detalles

Sistemas de numeración

Sistemas de numeración Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

PRESENTACIÓN GRÁFICA DE LOS DATOS

PRESENTACIÓN GRÁFICA DE LOS DATOS PRESENTACIÓN GRÁFICA DE LOS DATOS Una imagen dice más que mil palabras, esta frase explica la importancia de presentar los datos en forma gráfica. Existe una gran variedad de gráficos y la selección apropiada

Más detalles

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse.

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse. TABLA DE DECISION La tabla de decisión es una herramienta que sintetiza procesos en los cuales se dan un conjunto de condiciones y un conjunto de acciones a tomar según el valor que toman las condiciones.

Más detalles

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se

Más detalles

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2. FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución

Más detalles

ARREGLOS DEFINICION GENERAL DE ARREGLO

ARREGLOS DEFINICION GENERAL DE ARREGLO ARREGLOS DEFINICION GENERAL DE ARREGLO Conjunto de cantidades o valores homogéneos, que por su naturaleza se comportan de idéntica forma y deben de ser tratados en forma similar. Se les debe de dar un

Más detalles

GUÍA DE EJERCICIOS UNIDAD II

GUÍA DE EJERCICIOS UNIDAD II UNIDAD II: INTEGRAL DEFINIDA UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS DEPARTAMENTO DE MATEMÁTICA ANÁLISIS MATEMÁTICO II Corregido por: Prof. AOUAD Jamil Prof. LAURENTÍN María Prof.

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

UNIDAD N º 6: Volumen (1ª parte)

UNIDAD N º 6: Volumen (1ª parte) UNIDAD N º 6: Volumen (1ª parte) De manera intuitiva, el volumen de un objeto es el espacio que él ocupa. El procedimiento a seguir para medir el volumen de un objeto dependerá del estado en que se encuentre:

Más detalles

Equivalencia financiera

Equivalencia financiera Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común

Más detalles

CAPÍTULO 4: ALGORITMOS DE APRENDIZAJE

CAPÍTULO 4: ALGORITMOS DE APRENDIZAJE Capítulo 4 Algoritmos de Aprendizaje 26 CAPÍTULO 4: ALGORITMOS DE APRENDIZAJE En este capítulo se proporcionan las descripciones matemáticas de los principales algoritmos de aprendizaje para redes neuronales:

Más detalles

Enfoque del Marco Lógico (EML)

Enfoque del Marco Lógico (EML) Enfoque del Marco Lógico (EML) Qué es el EML? Es una herramienta analítica que se utiliza para la mejorar la planificación y la gestión de proyectos tanto de cooperación al desarrollo como de proyectos

Más detalles

1. MEDIDAS DE TENDENCIA CENTRAL

1. MEDIDAS DE TENDENCIA CENTRAL 1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas

Más detalles

COMUNICADO Nro. 49763 08/11/2010. Ref.: Tarjetas de crédito. Tasas y costos promedio de las tarjetas de crédito a agosto de 2010. Tarjetas de Crédito

COMUNICADO Nro. 49763 08/11/2010. Ref.: Tarjetas de crédito. Tasas y costos promedio de las tarjetas de crédito a agosto de 2010. Tarjetas de Crédito "2010 - AÑO DEL BICENTENARIO DE LA REVOLUCION DE MAYO" COMUNICADO Nro. 49763 08/11/2010 Ref.: Tarjetas de crédito. Tasas y costos promedio de las tarjetas de crédito a agosto de 2010. Tarjetas de Crédito

Más detalles

Cuentas Contables. Para Generar y/o modificar las cuentas contables hay que ir a: Parámetros Plan de Cuentas Cuentas Contables

Cuentas Contables. Para Generar y/o modificar las cuentas contables hay que ir a: Parámetros Plan de Cuentas Cuentas Contables Cuentas Contables Para Generar y/o modificar las cuentas contables hay que ir a: Parámetros Plan de Cuentas Cuentas Contables Aparecerá una pantalla mostrando las cuentas contables cargadas, dicha información

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

UNIDADES DE ALMACENAMIENTO DE DATOS

UNIDADES DE ALMACENAMIENTO DE DATOS 1.2 MATÉMATICAS DE REDES 1.2.1 REPRESENTACIÓN BINARIA DE DATOS Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS. Los computadores sólo

Más detalles

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico I.- En todos los problemas siguientes de esta sección, encuentra qué número (o números) debe seguir según la sucesión, y explica el por qué. 1) 1, 4, 27, 256,? (5 puntos) R = 3125 Observa que 1=1 1, 4=2

Más detalles

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio

Colegio Alexander von Humboldt - Lima. Tema: La enseñanza de la matemática está en un proceso de cambio Refo 07 2004 15 al 19 de noviembre 2004 Colegio Alexander von Humboldt - Lima Tema: La enseñanza de la matemática está en un proceso de cambio La enseñanza de la matemática debe tener dos objetivos principales:

Más detalles

4. Estadística Descriptiva

4. Estadística Descriptiva 4. Estadística Descriptiva En este apartado se presentan las estadísticas descriptivas obtenidas a través de la aplicación de las encuestas que han sido detalladas en la Metodología. 4.1 Estadísticas de

Más detalles

4 Pruebas y análisis del software

4 Pruebas y análisis del software 4 Pruebas y análisis del software En este capítulo se presentan una serie de simulaciones donde se analiza el desempeño de ambos sistemas programados en cuanto a exactitud con otros softwares que se encuentran

Más detalles

100(n + 2) + 10(n + 1) + n. Análogamente, para el número que se obtiene al invertir las cifras del primero, resulta: 100 n + 10(n + 1) + (n + 2)

100(n + 2) + 10(n + 1) + n. Análogamente, para el número que se obtiene al invertir las cifras del primero, resulta: 100 n + 10(n + 1) + (n + 2) INVERSIÓN DE NÚMEROS Los Números de 3 Cifras Decrecientes en 1 y el Número 198. Escríbase un número de tres cifras decrecientes en 1, por ejemplo, 765; inviértanse las cifras: 567; efectúese la resta de

Más detalles

Diagonalización de matrices

Diagonalización de matrices diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla

Más detalles

ESCALAS DE MEDICIÓN ...

ESCALAS DE MEDICIÓN ... ESCALAS DE MEDICIÓN... Como la estadística analiza los datos y éstos son el resultado de las mediciones, necesitamos ocupar cierto tiempo para estudiar las escalas de medición. Este tema es de suma importancia,

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

MEDICION DEL TRABAJO

MEDICION DEL TRABAJO MEDICION DEL TRABAJO Habíamos dicho al comenzar el curso que habían 4 técnicas que permiten realizar una medición del trabajo 1 Técnicas Directas: - Estudio de tiempos con cronómetro - Muestreo del trabajo

Más detalles

COMO MEDIR LA EFECTIVIDAD DE LA CONCIENTIZACIÓN

COMO MEDIR LA EFECTIVIDAD DE LA CONCIENTIZACIÓN COMO MEDIR LA EFECTIVIDAD DE LA CONCIENTIZACIÓN Ing. Carlos Ormella Meyer Los planes de concientización especialmente en seguridad de la información han sido muchas veces terreno fértil de opiniones discordantes,

Más detalles

INVENTARIO INTRODUCCIÓN RESUMEN DE PASOS

INVENTARIO INTRODUCCIÓN RESUMEN DE PASOS INVENTARIO INTRODUCCIÓN Es habitual que en las empresas realicen a final de año un Inventario. Con este proceso se pretende controlar el nivel de stock existente, para iniciar el nuevo ejercicio, conociendo

Más detalles

2014 Néstor A. Jiménez J. Derechos reservados. Celular 3155003650

2014 Néstor A. Jiménez J. Derechos reservados. Celular 3155003650 Diplomado Práctico en NORMAS INTERNACIONALES DE INFORMACIÓN FINANCIERA (NIIF) Tema 24: Estados financieros separados NIC 27 Estados financieros consolidados NIIF 10 Estados financieros separados y consolidados

Más detalles

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad

Más detalles

UNIDAD 2: Abstracción del Mundo real Al Paradigma Orientado a Objetos

UNIDAD 2: Abstracción del Mundo real Al Paradigma Orientado a Objetos 2.1. Principios básicos del Modelado de Objetos UNIDAD 2: Abstracción del Mundo real Al Paradigma Orientado a Objetos Hoy en día muchos de los procesos que intervienen en un negocio o empresa y que resuelven

Más detalles

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA Valor del dinero en el tiempo Conceptos de capitalización y descuento Ecuaciones de equivalencia financiera Ejercicio de reestructuración de deuda T E M A

Más detalles

Recomendaciones para elaborar bases de datos

Recomendaciones para elaborar bases de datos Recomendaciones para elaborar bases de datos Independientemente de si son tablas de datos construidas desde cero por el periodista o si se trata de información que él solicitó y obtuvo de la entidad o

Más detalles

Diseño orientado al flujo de datos

Diseño orientado al flujo de datos Diseño orientado al flujo de datos Recordemos que el diseño es una actividad que consta de una serie de pasos, en los que partiendo de la especificación del sistema (de los propios requerimientos), obtenemos

Más detalles